
ABSTRACT
Tools for the generation of code from model descriptions are
valuable in helping developers maintain consistency between a
model and its implementation. In this paper, we describe a new
method for generating Java implementation code from UML
diagrams. Our method accepts UML diagrams specified at a
higher-level than current tools, and places fewer constraints on
the supported UML constructs, like multiple generalizations and
association classes. Unlike current tools, it generates
implementation code that shields system implementers from the
low-level details of how associations and other UML constructs
are mapped to Java. Furthermore, it supports the modular design
of systems according to concerns[2, 10] by being able to generate
code from a set of related UML diagrams. While our discussion is
focused on the special problem of generating Java
implementation code, the issues discussed in this paper are
applicable more generally to object-oriented implementation
languages.

Keywords
UML, Java, code generation, design, separation of concerns

1. INTRODUCTION

In order to better design and manage the development of complex
software systems, software designers have turned increasingly to
modeling languages such as the Unified Modeling Language
(UML)[1]. Relationships between the components of a system are
grasped more easily when the design is represented graphically
using a modeling language. UML modeling tools generally
support the generation of skeletal implementation code either
directly or by exporting models in a standardized format, such as
XMI[25], that can be used by third-party tools. Tools for the
generation of code from model descriptions are valuable in
helping developers maintain consistency between a model and its
implementation, which may involve a large number of source
files compared to size of the model.

Developers use modeling languages for various kinds of designs,
ranging from providing a description of the implementation of

the system to modeling the architecture of the system
independent of implementation language or style choices. In the
design process, there is always a tension as to the appropriate
level at which the system should be modeled so as to attain
maximum flexibility, quality, and maintainability of the system,
and continuity and cross-reference between the design and its
implementation.

When the model represents the design of a specific
implementation, the correspondence between the design and the
implementation code is apparent and is managed more easily.
Several current UML modeling environments provide tools that
can generate skeletal code from implementation designs [16, 17,
18, 22, 23, 27, 28]. The system designer, however, is constrained
to using a subset or an interpretation of the modeling language
that fits the implementation’s constraints, whether language,
configuration or system model. The design is shaped by the
choice of implementation language and style, often obscuring
characteristics that are intrinsic to the system/problem being
modeled. For example, in most abstract models of systems of any
complexity, some entities of the system fit many different
generalizations. At the level of an implementation in Java,
however, it is difficult to represent these multiple inheritance
relationships, since Java restricts multiple inheritance to
interfaces and requires single inheritance for their
implementations. To model the implementation accurately, the
modeler would normally accept the restriction to single
inheritance in the design, a restriction that most existing code
generation tools impose.

A model of a system expressed independently of a specific
implementation provides a clearer and more flexible description
of the system’s architecture and the relationships between its
components. It is clearer because design issues and decisions are
not confused with implementation-specific ones and more
flexible because it can be mapped more easily to fit many
different implementation constraints. On the other hand, the task
of validating a particular implementation against the design
model is harder, because the constructs at the two levels are no
longer necessarily in close correspondence. The problem of
designing with higher-level models is further aggravated by the
fact that few tools exist for generating appropriate skeletal
implementation code from high-level design code.

In this paper, we study the problem of generating object-oriented
language implementation code from high-level designs. We
present a mapping method that preserves expressive freedom for
the designer by allowing the specification of abstract models that
make few assumptions about the underlying implementation. Our
mapping generates a high-level skeletal implementation that
shields implementers from low-level representation choices,
thereby facilitating further system development. For example, we
present an abstraction, cursors, for simplifying the navigation

William Harrison Charles Barton
IBM T.J. Watson Research Center

PO Box 704
Yorktown Heights, NY 10598

harrisn@watson.ibm.com

Mukund Raghavachari

Mapping UML Designs to Java™

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

OOPSLA ‘00, 10/00 Minneapolis, MN, USA
© 2000 ACM ISBN 1-58113-200-x/00/0010...$5.00

178

and management of associations. UML, one of the most popular
design languages, is the concrete basis of our discussion,
although the issues we discuss arise with any design language.
While our mapping method is applicable to a broad set of
implementation languages, we focus on its particular application
in generating Java implementation code. We have implemented a
tool based on our mapping method for generating Java code from
abstract UML designs, and have used this tool in the design of
SAGE (Scalable Adapter Generator), a component of the Message
Central project at the IBM T.J. Watson Research Center[21].

An issue with modeling complex systems is that it becomes
difficult to view and understand an entire design as the number
of design elements and features grow. A solution to this problem
is to partition the design according to concerns[2, 10], where
each partition represents the slice of the system corresponding to
a concern of the system (for example, one concern may be the
user interface, another security). Using concerns, the design of a
system consists of several partitions, one for each concern or set
of concerns. The overall design of the system is obtained by
composing the various sub-designs. Our mapping method can
handle system designs expressed as a set of UML designs, where
each sub-design corresponds to a small number of concerns.

The paper is organized as follows. In Section 2, we discuss the
objectives that guided the design of our mapping from UML. In
Section 3, we discuss the UML design elements we support, and
present our basic mapping method for generating OO code from
UML. In Section 4, we discuss issues related to the application of
our mapping method to Java. We review previous approaches to
the model-to-implementation code generation problem, and
highlight the novelties in our approach in Section 5. Finally, in
Section 6, we summarize our study.

2. OBJECTIVES IN MAPPING
HIGH-LEVEL UML DESIGNS

We imagine a system being designed with respect to a variety of
particular concerns[2]. When a developer is constrained to use a
single design to model all concerns of a system together (for
example, design elements related to user interface, security, etc.,
are modeled together in a monolithic design), the elements of the
design often become scattered and tangled together, with
unfortunate consequences[10]. To alleviate this problem, we
consider a design process in which designs corresponding to each
of the individual concerns may be specified independently, and
then, composed to derive the design of the entire system.

