
A Sharper Sense of Self: Probabilistic Reasoning of
Program Behaviors for Anomaly Detection with

Context Sensitivity
Kui Xu, Ke Tian, Danfeng (Daphne) Yao and Barbara G. Ryder

Department of Computer Science
Virginia Tech

Blacksburg, VA, USA
Email: {xmenxk, ketian, danfeng, ryder}@cs.vt.edu

Abstract—Program anomaly detection models legitimate be-
haviors of complex software and detects deviations during execu-
tion. Behavior deviations may be caused by malicious exploits, de-
sign flaws, or operational errors. Probabilistic detection computes
the likelihood of occurrences of observed call sequences. However,
maintaining context sensitivity in detection incurs high modeling
complexity and runtime overhead. We present a new anomaly-
based detection technique that is both probabilistic and 1-level
calling-context sensitive. We describe a matrix representation
and clustering-based solution for model reduction, specifically
reducing the number of hidden states in a special hidden Markov
model whose parameters are initialized with program analysis.
Our extensive experimental evaluation confirms the significantly
improved detection accuracy and shows that attacker’s ability to
conduct code-reuse exploits is substantially limited.

I. INTRODUCTION

The increasing stealth in modern exploits demands more
accurate and precise program behavior modeling to identify
malicious program behaviors. For example, code-reuse attacks
use existing libraries and instruction sequences from inside the
victim program’s memory to conduct malicious activities. This
technique allows attackers to bypass stack-based protection
and make arbitrary library and system calls.

Attackers use operating-system provided calls to construct
exploits. Therefore, modeling the call sequences of a program
for anomalous patterns can potentially detect exploits. This
approach is referred to as program anomaly detection in the
literature [1]. Program anomaly detection typically has two
phases of operation, i) constructing a model to capture the
legitimate behaviors of a program and ii) classifying observed
behaviors into benign or anomaly categories. Behavior devi-
ations may be caused by malicious exploits, design flaws, or
operational errors.

Probabilistic program anomaly detection can compute the
likelihood of occurrences of observed call sequences. Several
such solutions exist based on hidden Markov model (HMM)
(e.g., [2, 3]). The detection provides quantitative measurement
for every observed call sequence. Most recently, researchers
demonstrated the use of static program analysis in combination
with HMM model to boost the detection accuracy [4]. In
these HMM models, the hidden states implicitly or explicitly

represent the state (or stage) of the execution; the observation
symbols correlate to the program events such as system calls
made. Hidden Markov models need to be trained with normal
program traces. The trained models can then be used to
recognize anomalies in new unknown segments.

Existing probabilistic solutions for program anomaly de-
tection are context-insensitive [4]. They do not distinguish
the context of an event. Context sensitivity is the ability to
recognize different calling context associated with a called
function, when collecting and monitoring program traces. Con-
text information increases the precision of program behavior
modeling.

Various context information can be learned from runtime
execution. For example, Sekar et al. recorded program coun-
ters to distinguish same system calls [5]. They used pro-
gram counters to represent the state of the execution, while
constructing large finite state automata to recognize normal
program behaviors. FSA-based program anomaly detection
does not support probabilistic reasoning. VtPath model also
includes call stack information as context [6].

However, directly applying fine-grained context-sensitive
approaches to Markov-based probabilistic models may result
in state explosion in the worst case, i.e., the substantial
increase of model size to recognize calls with all possible
different contexts in a program. Having a large number of
states substantially slows down the model convergence and
classification, reducing the timeliness of the detection. In
addition, as shown by researchers [4], behavioral models that
are constructed solely by learning from traces are inadequate,
because they may have high false positive rates due to incom-
plete traces.

We aim to design a program anomaly detection technique
that achieves the following goals:

• To probabilistically reason the likelihood of occurrence
of call sequences,

• To record and be able to distinguish the calling context
of each call,

• To cover both statically feasible and dynamically ob-
served control flows.

Our model detects anomalies by classifying the call se-
quences during program executions, and the classification is
based on the probabilistic control-flow representation of a
program. We propose a new approach for constructing such a
behavior model which incorporates both statically and dynam-
ically analyzed information from programs and the execution
traces. We also collect and maintain context information for
each call observation.

Our analysis tool statically extracts control-flow graph and
call graph information from a program, which is transformed
into a rigorous context-sensitive and probabilistic represen-
tation by our algorithms. With the initialization of the ob-
tained static information, our customized classification model
(namely the hidden Markov model) demonstrates much im-
proved model accuracy.

Compared to many existing approaches, our method does
not require any binary instrumentation. Our technical contri-
butions are highlighted as follows.

1) We present a program anomaly-based detection technique
that enables probabilistic reasoning on the likelihood
of occurrences of call sequences. Compared to related
solutions, our system supports 1-level calling-context
sensitivity. Distinguishing calling context of a function
generates a more expressive behavioral model and im-
proves detection accuracy. We utilize a compact matrix
representation for recording and estimating probabilities
of context-sensitive call transitions in a program. Values
in the call-transition matrix are used to statically enhance
the classifier, namely hidden Markov model (HMM),
specifically on the initialization of hidden state and prob-
ability parameters.

2) We demonstrate the effectiveness of K-mean clustering
in reducing the size of hidden Markov model and conse-
quently the training time, while maintaining high detec-
tion accuracy. This improvement is particularly important
for behavioral models with library calls, because of the
diverse context associated with library call invocations.
The similarity metric used for clustering is computed
between two vectors in the call-transition matrix. With
hidden states reduced to 1

2 to 1
3 of the original numbers

through clustering, the convergence of HMM models is
shortened substantially. We observe 75% to 89% reduc-
tion in the training time.

3) Our extensive experimental evaluation involves a large
number of program traces (> 4,000 test cases) and real-
world exploits from utility programs and server programs
proftpd and nginx. Our experimental results show
close to three orders of magnitude accuracy improvement
for library calls, and 10-time improvement for system
calls on average over context-insensitive counterparts. We
also show the low number of ROP gadgets in a program
under context-sensitive detection, far from being Turing
complete [7]. This limited expressiveness increases the
difficulty of successful ROP attacks.

We refer to our prototype as CMarkov, short for Context-

sensitive Markov. Based on the experimental findings, we
attribute the improved accuracy of our CMarkov models to
the effectiveness of our program-analysis-guided behavior
modeling: i) an informed set of initial HMM probability
values (transition and emission probabilities and probability
distribution of hidden states), and a more optimized number
of hidden states. ii) a stronger enforcement on legitimate
system and library calls with context sensitivity in the program
behavior model.

We demonstrate the combination of both static and dynamic
program information, and also the integration of context sen-
sitivity into one program behavior model. This new modeling
technique achieves high anomaly detection accuracy, advanc-
ing the state-of-the-art in program-behavior-modeling based
anomaly detection and providing more effective tools for cyber
defenders in battling against modern stealthy exploits.

II. TECHNICAL CHALLENGES AND SOLUTION OVERVIEW

A. Attack Model

Our approach monitors and enforces a program’s behaviors
embodied as system and library call sequences. We aim at
detecting attacks that violate a program’s normal control-
flow executions. Such violations are common among both
i) conventional code-injection shellcode following a memory
corruption or Trojan horse, as well as ii) more subtle code-
reuse attacks (such as ROP, Return_to_libc). In general,
any uncommon execution of a program with altered control-
flow can be potentially detected by our model.

The detection limitation may include advanced mimicry
attacks or attack sequences that are extremely short. A hand-
crafted mimicry attack was first introduced in [8], where the
system calls are made in an order that is compatible with
the detection model, but can also perform malicious actions.
Although our model is not specifically designed to detect
general mimicry attacks (which is an open problem), it can
catch mimicries that involve the invocation of legitimate-yet-
rare calls or paths having low likelihoods of occurrences.
The quantitative measurement together with context-sensitivity
makes it difficult for an attacker to develop an effective
mimicry attack call sequence.

B. Connecting Markov Model with Control Flow

A hidden Markov model (HMM) probabilistically represents
a Markov process consisting of unobserved interconnected
hidden states, which emit observable symbols [9] (syscall or
libcall in our case).

Definition 1: The control-flow graph (CFG) of a function
is a directed graph, where nodes represent code blocks of
consecutive instructions identified by static program analysis,
and directed edges between the nodes represent execution
control flow, such as conditional branches, and calls and
returns. Calls may be system calls, library calls or user-defined
function calls.

The hidden Markov model in our work substantially differs
from regular HMM. Regular HMMs arbitrarily choose the hid-
den states and randomly initialize the probabilities. In contrast,

read@f	

write@f	
execve@f	

Func1on:	 f	

𝜀g	 f‘	

𝜀g	 f

εf’(exit)	 read@f	 write@f	 execve@f	

εf	 (entry)	 p(1-‐q)	 1-‐p	 0	 pq	

read@f	 0	 0	 1-‐p	 0	

write@f	 1-‐p	 0	 0	 0	

execve@f	 pq	 0	 0	 0	
p	 1-‐p	

q	
1-‐q	

Example	 of	 call	 pair	 Transi9on	 probability	

read@f	 	 	 	 	 	 	 	 	 write@f	 1-‐p	

read@f	 	 	 	 	 	 	 	 	 read@f	 0	

execve@f	 	 	 	 	 	 	 	 	 	 εf’	 pq	

(a)	

(b)	

(c)	

Call	 Call-‐transi9on	 Vector	

read@f	 <0,	 0,	 1-‐p,	 0,	 1-‐p,	 0,	 0,	 0>	

write@f	 <1-‐p,	 0,	 0,	 0,	 0,	 1-‐p,	 0,	 0>	

execve@f	 	 <pq,	 0,	 0,	 0,	 pq,	 0,	 0,	 0>	

(d)

Fig. 1. Examples of control-flow graph for function f() in (a), call-transition
matrix in (b), transition probabilities in (c), and call-transition vectors in (d).

our HMM model is initialized with call transition information
extracted from static control-flow analysis. This specialized
initialization is achieved with a technique originally proposed
in STILO model by Xu et al. in [4]. STILO stands for
STatically InitiaLized markOv. The STILO approach requires
the static control-flow analysis and probability estimation of
call transitions (described in CONTEXT IDENTIFICATION and
PROBABILITY FORECAST operations in Section III).

The significance of STILO approach is its one-to-one map-
ping between calls made by a program and hidden states
in HMM. Its advantage is a more complete coverage of
both dynamic and static program behaviors in the classifier.
However, their solution is context insensitive.

C. Context Sensitivity

Context-insensitive program anomaly detection models only
record names of calls, e.g., <call_name>. Such context-
insensitive models rely on flow sensitivity to capture the order
and frequency of normal call sequences, and detect anomalies
by identifying and classifying call sequence patterns.

An improvement is to record the caller function of
each library or system call as the context environ-
ment. An observed call invocation can be represented as
call_name@caller_function. Figure 1 gives such a 1-
level calling context-sensitive control-flow graph. We demon-
strate the effectiveness and feasibility of such context infor-
mation in probabilistic program anomaly detection.

In the following example, S1 gives a normal call sequence
with the right context information, which is their caller func-
tion g and f. Suppose the corresponding program has a
vulnerability and fails to check the boundary before the read
call in function f, which would lead to a buffer overflow.
An exploitation uses this security flaw and is able to launch
a code-reuse attack which intentionally makes the same call
sequence to avoid detection, but performs malicious activities.

For a detection model that is flow-sensitive only, both
normal call sequence and abnormal call sequence are observed

the same as read→ read→ write→ execve, thus the
anomaly is not detected. Since code-reuse attack makes use
of the existing code inside the entire process memory, it
is common that an attacker uses calls that are made from
different places within different caller functions. Although still
conforming to normal call sequence order, the incorrect caller
information as in S2 can be easily identified by a context-
sensitive model.

S1: normal call sequence:
... → read@g → read@f → write@f → execve@g → ...

S2: abnormal call sequence (code-reuse attack):
... → read@g → read@f → write@foo → execve@bar → ...

With calling context, one can distinguish normal call
sequence (top) from attack sequence (bottom).

Our solution records the caller context to library and system
calls, as they are the operations an attacker is more likely
to make use of in order to conduct malicious activities.
Recording context information to other internal functions of
a program potentially leads to a more precise representation
of the program. However, such a model would incur heavy
overhead during both analysis and runtime monitoring. We
choose to focus on characterizing library and system calls,
not internal functions.

D. Complexity Challenge and State Reduction

Distinguishing calling context substantially increases the
size of the behavior model, specifically the number of hidden
states in our statically initialized hidden Markov model. To
make the models converge in reasonable timeframes (e.g., a
day), we perform clustering on the aggregated call-transition
matrix (in Def. 5) of a program to identify similar call-
transition vectors (i.e., columns or rows in the matrix). The
similarity is measured in two aspects: i) the sets of incoming
and outgoing calls, i) the distribution of probabilities from
the incoming and to the outgoing calls. Through clustering,
we merge similar call transitions in control-flow graphs and
call graphs together, drastically reducing the size of the
corresponding hidden Markov model, and thus training time.
Details are described in Section III.

III. CLUSTERING-BASED STATE REDUCTION

A. Our Workflow

Major operations in our workflow are described below.
1) CONTEXT IDENTIFICATION: We parse the control-flow

graphs of all functions and find the system and library
calls. Each identified system or library call is assigned
additional context information to associate with its call
name. This context information is maintained throughout
our analysis to distinguish different calls to a function.

2) PROBABILITY FORECAST: Probability information is ex-
tracted from control-flow graphs to statically estimate the
likelihoods of occurrence for call sequences. We use the
control-flow graph of a function to compute a matrix that

represents the likelihoods of occurrence for sequences of
calls. We inline these matrices according to the call graph
to obtain a (larger) matrix for the entire program.

3) STATE REDUCTION AND INITIALIZATION: The call-
transition matrix of the program is used to initialize the
parameters of the hidden Markov model. The parameters
include the number of hidden states N , the collection
of observation symbols and its number M , emission
probability distribution matrix B representing likelihoods
of emitting observation symbols by hidden states, tran-
sition probability A among hidden states, and the initial
probability distribution π for hidden states.
State reduction is for models whose numbers of hidden
states are large (e.g., > 800). (Without reduction, N is
the total number of distinct calls in the program code.)
We use K-mean clustering to identify and merge similar
calls based on their call-transition vectors (in Def. 6),
before they are used to initialize the hidden states in the
HMM model. In our prototype, we choose K such that
the number of new hidden states is 1

3 to 1
2 of the original.

4) TRAIN AND CLASSIFY: We further train the model with
normal program traces to adjust the parameters of the
HMM classifier, so that it recognizes dynamic program
behaviors. For classification, given a segment of program
traces (in system call or library call), the model computes
the probability of the call segment.