The roles involved in this design process are as follows. The
system designer specifies the partition of the design into concern
designs and how they are to be composed. The concern designer
specifies the entities that effect a particular concern, their
attributes, operations, and relationships to other kinds of entities.
The attributes, associations, and operations of each entity
characterize how that entity can be used by the designers and
implementers of other entities in the same concern and of other
concerns. The object designer specifies additional attributes and
relationships, and even operations, that are to be visible only
within implementations of the entity. The behavior implementer
may specify additional private state information and operations
as well as the algorithms for implementing the operations, but
should assume no particular implementation of attributes or
association. The latter is the province of the representation

implementer, who specifies how attributes and associations are
represented to satisfy various other constraints. The work of the
concern and object designers is expressed in UML diagrams. The
work of the behavior and representation implementers is
expressed in the target object-oriented language.

Our goal in the generation of skeletal implementation code from
design specifications is to facilitate the design and development
process by:

1. Allowing designers the flexibility to model systems with
few assumptions about the underlying implementation.

2. Providing designers with a high-level, consistent framework
based on the design that supports the use and extension of
the system without exposing the implementation of its
components.

3. Providing implementers with a framework in which the
implementation of each component of the design can be
carried out independently of the implementation of the other
components.

4. Minimizing designer and implementer effort.

These goals are achieved partly by ensuring that well-known
software engineering principles are followed in the generated
code and by mapping to a sufficiently high-level implementation
design. In this section, we discuss the specific objectives we set
for the translation process, and how they enable us to attain the
aims set above.

Objective 1: Separate Design from Implementation

Software systems generally undergo change and improvement in
response to experience with their implementations and the needs
of the customers of the systems. To ease the jobs of developers,
the code generated from a design should use a programming style
that isolates the various design elements from each other’s
implementation decisions. Although the implementation of an
element may depend on the design of other elements, it should
not depend on their implementation. An implementer of a
particular element or a designer of objects or concerns can use
the elements of the design independently of their
implementation.

Objective 2: Separate Behavior from
Representation

Even within the implementation of an object, we would like to
minimize the effect of data representation decisions made with
respect to the storage of attributes or associations. The code that
embodies the behavior of the objects should not need to be
changed when the data’s representation are changed or extended
to address various performance or other environmental
characteristics. The performance cost of this decoupling should
be nominal and within acceptable bounds.

Objective 3: Maximize Type-Safety

Strong type enforcement is an important tool for detecting errors
early in the development process. It is important to ensure that

179

code generated by our mapping retains type information to assist
compilers with type-safety checks. Loss of type information not
only results in error-prone code, but also results in the
investment of considerable programming effort in writing
explicit type-casts. Our objective in the mapping process is to
preserve strong type checking and avoid forcing system
implementers to insert type-cast code when filling in the
implementation of the generated skeletal code.

Objective 4: Avoid Round-Tripping

Environments that support generation of code from higher-level
descriptions must address the situation that arises when
modifications are made to a base of code that was generated from
the higher-level description. If the high-level design is then
changed, the code must be re-generated from the design. Changes
or additions made to the generated code that are unrelated to the
higher-level changes need to survive the round-trip through the
regeneration process. Ideally, the modifications are made not in
the generated code, but directly in the high-level model, ensuring
that the code generator can mirror changes easily. Realizing this
ideal generally requires support of a full software engineering
environment. Even so, the modifications are often not expressible
in the high-level model. When full control of the generated
source is not possible, a common solution to the round-trip
problem is to generate code that contains “markers” that delimit
regions in which additions and changes may be made, which are
then reproduced in the re-generated code. Our objective is to
achieve a similar effect in a more robust manner by using
language mechanisms to separate the components that contain
modifications from those produced by the code generator.

Objective 5: Support for Designing with Concerns

Partitioning a large UML design into separate diagrams makes
the overall design easier to understand and possesses the virtue
of modularity. The system designer assigns the modeling of
relatively separate features or aspects of the design to different
UML diagrams, which can be elaborated independently. The
composite diagram is defined as the diagram obtained by
identifying same-named elements from the separate UML
diagrams and merging their features. Our goal is to be able to
accept a set of related UML diagrams and generate the code that
would have resulted from the composite diagram.

Objective 6: Support for Generalizations
(Supporting Multiple Inheritance)

A generalization is a relationship between entities in a design
indicating that instances of one kind of entity can be viewed as
instances of the associated generalization as well. To model
complex systems accurately, it is often necessary to allow
components to have more than one generalization. A natural way
of representing generalizations in an object-oriented language is
through the use of inheritance relationships. Programming
languages, however, often impose constraints on the use of
inheritance between classes. For maximum flexibility, it is
important to shield designers from these constraints. For
example, in mapping to a language such as Java, the lack of
multiple inheritance among classes ought not to hinder a
designer from designing components with multiple
generalizations.

Objective 7: Support for Associations

We wish associations to support the following capabilities (they
mirror the annotations on associations allowed by UML), and
allow our mapping to include them in a smooth manner.

1. Directionality and Roles – An association can be navigated
in either direction, or in both. In addition, role names can be
attached at the ends (one or both) of the association. A name
appearing at one end describes the role played in the
association by the entity at that end.

2. Multiplicity – Each end of an association can have an
annotation for multiplicity. This constrains the number of
entities that may be found by starting from an instance of
the entity at the other end and traversing the association in
the direction specified by that role. We will support the
“to-1” and “to-many” annotations. There are times, like
during construction, deletion, or movement of elements,
when the multiplicity constraints must be violated in the
course of carrying out the operation, but the constraints
should be valid at major semantic operational points.