Our model is both flow-sensitive and 1-level calling-context
sensitive. The Markov model captures the order of execution of
statements in the program. Context information distinguishes
system or library calls to the same function name but from
different calling contexts (e.g., different call statements).

B. Probability Definitions

We give several types of probabilities used in our static
analysis operations. The definitions include the conditional
probability of adjacent CFG nodes, the reachability probability
from the function entry, and transition probability for a call
pair. They are used to quantify a program’s statically inferred
control-flow properties, in order to be compatible with pa-
rameters of the probabilistic learning model. These definitions
follow the STILO model in [4].

Definition 2: The conditional probability P c
ij of adjacent

CFG nodes for a node pair (ni, nj) or (ni → nj) is the
probability of occurrence for node nj , conditioning on its
immediate preceding node ni has just been executed, i.e.,
P [nj |ni].

Definition 3: The reachability probability P r
i for a CFG

node ni is the likelihood of the function’s control flow reaches
node ni, i.e., the likelihood of ni being executed within this
function.

Definition 4: The transition probability P
tf
ij of call pair

(ci, cj) in function f() is defined as the likelihood of occur-
rence of the call pair during the execution of the function.
Each call c in the function is defined and represented as
call_name@f in the context-sensitive model.

We define the call-transition matrix of a function in Defi-
nition 5.

Definition 5: Call-transition matrix of a function f() stores
pair-wise call-transition probabilities of the function. The rows
and columns of the matrix correspond to calls that appear
in the control-flow graph of the function, respectively. A cell
(i, j) stores the likelihood of occurrence for call pair (ci →
cj), i.e., transition probability P t

ij .
Examples of call-transition matrix and transition probability

for a context-sensitive CFG are given in Figure 1 (b) and (c),
respectively. These defined probabilities are used as follows.
Our method first traverses the control-flow graph of each
function to statically approximate the conditional probability
P c
ij for each pair of adjacent nodes (n1 → n2). Then, based on

conditional probabilities, we compute the reachability proba-
bility P r

i for each node ni, which represents the likelihood
of ni being executed in the function. Finally, with these
reachability probabilities, we compute transition probabilities
for call pairs within each function. The transition probabilities
are further used to construct a call-transition matrix for each
corresponding function.

C. Reduction of Hidden States for Efficiency

A straightforward HMM initialization is to have a one-to-
one correlation between system or library calls and hidden
states. Because of the many context-sensitive calls, we design
an improved many-to-one mapping. That is, a hidden state in
HMM may be initialized to represent multiple similar system
or library calls. The reduced size of the constructed hidden
Markov model helps accelerate the training process. (Time
complexity of each training iteration is O(TS2), where T is
the length of trace and S is the number of hidden states in the
model.)

For the purposes of state reduction through clustering, we
define a new call-transition vector below. We show examples
of call-transition vectors in Figure 1 (d).

Definition 6: For a call-transition matrix of dimension n, a
call-transition vector ~x of call c is of size 2n, consisting of
both the transition-from (i.e., column) probabilities of c and
the transition-to (i.e., row) probabilities of c.

A straight-forward clustering algorithm is directly com-
puting distances based on call-transition vectors in Def. 6.
The problem of the straight-forward clustering is on the
overhead of the training process. Training with high-dimension
vectors can be expensive, since data points are relatively
sparse in the vector space and difficult to model statistically.
Before applying clustering algorithms, we use PCA (Principle
Component Analysis) to obtain a low-dimension input matrix.
PCA maps data points from a high-dimension space to a low-
dimension space, while still preserving distance information in
the original data. The input of the PCA is our original matrix
with call-transition vectors. The output of the PCA is a matrix
with a reduced dimensionality, which is denoted as the post-
PCA matrix. Each row in the post-PCA matrix represents a
system call or library call from a call-transition matrix. The

Algorithm 1 Pseudocode for Clustering Similar Calls of a
Program Based on Call Transitions.
Input: The aggregated call transition matrix of a program.
Output: The clustered call transition matrix of the program.

function CLUSTER(matrix m)
/* Each call is represented with its call-transition vector, which

is the concatenation of its row of outgoing probabilities and its
column of incoming probabilities. */

for (i = 1→ m.size()) do
vectors[i] = (m[i],mT[i])

end for
/* PCA to reduce dimensions of call-transition vectors*/
vectors = PCA.transform(vectors)

/* Cluster vectors. */
clusters = cluster vectors(vectors)

/* Reconstruct clustered call transition matrix*/
for (j = 1→ clusters.size()) do

n = clusters[j].size()
for index in clusters[j] do

m new[j][∗]+ = m[index][∗]/n
m new[∗][j]+ = m[∗][index]/n

end for
end for
return m new

end function

i-th row vector represents a call-transition vector probabilities
in a low-dimension manner.

We use K-means clustering algorithm for hidden state re-
duction. The post-PCA matrix is feed as an input for K-means
clustering. We chose K-mean because of its simplicity and
efficiency. It is conceivable that advanced clustering algorithms
can be used by CMarkov to improve its ability of identifying
nodes with similar transitions. The similarity measure used for
merging similar call-transition vectors is Euclidean distance
computed as

√∑m
i (xi − yi)2 for call-transition vectors ~x and

~y of size m. Intuitively, the similarity of two call vectors is
measured by comparing the following: 1) the sets of incoming
and outgoing calls; 2) the distribution of probabilities from
incoming calls and to outgoing calls.

Our initialization of hidden Markov model is based on the
clustering results. Specifically, for the similar call-transition
vectors appearing in one cluster, we associate the correspond-
ing calls with the same hidden state. Thus, the hidden state
has the (averaged) emission probability vector. The transition
probability vector associated with that state is also adjusted
accordingly. Pseudocode of the state-reduction operation is
described in Algorithm 1. This clustering-based transformation
is key in making the context-sensitive probabilistic behavioral
modeling become practical.

IV. PROBABILITY FORECAST WITH
CONTEXT-SENSITIVITY

Context information is maintained and utilized during CFG-
based control-flow probability forecast. Key operations in the
probability forecast in this context-sensitive model, complexity
analyses, and proofs of probability properties extend those of
the context-insensitive STILO model.

Computing reachability probability inside each function’s
control-flow graph is the basis of our probability forecast. To
compute reachability probability (Definition 3), our algorithm
traverses a CFG and estimates the probability to reach a CFG
node from the function entry. We assume that the execution
starts from the function entry with the probability of 1.0.
The calculation of reachability probabilities starts from the
function entry of a CFG, and is performed top down. Formally,
for a node nk in the CFG, the reachability probability P r

k

is computed as in Equation 1, where P r
i is the reachability

probability of one of nk’s parents and P c
ik is the conditional

probability (Definition 2) for node pair (ni, nk).

P r
k =

∑
∀ ni ∈ parent set of nk

P r
i ∗ P c

ik (1)

Specifically, P c
ij for node pair (ni, nj) is based on the

branching factor at the parent node ni in the control-flow
graph. If node ni has only one child node nj , then P [nj |ni] =
1. If ni has two or more child nodes, P c

ij follows a probability
distribution function, e.g., an equal or biased distribution.
Advanced branch prediction and path frequency approximation
techniques can be utilized, such as branch prediction [10,
11, 12], path frequency [13]. Our prototype uses the uniform
distribution. Branch heuristics can be added to further improve
our probability-estimation operation [10, 11, 12].

The complexity for computing reachability probabilities for
a control-flow graph G(V,E) with nodes V and edges E is
O(|V | + |E|). The number of outgoing edges for each node
is usually small (e.g., 2 or 3). Thus, the complexity is O(|V |)
in practice.

Computing likelihood of occurrence for call pairs in a
function, i.e., transition probability (Definition 4) is as follows.
We identify all the nodes {L} such that a node nl ∈ L satisfies
the following three properties. Let nk be a node in the CFG
of f() that makes a call ca. i) Node nl makes a call (e.g.,
libcall or syscall) cb. ii) There exists a directed path (denoted
by nk, nk+1, ... , nl−1, nl) from nk to nl. iii) No other nodes
on the path between nk and nl make any calls. For each node
nl ∈ L, we compute the transition probability P

tf
akbl

of call
pair (ca, cb) in f() as Equation (2). With caching, the worst-
case complexity of this computation is O(|E|).

P
tf
akbl

= P r
k ∗

∏l−1

i=k
P c
i(i+1) (2)

A program may contain multiple functions. Thus, obtain-
ing the call-transition matrix corresponding to the program
requires the aggregation of transition probabilities from indi-
vidual CFG call-transition matrices, which is described next.

Aggregation of call transitions generates a large matrix
representation for the entire program. The resulting matrix is
compatible with the mathematical representation of a hidden
Markov model, and used for initializing the HMM. The inputs
for this operation include: i) the call graph of the program and
ii) call-transition matrix for each function. As we aggregate
callee functions’ matrices representation into caller functions’,
the call graph is needed for the calling relations among

functions. We inline the call transition matrices of callee
functions into the matrices of caller functions, so that: i) The
final call transition matrix captures the execution pattern of
the entire program rather than single functions. ii) The final
transition matrix consists of only system calls or library calls.
(Internal function calls are reduced and removed.)

During the aggregation operation, the context information of
each call is unchanged. For example, the call write@f in the
callee function f continued to be represented as write@f,
after the call is aggregated into the call transition matrix of f ’s
caller function g. Our model records the most immediate caller
of each system call and library call as its context information,
and this information is maintained throughout the static analy-
sis including the aggregation of call transition matrices. Fixing
context information at such granularity effectively enforces
where a call can actually be made, thus limits the flexibility
an attacker may have during exploitation. The worst-case time
complexity of this operation is O(|E|).

Our data structure is compact and has low space complexity.
The dimension of the aggregated matrix is the number of
distinct calls. We do not record the entire call sequences. In
addition, all occurrences of the same call pair are added up
to one matrix cell. Our design is more efficient than inlining
control flow graphs [14].

Summary In CMarkov, the analysis takes control flows
that can be statically inferred as inputs , and transforms
them into a rigorous probability representation for all the call
transitions in the program. Context information, together with
each system and library calls are preserved in the output.
Program behaviors that are not covered by our static program
analysis (e.g., function pointer, recursions and loops) will be
learned from program traces by our CMarkov HMM model.

V. EXPERIMENTAL EVALUATION

Our prototype for the static program analysis is imple-
mented in C/C++ using the Dyninst library [15]. We use
the system tools strace and ltrace to intercept system calls
and library calls of running application processes as well as
the instruction pointer at the time of each call. The instruction
pointers are later translated to the caller function with the
binary utility tool addr2line. The translation operation is
efficient as results can be cached.

For performance consideration, alternative monitoring tools
(e.g., auditd [16]) can be used by our implementation in
production systems. An acceptable 10% overhead was reported
on a hybrid benchmark with realistic workload for auditd [17].
The HMM training and evaluation code is written in Java using
the Jahmm library [18]. The evaluation or classification of call
sequence is relatively efficient. For example, the computation
for a 15-call segment takes 0.038 milliseconds (CMarkov for
gzip), also this operation can be done offline, and paralleled
for accelerated processing.

For identifying system calls, we compile a program with
static linking. The library calls of interest are the glibc
library calls, which are a collection of C standard libraries.

A. Experiment Setup

The programs and test cases used in our experiments
include utility applications (flex, grep, gzip, sed, bash,
vim) from the Software-artifact Infrastructure Repository
(SIR) [19], as well as a FTP server proftpd and an HTTP
server nginx. These programs average over 52, 586 lines
of code, and 1, 139KB in size. The programs we tested
include both utility applications and server programs, which
are all potential victims of attacks such as memory corruption,
back-door, or binary instrumentation/replacement by attackers.
The coverages of the test cases for programs in SIR are
summarized in Table I.

TABLE I
STATISTICS OF PROGRAMS AND TEST CASES USED IN EXPERIMENT. THE

COLLECTED TRACES ARE BROKEN INTO 15-GRAMS (SEGMENTS) FOR
CLASSIFICATION.

Program # of test cases Branch coverage Line coverage
flex 525 81.3% 76.0%
grep 809 58.7% 63.3%
gzip 214 68.5% 66.9%
sed 370 72.3% 65.6%

bash 1061 66.3% 59.4%
vim 976 55.0% 51.9%

Average 659 67.0% 63.9%

We also tested server programs proftpd and nginx to
get normal traces. For proftpd, we test it by connecting to
the running server from a client, navigating around the server
directories, creating new directories and files, downloading,
uploading, and deleting files and folders. For nginx, our test
cases include both static webpages and dynamic php webpages
which interact with an SQL database we set up. Our test cases
cover different media types including text, images, scripts and
video files with Flash and Mp4 formats. Normal http and
encrypted https accesses are also tested.

We compare performance of following models:
• CMarkov: CMarkov builds its model with statically ex-

tracted context-sensitive call transition probabilities, and
also goes through dynamic training with context-sensitive
call traces.

• Regular-basic: This model is the widely accepted HMM-
based classification, which is the state-of-the-art proba-
bilistic anomaly detection model (e.g., [2, 3]).

• Regular-context: Different from the Regular-basic model
where each observation is a system or library call, the
Regular-context model uses context-sensitive observa-
tions where each call is associated with its caller.

• STILO: The HMM is initialized with static analysis
operations, but without context information, i.e., only call
name is recorded for each system or library call.

The accuracy of a regular HMM relies heavily on com-
pleteness of training data. Thus, high coverage of test cases in
SIR gives the regular HMM a fair chance in the comparison
with our model. For the regular HMM, the set of observation
symbols consists of distinct calls from execution traces. The
number of hidden states is the size of the call set (i.e., the

TABLE II
STATISTICS ABOUT THE CLUSTERING OF CALLS IN THE INITIAL HMM MODELS FOR SELECTED PROGRAMS AND MODELS AND THE ESTIMATED SPEEDUP.

Program Model # distinct calls # states after clustering Estimated training time reduction
bash CMarkov-libcall 1366 455 88.91%
vim CMarkov-libcall 829 415 74.94%

proftpd CMarkov-libcall 1115 372 88.87%

total number of distinct calls in the traces). The regular model
randomly chooses the initial HMM parameters, including the
initial transition probabilities, initial emission probabilities,
and the initial distribution of hidden states.

Our experiments answer the following questions.