3. Association Classes – In general, associations between
entities may have more semantics than specifying that the
entities are linked. For example, in representing the
marriage between two individuals as a Marriage
association between Person entities, the marriage date and
location are more appropriately stored on the association,
and not with either of the two Persons, especially
considering that the same two persons may have had more
than one marriage. To this end, an association may have a
class linked to it that provides information and behavior
relevant to the association. An instance of the association
class is attached to a link of the association. In the marriage
example, the instance might hold the date of the marriage
that the link represents.

4. Subtyping Associations – Assume the model contains
entities A and B connected by a relationship with a role r at
the B end. Assume further that C and D are entities that are
“subtypes”, that is, A is a generalization of C, and B
generalizes D. We want to allow the modeler to require that
an instance of C may only be linked, in this association, to
an instance of D, rather than to an arbitrary instance of B.
The modeler will specify this by drawing a relationship
between C and D with the same-named role r at the D end.

5. Stereotypes – Stereotypes can be defined for associations
that imply a difference in the semantics of the association.

Objective 8: Behavioral Access for Associations and
Attributes

Object implementers must write code to access the associations
and attributes they manipulate. Rather than force implementers
to express code in terms of the data representation of the
associations or attributes in their object, it is useful to separate
behavior from representation by defining high-level interfaces for
manipulating attributes and associations. A simple get/set
interface suffices for attributes. For associations, the
implementations of life-cycle behaviors like creation, deletion,
navigation, etc., should be generated automatically and be

180

transparent to the implementers.

Objective 9: Unified Set of Idioms for
Accessing/Navigating the Model

It is important that the interfaces to the generated code support
common idioms for accessing various components of the model.
For example, if an attribute of an entity is realized as a Java
variable that is given the same name as the attribute’s name in
the model, all attributes of all entities should be mapped in a
similar way. If these idioms are specified clearly, a system
implementer can deduce easily from the model how to navigate
and access its various components. A good set of idioms
facilitates code development and promotes reuse and extensions
of code. For example, a routine written to follow 1-to-many
associations should work if reused on 1-to-1 associations.
Arbitrary divergence of the idioms, for example, rules like:
“associations with multiplicity of three or more will be named by
spelling their role name backward,” only serve to retard the
development process.

Objective 10: Promote Code Reuse

Constructs that are required in the generated code may be similar
in semantics to existing types/packages in the implementation
language or libraries. To ease the task of an implementer, it
would be useful to express generated constructs in terms of these
types so that the implementer could use other packages based on
the existing types where possible. For example, in Java,
expressing lists of elements in terms of Enumeration could allow
for the use of other third-party routines that expect an
Enumeration.

3. METHOD FOR MAPPING UML
DESIGNS TO OO CODE

In this section, we discuss the basic approach for generating
object-oriented code from UML class diagrams to satisfy the
objectives we have described.

3.1 UML Class Diagrams

The UML constructs that we support are classes marked with a
stereotype Entity, with their attributes and operations,
generalization relationships, and association relationships with
their various adornments including roles, multiplicities,

aggregations, and association classes. We recognize that
high-level class designs may coexist with designs geared towards
a specific implementation in a system design. Classes not marked
as belonging to the stereotype Entity can be treated as
implementation-specific designs and mapped as such. In the
remainder of this paper, the term “entity” is used to mean a UML
class with the stereotype Entity. We consider a collection of
UML diagrams as a partitioned representation of a single
composite diagram. Entities in different diagrams that share the
same name are taken to represent the same entity and their
features are merged, also by name matching[2].

3.2 Entities

Each entity is mapped into an interface and a pair of
implementing classes. For each entity, X, we generate an
interface named X and classes named XAbst (for abstract) and
XInst (for instantiable). The interface contains operations defined
for the entity in the UML model, as well as auxiliary operations
for accessing its attributes and associations, and for performing
object construction. The XAbst class is an abstract class that
contains implementations of the auxiliary operations mentioned
above, as well as the physical representation of attributes. The
XInst class extends XAbst, and is a skeletal class that provides
placeholders that can be used to fill in the implementations of the
operations defined for X. These two classes sever the generated
implementation from the written extensions by playing the roles
of the core and extension in the "Generation Gap" pattern[14]. It
is neither necessary nor permissible for the behavior
implementer to modify the interface X or the class Xabst
generated from an entity. All code written by a behavior
implementer is encapsulated in the XInst class that does need not
be regenerated for unrelated model changes, thus obviating
round-tripping, as Objective 4 requires.

To separate behaviors from representation (Objective 2), all
accesses to attributes of an entity in the code written by behavior
implementers are through auxiliary functions. For each attribute,
attr, of an entity, X, there are two operations in the
corresponding X interface, getAttr() and setAttr(). The
implementations for these routines are in the XAbst generated
abstract class as described above. The attributes themselves are
declared in the XAbst class, and are hidden from other classes in
the system. To maximize type-safety (Objective 3), the auxiliary
operations use the type of the attribute specified in the UML
design.

Consider the example in Figure 1 where an entity, University

Figure 1. Class hierarchy generated from a UML class diagram.

<<entity>>
University Member

<<entity>>
Student

 name:String

study():void

<<Interface>>
Student

String getName()

void study()

void setName(String)

<<Interface>>
UniversityMember

Class

UniversityMemberAbst

StudentAbst

String getName() { ...}

Class

void setName(String)
{...}

Class

UniversityMemberInst

StudentInst

Class

void study() { }

...
... ...