1) How much speedup in HMM training is provided by
clustering-based state reduction? (In Section V-B)

2) How much improvement in classification accuracy do
CMarkov models provide compared to the regular HMM
models? (In Section V-C)

3) What are the reasons for CMarkov HMM improvement,
and which type of models give more accurate classifica-
tion, library calls or system calls? (In Section V-C)

4) How does context-sensitive detection limit ROP gadgets?
(In Section V-D)

5) Can CMarkov detect real-world attack traces? (In Sec-
tion V-E)

Standard HMM procedures are followed for model training
and testing. All comparable HMM models are subject to the
same convergence criteria during training. To help avoid model
overfitting, for both CMarkov and regular HMM models, 20%
of the normal data is kept aside to determine the termination
of training. After each round of training, the intermediate
model is tested on the termination data set, and the training is
stopped with a converged model when there’s no significant
improvement on the termination data set. We perform 10-fold
cross validation on the rest of the normal data.

Given a threshold T for a program, false negative (FN) and
false positive (FP) rates in HMM are defined in Equations (3)
and (4), where {SA} and {SN} denote the set of abnormal
segments and the set of normal segments of the program,
respectively, and PSA

and PSN
represent the probability of

an abnormal segment and a normal segment, respectively.

FN =
|{SA : PSA > T}|

|{SA}|
(3)

FP =
|{SN : PSN < T}|

|{SN}|
(4)

Training and classification are on n-grams of program
traces, where n =15 in our experiments (i.e., all segments
consist of 15 calls). Researchers found that classification with
segments of length 15 produces more precise results than
shorter segments [3]. Therefore, we use 15 as the segment
length for our experiments. Duplicate segments are removed
in our training datasets in order to avoid bias. 1

1Experiments were conducted on a Linux machine with Intel Core i7-3770
CPU (@3.40GHz) and 16G memory.

• Normal segments are obtained by running the target
executable and recording the library call or system call
segments as the result of the execution. A total of
130,940,213 such segments from around 4,000 test cases
of eight programs are evaluated. A HMM classification
model needs to give high probabilities to these normal se-
quences. The training of hidden Markov models requires
normal sequences, not abnormal sequences. We test the
trained models with two types of abnormal call segments.
Those segments should be given 0 or low probabilities.

• Abnormal-A segments (or attack segments) are obtained
by reproducing several real-world attack exploits and
payloads.

• Abnormal-S segments (or synthetic abnormal segments)
are generated by replacing the last 4 normal calls in a
segment with randomly selected calls from the legitimate
call set. The legitimate call set consists of the distinct
calls in a program’s traces. A total of 160,000 Abnormal-S
segments are evaluated. Our use of Abnormal-S segments
enables a rigorous accuracy assessment.

B. Clustering for State Reduction

We applied the clustering to programs bash, vim, and
proftpd for libcalls. For our evaluation, we choose K as 1

2 or 1
3

of the original number of states. Table II shows the reduction
of model sizes and estimated training speedup. A substantial
75% to 89% reduction in training time is observed. Despite
the reduction in model sizes, our CMarkov models still out-
perform others as show in the next section.

In another experiment, we trained and tested the libcall
HMM for proftpd with unclustered model. The clustered
model only needs 10% of the training time, in order to achieve
the same false positive rates as its unclustered counterpart.

C. Classification Accuracy

For each program, we compare four different models in-
cluding CMarkov, STILO, Regular-basic and Regular-context
models in their abilities to recognize new segments. New
segments include Normal segments (through 10-fold cross
validation) and Abnormal-S segments.

For the Linux utility programs, Figure 2 and Figure 3
give the accuracy comparison among the models. The results
show that CMarkov models significantly outperform regular
or context-insensitive HMMs in most cases. In addition,
CMarkov models work better than STILO models with lower
false negative rates.

For the two server programs proftpd and nginx, we
show the library call and system call results in Figure 4 and
Figure 5, respectively. Overall, CMarkov models outperform
all other regular or context-insensitive models being compared.

0

 0.001

 0.01

 0.1

 1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

F
a

ls
e

 n
e

g
a

ti
v
e

 r
a

te
 (

L
o

g
s
c
a

le
 b

a
s
e

 1
0

)
libcall:flex

Regular-basic
Regular-context

STILO
CMarkov

0

 0.001

 0.01

 0.1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

libcall:grep

Regular-basic
Regular-context

STILO
CMarkov

0

 0.001

 0.01

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

libcall:gzip

Regular-basic
Regular-context

STILO
CMarkov

0

 0.001

 0.01

 0.1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

libcall:sed

Regular-basic
Regular-context

STILO
CMarkov

0

 0.001

 0.01

 0.1

 1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

libcall:bash

Regular-basic
Regular-context

STILO
CMarkov

0

 0.001

 0.01

 0.1

 1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

libcall:vim

Regular-basic
Regular-context

STILO
CMarkov

Fig. 2. Comparison of CMarkov, STILO and Regular HMM’s false negative rates (in Y-axis, base 10 log scale) for evaluated utility programs on library calls
under the same false positive rates (in X-axis). Clustering is applied to the initial models of proftpd, vim and bash.

 0.001

 0.01

 0.1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

F
a

ls
e

 n
e

g
a

ti
v
e

 r
a

te
 (

L
o

g
s
c
a

le
 b

a
s
e

 1
0

)

syscall:flex

Regular-basic
Regular-context

STILO
CMarkov

 0.001

 0.01

 0.1

 1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

syscall:grep

Regular-basic
Regular-context

STILO
CMarkov

0

 0.001

 0.01

 0.1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

syscall:gzip

Regular-basic
Regular-context

STILO
CMarkov

 0.001

 0.01

 0.1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

syscall:sed

Regular-basic
Regular-context

STILO
CMarkov

 0.001

 0.01

 0.1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

syscall:bash

Regular-basic
Regular-context

STILO
CMarkov

 0.001

 0.01

 0.1

 1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

syscall:vim

Regular-basic
Regular-context

STILO
CMarkov

Fig. 3. Comparison of CMarkov, STILO and Regular HMM’s false negative rates (in Y-axis, base 10 log scale) for evaluated utility programs on system
calls under the same false positive rates (in X-axis).

Context-sensitive models (including CMarkov and Regular-
context) outperform STILO and Regular-basic HMM models
by a significant margin, as shown in Figure 4. This phe-
nomenon is partly due to the great diversity of libc calls.
Library (libc) calls are usually directly used in user code by
various internal functions of a program. As a result, the caller
context distinguishes library calls within different functions
very well. This fact leads to a relatively large number of
distinct library calls in our constructed context-sensitive model
as well as in the dynamic execution traces.

System calls are often included in their corresponding wrap-
per functions, thus do not have great diversity in terms of their
caller functions. In this case, the static analysis shows more
impact on the accuracy of models, where both CMarkov and
STILO models demonstrate lower false negative rates than
the Regular-context and Regular-basic models, as shown in
Figure 5. Context-sensitive and context-insensitive models
(Regular-basic and Regular-context, STILO and CMarkov)
usually have similar numbers of distinct system calls, thus
similar numbers of states in the models. As a result their false
negative lines are very close.

In terms of the average detection accuracy on library call
traces computed across all evaluated programs, CMarkov gives

0

 0.001

 0.01

 0.1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001F
a
ls

e
 n

e
g
a
ti
v
e
 r

a
te

(L
o
g
s
c
a
le

 b
a
s
e
 1

0
)

False positive rate

libcall:nginx

Regular-basic
Regular-context

0

 0.001

 0.01

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

False positive rate

libcall:proftpd

STILO
CMarkov

Fig. 4. Comparison of CMarkov, STILO and Regular HMM’s false negative
rates (in Y-axis, base 10 log scale) for server programs proftpd and nginx
on library calls under the same false positive rates (in X-axis).