Generates

181

Member, is a generalization of another entity, Student. The
mapping creates the Student interface, and StudentAbst and
StudentInst classes. In addition to the study operation of Student,
the Student interface contains auxiliary get/set operations to
access the name attribute, which are implemented in StudentAbst.
A skeleton of the implementation of study is found in
StudentInst. The figure omits other generated constructs and
auxiliary operations that relate to associations, which are
discussed in the next section.

As can be seen from the figure, the generalization hierarchy of a
UML class diagram is mirrored in the generated implementation.
In our mapping, the interface of an entity extends the interfaces
of its generalizations. Furthermore, each implementation of the
operations of an entity (in the XInst class) extends the
implementations of its generalizations indirectly through the
XAbst class. This was a conscious decision to ensure maximum
code reuse of implementations, and thus, minimize development
effort. We discuss a specific issue that arose as a result of this
decision in mapping multiple generalizations to a language with
single inheritance such as Java in Section 4.3.2. The alternative
mapping of allowing only an XAbst class to inherit from the
XAbst class of its generalizations would have presented different
problems, and would have resulted in developers expending
much more effort in the common case.

3.3 Associations

As it does with attributes, our mapping method separates the
semantics of associations from their representation and
implementation. To accomplish this separation, we introduce an
abstraction called a cursor, which encapsulates the complexity of
navigating and updating the association, and hides its
implementation. Consider the example in Figure 2, in which we
show the interface generated from the Student entity, and the
cursor corresponding to the belongsTo relationship (the figure
omits details of the code generated for the other elements of the
class diagram). For each of the two named roles accessible from
Student, its corresponding interface contains auxiliary methods
for retrieving the cursors for those roles. The implementation of
these methods would be in the StudentAbst class, which is not
shown. The figure also shows the StudentBelongsToCursor
interface and its associated implementation For each named role,
like belongsTo, we generate an interface and an implementation
named with the entity and role, in this case,
StudentBelongsToCursor and StudentBelongsToCursorImpl. An

association access operation for retrieving a
StudentBelongsToCursor is included in the interface Student. When
invoked on an instance of Student, it returns a cursor giving
access to the collection of belongsTo links from that instance.

As suggested by the figure, a cursor has methods for inserting
and removing links and for iterating over the set of links. The
cursor, when in a valid state, is said to “point to” or to “refer to”
the instance at the other end of the current link, which we call
the “current target”. The cursor is used as a reference to the
current target and so we specify that StudentBelongsToCursor
extends the interface Department and delegates the calls on
Department’s operations to the current target. If there is an
association class defined, we similarly simplify manipulation of
its instances by requiring that StudentBelongsToCursor extend the
interface of the association class EnrollmentInfo, and by delegating
its methods to the current association class instance.

In the following sections, we describe the interface to and the
implementation of cursors in greater detail.

3.3.1 Association Management Operations

When a cursor is first constructed by invoking a cursor accessor
on an entity, it is set to contain the “first” target entity as its
“current target.” Note that the iteration order is not specified at
this level. If no links have been defined yet, the cursor is set to
be invalid. All cursors support the following four operations:
valid(), next(), remove(), and insert(t). The semantics of these
operations is the same for all cursors, subject to multiplicity
constraints on the association, to satisfy Objective 9. Cursor
interfaces consist of the following methods:

The remove() operation removes the current
element. If the cursor is not valid, it throws
an exception. Prior to the removal, remove

remove

The next() operation advances the cursor so
that the “next” target becomes current. If
there is none, the cursor becomes invalid. In
the case of to-1 relationships, the cursor
becomes invalid by definition.

next

If valid() is true, the cursor is said to be valid
and has a reference to an instance of the
target entity of the association. If the cursor
is invalid, attempts to access the target will
result in an exception.

valid

Figure 2. Example of generated code for associations.

<<entity>>
Student

name:String

study():void

void study()

String getName()

StudentBelongsToCursor
belongsTo()

<<interface>>
Student

StudentTakesCourseInCursor
takesCoursesIn()

void setName(String)

<<entity>>
Department

takesCoursesIn
*

1

belongsTo

valid()

insert(Department)

<<interface>>
StudentBelongsToCursor

next()
remove()

<<entity>>
EnrollmentInfo

date:String

StudentBelongs to CursorImpl

<<interface>>
EnrollmentInfo

<<interface>>
Department

listCourses() String getDate()
void setDate(String)

Student student()

Department
department() EnrollmentInfo

enrollmentInfo()

listCourses()

182

The insert(t) operation inserts a link to the
specified target element t. The parameter t
has the type of the interface corresponding
to the target of the relationship. In the case
of a to-one association, insert first performs
an implicit remove(). After the insert, the
current target is t and the cursor is valid.

insert(t)

advances the cursor as specified for next().

3.3.2 Target Operations

Our cursor abstraction, designed to fulfill Objectives 8 and 9, is
closer in spirit to Eiffel's Iterators[8] than to Java's Enumerations.
Compared to a solution based on Enumerations, it results in
simpler and more transparent code for the common operation of
traversing a 1-1 relationship to perform an operation on its target.
To achieve this goal, a cursor extends the interface defined by
the target entity. These operations are implemented in the cursor
by delegating them to the current target. This is in partial
realization of Objective 8, the simplification of the behavior of
associations. Implementers have available a variety of
expressions. For example, if x supports the Student interface, the
listCourses() method of the Department reached by following
belongsTo from x can be invoked by x.belongsTo().listCourses(), or
by:

StudentBelongsToCursor p = x.belongsTo();
p.listCourses();

Iterative processing of a to-many association is handled similarly:

for (StudentTakesCoursesInCursor p = x.takesCoursesIn(); p.valid();
p.next()) {p.listCourses();}

Since cursors extend the interface of the entity to which they
refer, one can use them as one would use references. They are,
however, more volatile than ordinary references because a cursor
could be advanced to its next target without software using it
being aware of the fact that its point of reference is changing. To
make available a stable reference to the current target, we add to
the interface for each entity X a “self-reference” operation X x()
which returns a reference to itself. When invoked through a
cursor, this method will return a reference to the entity that is the
current target of the cursor. To maximize type-safety (Objective

3), the returned reference is of the appropriate type.

3.3.3 Association Class Operations

When an association has an association class, the cursor supports
an additional operation, insert(TargetType t, AssociationType a),
where TargetType is the type of entity appropriate for the role’s
target and AssociationType is the type of the interface
corresponding to the entity of the association class.

insert(t) inserts a link to the specified target
element, t, as a new target of the association
with a specified association class instance a.
In the case of a to-one association, insert
first performs an implicit remove(). After
insert, the cursor points to t.

insert(t,a)

Furthermore, the cursor produced for the association extends the
interface of the association entity, as it does for the target entity.
When both the target entity and the association entity have
attributes or operations of the same name, it is ambiguous as to
which entity the cursor should delegate when that operation or
attribute is accessed through the cursor interface. We take the
approach of dropping ambiguous operations from a cursor
interface, and forcing implementers to retrieve explicitly the
references to the target or association entity using the
“self-reference” operation explained previously when invoking
those operations.

3.4 Stereotyped Association Implementations

A discussion of the specific details of the implementations of
cursors and associations is beyond the scope of this paper. We
note that we support stereotyped associations, where the
stereotype is used to determine how cursors are implemented,
though the interface for using the association remains the same.
This helps us to support associations without compromising
Objectives 1 and 2, that is, the separation of design from
implementation and representation. We have also found it to be
of great use for specifying associations that have extended
behavior and for providing implementations that reuse a variety
of pre-existing specialized implementations of associations.

4. SPECIAL ISSUES FOR JAVA

Figure 3. An occurrence of subtyping in a model.

belongsTo

belongsTo<<entity>>
Student

<<entity>>
Department

<<entity>>
Math Student

<<entity>>
Math Department

<<interface>>
Student

StudentBelongsToCursor
belongsTo()

<<interface>>
MathStudent

MathStudentBelongsToCursor
belongsTo()

183

IMPLEMENTATIONS

Our tool converts UML class diagrams expressed in XMI into Java
classes following the methodology stated in the previous section.
In this section, we discuss some Java-specific issues that were
addressed during the implementation of our UML-to-Java tool.

4.1 Cursors as Enumerations

Cursors behave much like the classes satisfying the interface
java.util.Enumeration. To maximize code reuse (Objective 10),
Cursor interfaces also extend that interface, allowing them to be
passed to pre-existing code expecting enumerations of objects.
Cursor interfaces, therefore, also support the following
operations:

performs a next() but returns the target
of the cursor that was current when
nextElement() was called.

nextElement

is the same as valid()hasMoreElements

4.2 Subtyping

Figure 3 illustrates a configuration that can arise in a model and
that can cause difficulty in translation to Java. It shows four
entities: Student, Math Student, Department, and Math
Department, linked by an association role belongsTo. A Math
Student is a kind of Student, and Math Department is a kind
of Department. A Student belongs to a Department, and a
Math Student belongs to a Math Department.

Using the mapping discussed for associations to generate Java
code would result in an illegal Java program because the
belongsTo() operation has the same signature but different return
types (MathStudentBelongsToCursor and StudentBelongsToCursor) in
the Student and MathStudent interfaces.
MathStudentBelongsToCursor ought to enforce the type constraints
implied by the model by “extending” StudentBelongsToCursor in
two ways: it should extend the interface MathDepartment instead
of just Department, and its insert method should require
parameters of type MathDepartment and not merely of type
Department. To achieve this goal while observing Java’s
restrictions, we do the following:

1. The same return type, StudentBelongsToCursor, is used for the
belongsTo() methods in both the Student and MathStudent

interfaces.

2. We broaden the definition of StudentBelongsToCursor to extend
the interface MathDepartment.

3. In the class MathStudentAbst, we override StudentAbst’s
implementation of belongsTo() to return a different
implementation of StudentBelongsToCursor. The instance of
StudentBelongsToCursor returned to a MathStudent checks in its
insert method that the parameter is actually of class
MathDepartment. If a Student instance is not of class
MathStudent, the returned StudentBelongsToCursor traps any
invocations of MathDepartment methods that are not defined in
Deptartment. These differing implementations provide
dynamically the type safety that we cannot obtain statically from
Java.

4.3 Reducing Multiple Inheritance to Single

In order to support generalizations, we need to map multiple
generalizations of an entity to interfaces and implementation
classes in the Java realization. Since Java allows an interface to
extend many other interfaces, that part of the mapping is natural.
The Java interface for an entity is defined to extend the Java
interfaces of all of its generalizations. However, although code
inheritance is very important for reuse, Java does not support
multiple inheritance of implementation classes. To enable
implementation inheritance, we produce an inheritance tree for
the generated implementations by linearizing the inheritance
hierarchy. Consider the example in Figure 4. The multiple
generalization hierarchy shown can be mirrored exactly among
the interfaces corresponding to the entities. For the
implementation classes, however, we generate the classes as
though Graduate Student had been a generalization of
Employee in the UML class diagram. In general, we convert an
inheritance hierarchy that is a directed, acyclic graph into a tree,
and ensure that the classes generated for any entity inherit from
all its generalizations in the original UML class diagram. A
side-effect of this approach is that spurious subclassing
relationships are introduced among the classes (for example,
between EmployeeAbst and GradStudentAbst). We now address
two issues, construction and proper choice of method
implementations, that arise when mapping multiple
generalizations to Java.