452-fold improvement compared to STILO and 31-fold im-
provement compared to Regular-basic on average. For system
call traces, CMarkov has 2-fold improvement compared to
STILO on system calls and 10-fold improvement compared
to Regular-basic on average. The overall improvement over
STILO, especially on libcall traces, confirms the effectiveness
of our context-sensitive program anomaly detection.

One of the security advantages of CMarkov is that it
imposes strict enforcement on how and where a system call

0

 0.001

 0.01

 0.1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001F
a
ls

e
 n

e
g
a
ti
v
e
 r

a
te

(L
o
g
s
c
a
le

 b
a
s
e
 1

0
)

False positive rate

syscall:nginx

Regular-basic
Regular-context

0

 0.001

 0.01

 0.1

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

False positive rate

syscall:proftpd

STILO
CMarkov

Fig. 5. Comparison of CMarkov, STILO and Regular HMM’s false negative
rates (in Y-axis, base 10 log scale) for server programs proftpd and nginx
on system calls under the same false positive rates (in X-axis).

 35

 40

 45

 50

 55

 60

 65

 70

 75

regular-basic-syscall

regular-context-syscall

STILO-syscall

CMarkov-syscall

regular-basic-libcall

regular-context-libcall

STILO-libcall

CMarkov-libcall

#
 o

f
It

e
ra

ti
o

n
s
 t

o
 C

o
n

v
e

rg
e

Models

64.44 64.36

36.49
39.59

71.06

66.35

45.50

64.94

Fig. 6. Average number of training iterations needed for an HMM to converge.
Comparisons are among our CMarkov and STILO models and regular HMMs.

can be made by a program. Each system call can only be issued
from very few legitimate caller functions. This restriction on
caller context greatly limits an attacker’s degree of freedom
within a victim application. Its impact on ROP attack difficulty
is discussed in the next section.

For the exceptional case of flex with system call traces,
the CMarkov model shows higher false rates than the STILO
model. flex has the least number of distinct call segments in
the termination set (not shown), which indicates less diversity
for call sequence patterns in its traces compared to others. Its
context-sensitive model may cause possible overfitting.
Convergence Figure 6 gives the average number of iterations
for a HMM model to converge. The number is averaged across
all eight programs in our experiments. Both CMarkov and
STILO HMM models take fewer iterations than the regular
HMM models to converge, despite having more states in the
models. On average our CMarkov models takes 30% less
iterations to converge than regular models. CMarkov HMMs
take more iterations to converge than STILO HMMs, which is
partially due to that the additional context information makes
the inital CMarkov HMMs more complex and larger.

D. Limiting ROP Gadgets with Context

We reproduced the following two call segments q1 and q2,
with the ROP gadgets that exist in the binary of gzip 2.

2A buffer overflow vulnerability instrumented into gzip allows us to make
further ROP executions.

Our CMarkov model immediately identifies the incorrect
caller context and detects the anomaly. However, the context-
insensitive models wrongly classify them as benign (at a false
positive rate of 0.0001).

• q1: [uname, brk, brk, brk, brk, rt sigaction, rt sigaction,
rt sigaction, rt sigaction, rt sigaction, read, close, close, unlink,
chmod]

• q2: [brk, rt sigaction, rt sigaction, rt sigaction, rt sigaction,
rt sigaction, rt sigaction, stat, openat, getdents, close, write,
read, write, write]

TABLE III
SEARCH RESULT OF USEFUL [SYSCALL...RET] GADGETS FOR MAKING

A SEQUENCE OF SYSTEM CALLS. SEARCH INCLUDES EVALUATED
BINARIES AND LIBC.

Max Length of Instruction Gadget
2 6 10

Program # of Useful [SYSCALL...RET] Gadgets
sed 5 6 7
gzip 5 6 7
grep 5 6 7
flex 5 6 7
bash 9 12 15
vim 6 7 8

proftpd 8 13 17
nginx 8 11 16
libc.so 8 14 19

E. Detection of Real-World Exploits

With the enforcement of caller information, our context-
sensitive models successfully detect all the reproduced attacks.
For most of the syscall traces, a high percentage of system
calls ([30%, 90%]) were found with abnormal caller context
information (e.g., either missing or incorrect).

TABLE IV
CMARKOV SUCCESSFULLY DETECTS Abnormal-A SEGMENTS FROM

REAL-WORLD EXPLOITS.

Vulnerability Payload
Buffer Overflow ROP

(gzip) ROP syscall chain
Backdoor bind perl
(proftpd) bind perl ipv6

generic cmd execution
double reverse TCP

reverse perl
reverse perl ssl

reverse ssl double telnet
Buffer Overflow guess memory address

(proftpd)

The attacks evaluated are shown in Table IV and are briefly
described next. This experimental setup follows the evaluation
in STILO [4]. ROP setup is similar to that in Section V-D. We
reproduced a backdoor Trojan (OSVDB-69562) and a buffer
overflow (CVE-2010-4221) exploit on a proftpd server
and analyzed the server-side traces. We gave typical attack
payloads in the backdoor exploit, which are for establishing
various types of communication channels (including telnet,
IPv6, TCP, or SSL) between the victim machine and the
remote attacker.

F. Summary of Experimental Findings

We summarize our experimental findings below.
1) The average classification accuracy of our context-

sensitive CMarkov models is orders of magnitudes
higher than the regular hidden Markov models used
by existing anomaly detection systems. This improve-
ment is consistently observed for all the tested utility
and server programs on both library and system calls.
The high classification accuracy in CMarkov model sug-
gests the effectiveness of our static program analysis
guided HMM initialization in boosting its performance
for anomaly detection.
Detection with library calls yield more precise results
than that with system calls on synthetic abnormal call
sequences. This trend is generally observed for all four
compared detection models with a few exceptions. Both
types of call sequences reflect the control flow of program
execution. We partially attribute the higher accuracy of
using libcalls to the larger set of distinct calls as compared
to syscalls, which results in a finer-grained representation
of the program control-flow patterns.

2) We demonstrate that the available numbers of ROP
gadgets in gzip that are compatible with 1-level calling
context are low, limiting the success of ROP attacks.
The results under various gadget lengths (2, 6, 10) are
shown in Table III.
CMarkov model detects all the code-injection and sub-
tle code-reuse attacks evaluated. CMarkov also detects
carefully prepared ROP-based anomalous system call
sequences by identifying their incorrect caller context,
whereas the regular HMM model cannot.

3) Most CMarkov operations can be finished in seconds
for the programs evaluated. The runtime information
of CMarkov ’s analysis operations for library calls and
system calls is shown in Table V, including for STATIC
CFG CONSTRUCTION, PROBABILITY ESTIMATION, and
AGGREGATION OF CALL-TRANSITION MATRIX.
K-mean clustering on library call models reduces the
training time by 75% to 89% without compromising
detection accuracy.

VI. RELATED WORK

Our discussion is focused on the related control-flow
anomaly-detection techniques. We divide them based on the
context-sensitive property (i.e., the ability to distinguish calling
context at run-time) or the flow-sensitive property (i.e., the
ability to analyze the order of statement executions). We refer
readers to [20] for a complete and thorough discussion on
program anomaly detection literature.
Context-Sensitive Models. The FSA model [5] and VtPath
model [6] are both constructed dynamically from program
executions. They identify the program counter and return
addresses on the stack respectively as the context for each
observed system call, which help improve the precision of
their program behavior models. The execution-graph model

TABLE V
ANALYSIS RUNTIME FOR CMARKOV MODEL IN SECONDS. CFG IS FOR

CFG CONSTRUCTIONS. PROB. EST. IS FOR PROBABILITY ESTIMATION IN
FUNCTIONS. AGGR. IS FOR THE AGGREGATION OF CALL-TRANSITION

MATRICES.

Prog. Time (lib)
Time (sys) CFG Prob. Est. Aggr.

flex 0.06 0.24 0.75
0.51 2.67 10.94

grep 0.07 0.39 0.56
0.51 2.76 10.56

gzip 0.04 0.08 0.65
0.49 2.41 10.66

sed 0.08 0.15 1.97
0.54 2.56 12.55

bash 0.46 1.11 134.93
1.06 3.66 75.94

vim 0.65 2.48 1435.73
1.21 4.99 736.79

nginx 0.39 0.75 1.60
2.45 8.29 55.94

proftpd 1.01 1.87 17.22
3.01 9.39 57.45

in [21] was built through learning runtime program execution
patterns (namely return addresses on the call stack associated
with system calls) and leveraging the inductive property in
call sequences. However, they share the same issue as other
dynamically constructed models where the testing or training
data may be incomplete and would thus impair the quality of
the learned detection model. Instead of dynamically learning
the automaton model from program traces as in [5], one
can build a similar flow-sensitive and also context-sensitive
automaton by statically analyzing the programs themselves,
as shown in the seminal paper by Wagner [22]. The context-
sensitive push-down automaton (PDA) (in their abstract stack
model) in [22], however, may have prohibitive run-time costs.

Giffin et al. proposed Dyck model [23] where code is
inserted to link the entry and exit of a target function with
its call sites for context sensitivity. As a static version of the
VtPath, the VPStatic [24] model captures a list of un-returned
call site addresses on the stack at the time of each system
call. Despite having more accurate program behavior mod-
els, program instrumentation and runtime overhead are still
concerns for practical deployment. For example, slowdowns
of 56% and 135% are observed for the Dyck model on test
programs cat and htzipd. 32% and 97% of slowdowns
are caused by maintaining the automaton and walking the
stack for the VPStatic model on cat and htzipd. The IAM
(inlined automaton model) in [14] achieves context-sensitivity
by inlining every callee function’s automata into the caller,
which trades more space cost for lower time overhead.

In comparison, CMarkov performs static analysis on the
program binaries without any instrumentation. The context
information in our model is the caller function of each system
or library call, which can be obtained both at static analysis
and runtime monitoring. CMarkov has a manageable size
controlled at the time of model initialization with statically
extracted call transition information. Our model uses the caller
function as the context information for each system and libc
call, and does not distinguish same calls in a function. The use
of program counters as in [5] can further differentiate same
system calls made within the same function. Our empirical
results show that this fine-grained context does not provide

additional detection capability in code reuse attacks.
Consistency in Control Transfer. e-NexSh is a runtime valida-
tion system that provides call-stack validation that ensures the
consistency in the call site and target site memory addresses
for libc call and system call invocations [25]. e-NexSh has
high compatibility, as it operates mostly in the kernel space
and does not require any modification to application code.

A binary transformation technique was proposed by Abadi
et al. to achieve control-flow integrity (CFI) [26]. Through
modifying source and destination instructions associated with
control-flow transfers, it embeds control-flow policies within
the binary to be enforced at runtime. Static analysis was used
to reduce CFI’s overhead in [27]. [28] improved the method by
allocating a memory region dedicated to enforcing the targets
of indirect control transfers. It brings 2- to 5-fold improvement
in the run-time performance. Zhang and Sekar presented static
analysis based methods and instrumentation to enforce the CFI
property on commercial off-the-shelf binaries [29]. Total-CFI
is a framework for system-wide run-time control-flow integrity
enforcement [30] built on a software emulator.

In comparison to CFI techniques, our monitoring system
is focused on the call-making portion of the control flow
instead of all the execution transfer instructions. We do not
require any binary transformation or software emulator. Most
CFI systems assume limited dynamic code behaviors 3; this
assumption is not necessary in CMarkov because of our trace-
based learning phase. Unlike ours, CFI is not designed to offer
any probabilistic behavior analysis.

New attacks against CFI techniques are constantly be-
ing reported, e.g., counterfeit object-oriented programming
(COOP) has been recently shown to bypass nearly all CFI
solutions [31]. Therefore, research efforts on probabilistic
program anomaly detection are important, as they can provide
complementary security protection to critical systems.
Flow-Sensitive Models. The n-gram models [1, 32, 33] con-
struct a set of all allowable call sequences from the execution
traces of a program. It is the simplest flow-sensitive solution.
Because the model enumerates all possible call sequences,
scalability and efficiency are low.

As a probabilistic learning model, HMM (hidden Markov
model) was first presented by Warrender et al. [2], and was
used to classify program system call sequences for anomaly
detection. This is also the model we extensively compare with
throughout the paper. By comparing two parallel executions
of a same program, Gao et al. [34] proposed a HMM-based
model that is resilient to their best-estimated mimicry attacks.
Different parameters of HMM were systematically studied
by the authors in [3] for the impact on model accuracy.
These existing HMM-based solutions initialize their models
randomly or arbitrarily.

STILO is a HMM model that correlates HMM states with
control-flow properties [4]. The model is initialized with
the data extracted from static program analysis. STILO is

3E.g., self-modifying code, runtime code generation, and the unanticipated
dynamic loading of code [26].

context insensitive. In comparison, CMarkov supports context-
sensitive behavioral modeling. Our work addresses the new
challenge of state explosion in HMM, specifically, how to
support context sensitivity in probabilistic program anomaly
detection without incurring heavy computation costs.

Recently, researchers proposed a machine-learning based
detection solution to detect anomalous correlation patterns in
execution [35]. Context-insensitive call information is rep-
resented in matrices, which are analyzed through clustering
and 1-class SVM. Gu et al. proposed LEAPS [36] to detect
camouflaged attacks with program analysis. This paper is
related to our work because it also adopts a preprocess to
refine the training data and then deploys statistical learning
models to identify benign/malicious call patterns. However,
because our goal is to detect code reuse attacks, our approach
substantially differs from LEAPS in the following aspects.

1) The preprocess in our approach is used to capture more
precise hidden Markov models by statically estimating
likelihoods of call sequences. In comparison, the pre-
process in LEAPS is used to reduce the noise data and
acquire better labeled training dataset.

2) Because of the different detection goals, CMarkov and
LEAPS adopt different machine learning techniques. Our
approach is based on the hidden Markov model for the
purpose of anomaly detection. LEAPS is based on a
modified support vector machine for binary classification.

Others. A specialized HMM has been designed for measuring
the behavioral distances of two different programs that share
similar functionality [34]. This behavior-comparison approach
is generally known in the literature as N-variant [37]. How to
apply the context-sensitive HMM to N-variant settings is an
interesting open problem. Recently, theoretical and abstract
anomaly detection frameworks have been proposed to help
the security community better define anomalies and understand
detection capabilities and limitations. For example, Anceaume
et al. defined network anomalies with respect to their neigh-
boring environments, and showed that there exist scenarios
where isolated and massive anomalies are indistinguishable
from a global observer’s perspective [38]. Another group of
researchers recently proposed a new formal language based
framework for comparing the detection capabilities of various
anomaly detection techniques [20]. The work also provides
abstractions for reasoning the limit of detection accuracy.