Figure 4. Resulting class hierarchy from mapping multiple generalizations to Java.

<<entity>>
University Member

void getPaid()

<<entity>>
Graduate Student

void getPaid()

<<entity>>
Employee

void getPaid()

<<entity>>
Teaching Assistant

UniversityMemberAbst

TeachingAssistantAbst

EmployeeAbst

GraduateStudentAbst

UniversityMemberInst

TeachingAssistantInst

EmployeeInst

GraduateStudentInst

<<interface>>
UniversityMember

<<interface>>
GraduateStudent

<<interface>>
Employee

<<interface>>
TeachingAssistant

TeachingAssistant(String)

UniversityMember()

GraduateStudent(String) Employee(String)

Class

ClassClass

ClassClass

ClassClass

Class

184

4.3.1 Construction and Initialization

We require a construction model that is different from Java’s
because our generated implementation code must allow
independent superclasses corresponding to multiple
generalizations of an entity to participate in the initialization of
the classes corresponding to that entity. Since, as described in the
previous section, we simulate multiple generalizations using
single inheritance, we need a construction model in which the
construction of an instance of an entity results in the individual
constructors for all classes corresponding to generalizations of
that entity in the UML model being called, but not those of other
Java classes that happen to become superclasses in the generated
implementation. Our construction model, however, ought to be as
consistent as possible with Java’s model.

In this section, we describe how the construction specified in a
UML design is mapped to Java. Like Java’s built-in model, our
construction model follows the builder pattern[4] for object
creation. Creation involves four parts: the factory, the call for
construction, the control of the construction sequence, and the
individual constructors. These parts all have analogies in Java’s
construction model. In Java, the factory is built in and control of
the construction plan is tailored for single inheritance. As in
Java, each entity may have several creation methods, each of
which has a different signature. In Figure 5, we depict the
sequence of method calls made to perform the initialization of
the Employee entity in the multiple generalization example of
Figure 4. The creation operations for an entity, X, are specified
in the UML model as operations of the entity, all named X. For
example, in Figure 4, the entity Employee has a single
constructor that takes a String as an argument.

4.3.1.1 Factory

There are various strategies that could be adopted by a client to
locate the factory for creating a new object. The simplest method
employs a single known static variable or method for obtaining a
reference to a single factory. More complex strategies are needed
when more than one factory might be in use, the most complex of
which involve parameterized factory-finding functions. We
employ a middle-course and specify that every entity implements
a method, declared as ModelFactory modelFactory(), that returns a
reference to an appropriate factory. Each factory supports the
creation of all entities.

4.3.1.2 Call For Construction

The methods identified in the ModelFactory interface are named
newX, where X takes on the names of the entities specified in the
UML model. An implementer, wishing to create an instance of an
Employee, whose construction requires a String parameter
specifying the name of the employee, using a reference foo, to an
instance of an arbitrary entity, would write:

 foo.modelFactory().newEmployee(“Lou G.”);

This would retrieve a model factory from the entity identified by
foo, and invoke the factory’s newEmployee method. This method
uses the native Java new to create an entity (e.g., new
EmployeeInst(“Lou G.”);), and then, begins the initialization of the
new Employee instance as we now describe.

4.3.1.3 Control of the Construction Sequence

In Java, the order in which the constructors of a class and its
superclasses are invoked is specified clearly and is
straightforward because it has a single-inheritance model that
makes the ordering of individual constructors simple. As a result,
the construction plan is implicit and built into the language. In
the conversion of UML designs to Java, we need to ensure that
during the creation of an instance of an entity, the initializers of
that entity and the appropriate superclasses (those corresponding
to entities that are generalizations of the entity being created) are
called in the appropriate order, and that no initializer is called
more than once.

In our mapping, each entity contains two kinds of methods for
construction, construction plans and individual constructors
(described in the next section). A construction plan controls the
sequence of initializations, by individual constructors, of the
parts of the object that belong to its own class and to its
superclasses. For an entity X and for each constructor with a
different signature in X, an operation XConstructPlan is added to
the corresponding XAbst class, and an implementation is
generated in the XAbst class. After the factory’s newX uses Java
new to create an instance of the entity, it calls the version of
XConstructPlan that has the same signature as the factory’s
method and passes on its arguments. That XConstructPlan passes
these arguments to the individual constructors it calls. If no
version of XConstructPlan has a matching signature, one with an
empty signature is used.

4.3.1.4 The Individual Constructors

These methods are analogous to ordinary Java constructors
except that they do not invoke, implicitly or explicitly, individual
constructors for their superclasses. The generated individual
constructor for an entity X is called constructX and is added to the
XAbst class. There is one version of constructX for each
overloading of newX. constructX may assume that XConstructPlan
has already called the individual constructors corresponding to
the generalizations of X. The generated implementation of
constructX initializes the representations for attributes and
associations. If the instantiable class introduces additional state
variables or performs more complex initialization, it can override
the generated individual contructor, calling it via “super” to
accomplish the model initialization for the entity.

Figure 5 shows the construction operations that would be
generated for the multiple generalization hierarchy in Figure 4,
and the steps taken in the construction of an instance of
Employee. First, the generated implementation of
EmployeeConstructPlan() is invoked (Step 1). This routine ensures
that constructUniversityMember() and constructEmployee(String) are
called in that order (skipping over
constructGraduateStudent(String)).

185

Figure 5. Construction code generated for the example in
the previous figure.