Our program anomaly detection solution complements
network-centric anomaly detection methods, e.g., LD-
Sketch [39], fault-injection based anomaly detection for Ser-
vice Oriented Architecture (SOA) [40]. Jero et al. utilizes
protocol state machine to detect attacks against transport layer
network protocols such as TCP [41]. Buchholz et al. showed
the use of Markov model for representing and analyzing
system availability and dependability [42].

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an HMM-based probabilistic
program anomaly detection technique that supports 1-level
calling context sensitivity. The solution is useful for detecting

new and unknown exploits, as well as stealth attacks that alter
runtime control flow properties of a program. Our hidden
Markov model is specialized with initial probability values
extracted through statically analyzing control flows of the
program. We designed and demonstrated a clustering-based
method for hidden state reduction. Extensive experimental
evaluation with library call and system call sequences of
Linux server and utility programs showed 1-3 orders of
magnitude improvement over context-insensitive counterparts.
Our ongoing work is focused on applying our solutions in
order to improve the reliability and dependability of programs
on embedded systems in Internet of Things (IoT).

ACKNOWLEDGEMENTS

The authors would like to thank anonymous reviewers for
their insightful comments and suggestions on the work. This
work has been supported by ONR grant N00014-13-1-0016.

REFERENCES

[1] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff,
“A sense of self for Unix processes,” in Proc. of S&P, 1996.

[2] C. Warrender, S. Forrest, and B. A. Pearlmutter, “Detecting
intrusions using system calls: Alternative data models,” in Proc.
of S&P, 1999.

[3] D.-Y. Yeung and Y. Ding, “Host-based intrusion detection using
dynamic and static behavioral models,” Pattern Recognition,
2003.

[4] K. Xu, D. Yao, B. Ryder, and K. Tian, “Probabilistic program
modeling for high-precision anomaly classification,” in Proc. of
CSF, 2015.

[5] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A fast
automaton-based method for detecting anomalous program be-
haviors,” in Proc. of S&P, 2001.

[6] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong,
“Anomaly detection using call stack information,” in Proc. of
S&P, 2003.

[7] H. Shacham, “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86),” in Proc.
of CCS, 2007.

[8] D. Wagner and P. Soto, “Mimicry attacks on host-based intru-
sion detection systems,” in Proc. of CCS, 2002.

[9] L. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proceedings of the IEEE,
vol. 77, no. 2, pp. 257–286, Feb 1989.

[10] T. Ball and J. R. Larus, “Branch prediction for free,” in Proc.
of PLDI, 1993.

[11] B. Calder, D. Grunwald, M. P. Jones, D. C. Lindsay, J. H.
Martin, M. Mozer, and B. G. Zorn, “Evidence-based static
branch prediction using machine learning,” ACM Trans. Pro-
gram. Lang. Syst., vol. 19, no. 1, 1997.

[12] Y. Wu and J. R. Larus, “Static branch frequency and program
profile analysis,” in Proc. of MICRO, 1994.

[13] R. P. L. Buse and W. Weimer, “The road not taken: Estimating
path execution frequency statically,” in Proc. of ICSE, 2009.

[14] R. Gopalakrishna, E. H. Spafford, and J. Vitek, “Efficient
intrusion detection using automaton inlining,” in Proc. of S&P,
2005.

[15] DYNINST binary instrumentation. http://www.dyninst.org.
[16] Audit framework. https://wiki.archlinux.org/index.php/Audit

framework.
[17] Cost of Security. http://institute.lanl.gov/isti/summer-school/

cluster network/projects-2011/2011%20Yellow%20Team
Lopez%20Mortensen%20Chambers.pdf.

[18] J.-M. Francois, “jahmm,” http://jahmm.googlecode.com/, 2009.

[19] Software-artifact Infrastructure Repository. http://sir.unl.edu/
portal/index.php.

[20] X. Shu, D. Yao, and B. Ryder, “A formal framework for program
anomaly detection,” in Proc. of RAID, 2015.

[21] D. Gao, M. K. Reiter, and D. Song, “Gray-box extraction of
execution graphs for anomaly detection,” in Proc. of CCS, 2004.

[22] D. Wagner and D. Dean, “Intrusion detection via static analy-
sis,” in Proc. of S&P, 2001.

[23] J. T. Giffin, S. Jha, and B. P. Miller, “Efficient context-sensitive
intrusion detection,” in Proc. of NDSS, 2004.

[24] H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P.
Miller, “Formalizing sensitivity in static analysis for intrusion
detection,” in Proc. of S&P, 2004.

[25] G. S. Kc and A. D. Keromytis, “e-NeXSh: Achieving an effec-
tively non-executable stack and heap via system-call policing,”
in Proc. of ACSAC, 2005.

[26] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
flow integrity: Principles, implementations, and applications,”
in Proc. of CCS, 2005.

[27] B. Zeng, G. Tan, and G. Morrisett, “Combining control-flow
integrity and static analysis for efficient and validated data
sandboxing,” in Proc. of CCS, 2011.

[28] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and
randomization for binary executables,” in Proc. of S&P, 2013.

[29] M. Zhang and R. Sekar, “Control flow integrity for COTS
binaries,” in Proc. of USENIX Security, 2013.

[30] A. Prakash, H. Yin, and Z. Liang, “Enforcing system-wide
control flow integrity for exploit detection and diagnosis,” in
Proc. of AsiaCCS, 2013.

[31] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi,
and T. Holz, “Counterfeit object-oriented programming: On the
difficulty of preventing code reuse attacks in C++ applications,”
in Proc. of S&P, 2015.

[32] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection
using sequences of system calls,” Journal of Computer Security,
1998.

[33] C. Wressnegger, G. Schwenk, D. Arp, and K. Rieck, “A close
look on N-grams in intrusion detection: Anomaly detection vs.
classification,” in Proc. of AISec, 2013.

[34] D. Gao, M. K. Reiter, and D. X. Song, “Beyond output voting:
Detecting compromised replicas using HMM-based behavioral
distance,” IEEE TDSC, 2009.

[35] X. Shu, D. Yao, and N. Ramakrishnan, “Unearthing stealthy
program attacks buried in extremely long execution paths,” in
Proc. of CCS, 2015.

[36] Z. Gu, K. Pei, Q. Wang, L. Si, X. Zhang, and D. Xu, “LEAPS:
Detecting camouflaged attacks with statistical learning guided
by program analysis,” in Proc. of DSN, 2015.

[37] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson,
J. Knight, A. Nguyen-Tuong, and J. Hiser, “N-variant systems:
A secretless framework for security through diversity,” in Proc.
of USENIX Security, 2006.

[38] E. Anceaume, Y. Busnel, E. L. Merrer, R. Ludinard, J. L.
Marchand, and B. Sericola, “Anomaly characterization in large
scale networks,” in Proc. of DSN, 2014.

[39] Q. Huang and P. P. C. Lee, “Ld-sketch: A distributed sketching
design for accurate and scalable anomaly detection in network
data streams,” in Proc. of INFOCOM, 2014.

[40] A. Ceccarelli, T. Zoppi, A. Bondavalli, F. Duchi, and G. Vella,
“A testbed for evaluating anomaly detection monitors through
fault injection,” in Proc. of ISORC, 2014.

[41] S. Jero, H. Lee, and C. Nita-Rotaru, “Leveraging state infor-
mation for automated attack discovery in transport protocol
implementations,” in Proc. of DSN, 2015.

[42] P. Buchholz and J. Kriege, “Markov modeling of availability
and unavailability data,” in Proc. of EDCC, 2014.