EmployeeAbst

EmployeeConstructPlan(String)
constructEmployee(String)

UniversityMemberAbst
UniversityMemberConstructPlan()

constructUniversityMember()

GraduateStudentAbst

GraduateStudentConstructPlan(String)
constructGraduateStudent(String)

TeachingAssistantAbst

TeachingAssistantConstructPlan(String)
constructTeachingAssistant(String)

EmployeeInst

constructEmployee(String)

UniversityMemberInst

constructUniversityMember()

GraduateStudentInst

constructGraduateStudent(String)

TeachingAssistantInst

constructTeachingAssistant(String)

Class

Class

Class

ClassClass

Class

Class

Class

1

2

3

4.3.2 Proper Choice of Method Implementations

The spurious subclassing that may be caused by our mapping of
multiple generalizations to Java could result in undesired method
inheritance. Consider the example in Figure 4, in which an
implementation for getPaid() is provided in UniversityMemberInst.
If this implementation is overridden in GraduateStudentInst,
perhaps to reflect that a graduate student may be paid out of a
research grant, EmployeeInst inherits this overridden method
unwittingly, and not the desired one from UniversityMemberInst.

We solve this problem by exploiting the fact that in our
UML-Java mapping, the instantiable (Inst) class always specifies
the Abst class as its superclass. When necessary, we generate in
the Abst class an override for methods of its Inst class. The
override (in the Abst class) catches the call (from the Inst class)
and redirects it to the appropriate superclass via a renamed
diversion method. For example, observe in Figure 6 how
EmployeeInst’s invocation of getPaid() reaches
UniversityMemberInst’s implementation. These indirections are
only necessary when we determine that spurious method
inheritance may occur in the generated code. The appearance of a
“diamond shape” in the model, as in Figure 4, signals the
possibility of this problem.

EmployeeAbst

getPaid() {getPaidTop()}

GraduateStudentAbst

getPaidTop() {super.getPaid()}

EmployeeInst

UniversityMemberInst

GraduateStudentInst

getPaid() {new Impl}

Class
Class

ClassClass

ClassClass

UniversityMemberAbst

getPaid()
getPaid() {Implementation}

Figure 6. Avoiding spurious method inheritance.

5. RELATED WORK

As discussed in [6], one of the important issues for software
engineering in the near term is better integration of the various
concerns and artifacts used through the life cycle. The fact that
the recent past has seen some convergence and more widespread
use of design tools and the emergence of generators for
producing object-oriented code signals that it is appropriate to
focus attention not only on appropriate mappings, but on the
concrete objectives by which to evaluate them. In this respect,
the exercise here is similar to the valuable exposition of the
design rationale for programming languages like C++ [12]. Some
of the work described here addresses similar issues as other work
on levels of abstraction, design composition, UML Code
Generators, and operational models for relationships.

Levels of Abstraction

The Reference Model for Open Distributed Processing[20]
supports the description of consistency relationships among
several different viewpoints that together describe a body of
complex software. Models like RM-ODP emphasize the need for
tool support to aid in managing the separation and integration of
the various concerns addressed in the different viewpoints, which
are specified at varying levels of abstraction.

One approach to managing models at multiple levels of
abstraction is to provide a Software Engineering Environment
(SEE) that supports a refinement methodology for realizing
high-level designs as lower-level ones, and for expressing how
each level relates to the other. Catalysis[3] is a modern
commercially available SEE of this sort, of which RPDE3[9],
Arcadia[13], and IDE[15] were earlier SEEs with similar goals.

Catalysis is an SEE of particular interest because of its support of
UML. Unlike Catalysis, which permits a variety of lower level
design elaborations for each construct in the higher-level design,
we simplify the developer's task by restricting the form of the
elaborations, and then, generating them from the higher-level
design automatically. Instead of dealing with a pair of
independently-created designs or implementations, we consider
the more restricted situation in which there is a governing model
into which design decisions at different levels all fit.

Design Compositors

Our UML-to-Java generator performs a UML design composition
prior to generating the Java code for the design. Although the use
of composition for program development is becoming better
supported and more widespread [5, 6, 10], its impact on design is
only beginning to be examined [2]. The information model
underlying our work on SAGE was designed initially as a paper
design, without anticipating subsequent automation of its
conversion to code. Perhaps in consequence, we found that it
uses “merge” composition more broadly than in [2], even
including the merging of generalization relationships across
diagrams. Tools like Rational/Rose [26] also provide design
composition, although generally as an ancillary to version
management rather than as a persistent feature of the design
itself. Prior to undertaking the implementation of the compositor
part of our generator, we investigated using these tools instead,
but we found that they generally lacked several features we
needed, including “by-name” composition of classes and merging

186

of the operations and relationships associated with the classes.

UML-to-Code Generators

The work described here differs from other code generators
available for UML designs in that it is intended to map from
high-level designs. The code generators in [16, 17, 18, 22, 23,
27, 28] all expect designs that are expressed in terms of Java
constructs, including the mapping of attributes and associations
into Java variables, etc. Taking this course would not have
fulfilled many of the objectives discussed in Section 2.

Object Models for Associations

Object models for associations, such as the OMG Relationship
Services[24], the java.util collection classes, and the IBM
OpenClass library[19], are generally expressions of the iterator
pattern [4]. The iterator pattern treats the iterator (or cursor) as a
separate object from which the “current item” must be extracted
and then processed. In our definition and use of cursors, we
intentionally avoid exposing the implementation of associations.
Our cursor model reduces the amount and unfamiliarity of client
code, increases the robustness of the design under change, and
permits us to extend the design in ways that use information not
only about an object but about how it was reached. It does this by
extending the iterator concept to allow the cursor to act as a
transparent reference to the current item or to the related
association class item.
6. SUMMARY

We have presented a new method for generating Java
implementation code from UML designs. Our mapping method
was designed to support sound software engineering principles,
and possesses the following novel features:
�It places fewer constraints on the designs it accepts compared

to current tools, allowing the use of UML constructs such as
multiple generalization and association classes.
�It generates high-level code that shields developers from the

details of how UML constructs, such as associations, are
mapped to Java. The generated code supports a high-level
implementation model that is faithful to the UML design.
�It allows for modular design of systems according to concerns

by supporting code generation from a set of related designs.
The resulting code is that which would have been generated if
a composition of the diagrams were presented to the tool.

The generation of Java code from UML designs was influenced by
certain characteristics of the Java language. The lack of multiple
inheritance of implementations of classes, and the inability to
subtype, overload, or override return types of functions required
extensions to our mapping model. A certain “redundancy” is
present in our generated code as a result of our goal of supporting
strong static type checking. This redundancy would not have
resulted had Java supported parametric types.

7. REFERENCES

[1] Booch, G., J. Rumbaugh, and I. Jacobson, “The Unified
Modeling Language User Guide,” Addison Wesley (1999).

[2] Clarke, S., W. Harrison, H. Ossher, and P. Tarr,

“Subject-Oriented Design: Towards Improved Alignment of
Requirements, Design and Code,” Proceedings of the 1999
Conference on Object-Oriented Programming Systems,
Languages, and Applications, Denver (November, 1999).

[3] D'Souza, D., and Wills, A. C., “ Objects, Components, and
Frameworks with UML – The Catalysis Approach,”
Addison-Wesley (1998).

[4] Gamma, E., R. Helm, R. Johnson, and J. Vlissides, “Design
Patterns Elements of Reusable Object-Oriented Software,”
Addison Wesley, p. 99ff (1995).

[5] Harrison, W., and H. Ossher, “Subject-Oriented Programming (a
critique of pure objects),” Proceedings of the 1993 Conference on
Object-Oriented Programming, Systems, Languages and
Applications, Washington, D.C. (October, 1993).

[6] Harrison, W., H. Ossher, and P. Tarr, “Software Engineering
Tools and Environments: A Roadmap,” in “Future of Software
Engineering,” Anthony Finkelstein (Ed.), ACM Press (June,
2000).

[7] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J.-M. Loingtier, and J. Irwin, “Aspect-Oriented Programming,”
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), Finland, Springer-Verlag, LNCS 1241
(June 1997).

[8] Meyer, B., “Reusable Software: The Base Object-Oriented
Component Libraries,” Prentice Hall (1994).

[9] Ossher, H., and Harrison, W. “Support for change in RPDE3,”
Proceedings of the Fourth ACM SIGSOFT Symposium on
Software Development Environments (December 1990).

[10] Ossher, H., P. Tarr, W. Harrison, and S. Sutton, “N Degrees of
Separation: Multi-Dimension Separation of Concerns,”
Proceedings of 1999 International Conference on Software
Engineering (May 1999).

[11] Roth, W., “ An Introduction To Enterprise Java Beans
Technology,” Java Developer Connection,
http://developer.java.sun.com/developer/technicalArticles/Beans/
IntroEJB/

[12] Stroustrup, B.J., The Design and Evolution of C++, Addison
Wesley, Reading, MA.

[13] Taylor, R. N., Belz, F. C., Clarke, L.A., Osterweil, L. J., Selby,
R. W., Wileden, J. C., Wolf, A. L., and Young, M., “Foundations
for the Arcadia Environment Architecture,” Proceedings of
SIGSOFT’88: Third Symposium on Software Development
Environments (November 1988).

[14] Vlissides, J., “ Pattern Hatching – Design Patterns Applied,”
Addison-Wesley (1998).

[15] Wasserman, A. I., Pircher, P. A., Shewmake, D. T., and Kersten,
M. L., “Developing Interactive Information Systems with the
User Software Engineering Methodology,” In IEEE Transactions
on Software Engineering, vol. SE-12, no. 2, pp. 326-345
(February 1986).

[16] –, Aonix, Software through Pictures (MetaEdit+),
http://www.metacase.com/meplus30index.html.

187

[17] –, Advanced Software Technologies, GDPRO:
http://www.advancedsw.com/.

[18] –,AppBuilder, http://www.devdaily.com/AppBuilder/.

[19] –, S/390 V2R4.0 C/C++ IBM Open Class Library Reference,
Document Number: SC09-2364-02,
http://www.redbooks.ibm.com/cgi-bin/bookmgr/BOOKS/CBCOC
R03/CCONTENTS.

[20] –, Reference Model of Open Distributed Processing, ISO/IEC
Document 10746,

[21] –, MessageCentral Home Page, IBM T.J. Watson Research
Center, http://www.research.ibm.com/messagecentral/.

[22] –,No Magic, Magicdraw,
http://www.nomagic.com/magicdrawuml/features.htm.

[23] –,Object International Software, Together/J,
http://www.togethersoft.com/together/togetherJ.html.

[24] –, OMG CORBA Services, Relationship Service, Version 1.0 ,

http://www.omg.org/technology/documents/formal/relationship_s
ervice.htm.

[25] –, OMG XMI Revised Submission,
cgi.omg.org/cgi-bin/doc?ad/99-10-13

[26] –, Rational Rose ‘98, Using Rose, Rational Software Corporation
(1998).

[27] –, Rational Software, Rational Rose,
http://www.rational.com/products/rose/index.jtmpl.

[28] –, Softera, SoftModeler,
http://www.softera.com/manual/UserGuide.htm.

188

