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Abstract. Program anomaly detection analyzes normal program be-
haviors and discovers aberrant executions caused by attacks, miscon-
figurations, program bugs, and unusual usage patterns. The merit of
program anomaly detection is its independence from attack signatures,
which enables proactive defense against new and unknown attacks. In
this paper, we formalize the general program anomaly detection prob-
lem and point out two of its key properties. We present a unified frame-
work to present any program anomaly detection method in terms of its
detection capability. We prove the theoretical accuracy limit for pro-
gram anomaly detection with an abstract detection machine. We show
how existing solutions are positioned in our framework and illustrate the
gap between state-of-the-art methods and the theoretical accuracy limit.
We also point out some potential modeling features for future program
anomaly detection evolution.
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1 Introduction

Security problems in program executions – caused by program bugs, inappro-
priate program logic, or insecure system designs – were first recognized by the
Air Force, the Advanced Research Projects Agency (ARPA), and IBM in early
1970s. In 1972, Anderson pointed out the threat of subverting or exploiting a
piece of software by a malicious user [2]. This threat was developed to a multi-
tude of real-world attacks in the late 1980s and 1990s including buffer overflow,
return-into-libc, denial of service (DoS), etc.

Defenses have been proposed against categories of attacks from the perspec-
tives of hardware (e.g., NX bit), operating system (e.g., address space layout
randomization), compiler (e.g., canaries) and software architecture (e.g., sand-
box) [56]. Although these defenses create barriers to exploiting a program, they
can be circumvented. For example, new program attacks are developed leveraging
unattended/uninspected execution elements, such as return-oriented program-
ming [51], jump-oriented programming [5,10], and non-control data attacks [11].

Denning proposed an intrusion detection expert system (IDES) in 1987 [15],
which learns how a system should behave (normal profiles) instead of how it



should not (e.g., an attack). In this paper, we formalize one area of intrusion de-
tection, namely program anomaly detection or host-based intrusion detection [52].
The area focuses on intrusion detection in the context of program executions. It
was pioneered by Forrest et al., whose work was inspired by the analogy between
intrusion detection for programs and the immune mechanism in biology [22].

Two major program anomaly detection approaches have been established
and advanced: n-gram-based dynamic normal program behavior modeling and
automaton-based normal program behavior analysis. The former was pioneered
by Forrest [23], and the latter was formally introduced by Sekar et al. [50] and
Wagner and Dean [59]. Other notable approaches include probabilistic modeling
methods pioneered by Lee and Stolfo [40] and dynamically built state machine
first proposed by Kosoresow and Hofmeyr [36]. Later work explored more fine-
grained models [4, 28,30] and combined static and dynamic analysis [24].

Evaluating the detection capability of program anomaly detection methods
is always challenging [59]. Individual attacks do not cover all anomalous cases
that a program anomaly detection system detects. Control-flow based metrics,
such as average branching factor, are developed for evaluating specific groups of
program anomaly detection methods [59]. However, none of the existing metrics
is general for evaluating an arbitrary program anomaly detection system.

Several surveys summarized program anomaly detection methods from dif-
ferent perspectives and pointed out relations among several methods. Forrest
et al. summarized existing methods from the perspective of system call moni-
toring [21]. Feng et al. formalized automaton based methods in [19]. Chandola
et al. described program anomaly detection as a sequence analysis problem [8].
Chandola et al. provided a survey of machine learning approaches in [9]. The
connection between an n-gram method and its automaton representation is first
stated by Wagner [60]. Sharif et al. proved that any system call sequence based
method can be simulated by a control-flow based method [52].

However, several critical questions about program anomaly detection have
not been answered by existing studies and summaries.

1. How to formalize the detection capability of any detection method?

2. What is the theoretical accuracy limit of program anomaly detection?

3. How far are existing methods from the limit?

4. How can existing methods be improved towards the limit?

We answer all these questions in this paper. We unify any existing or fu-
ture program anomaly detection method through its detection capability in a
formal framework. We prove the theoretical accuracy limit of program anomaly
detection methods and illustrate it in our framework. Instead of presenting every
proposed method in the literature, we select and explain existing milestone de-
tection methods that indicate the evolution of program anomaly detection. Our
analysis helps understand the most critical steps in the evolution and points out
the unsolved challenges and research problems.

The contributions of this paper are summarized as follows.



1. We formalize the general security model for program anomaly detection.
We prove that the detection capability of a method is determined by the
expressiveness of its corresponding language (Section 2).

2. We point out two independent properties of program anomaly detection: pre-
cision and the scope of the norm. We explain the relation between precision
and deterministic/probabilistic detection methods (Section 2).

3. We present the theoretical accuracy limit of program anomaly detection with
an abstract machine M̃ . We prove that M̃ can characterize traces as precise
as the executing program (Section 3).

4. We develop a hierarchal framework unifying any program anomaly detec-
tion method according to its detection capability. We mark the positions
of existing methods in our framework and point out the gap between the
state-of-the-art methods and the theoretical accuracy limit (Section 5).

5. We explain the evolution of program anomaly detection solutions. We en-
vision future program anomaly detection systems with features such as full
path sensitivity and higher-order relation description (Section 6).

6. We compare program anomaly detection with control-flow enforcement. We
point our their similarities in techniques/results and explain their different
perspectives approaching program/process security (Section 7).

2 Formal Definitions for Program Anomaly Detection

We formally define the problem of program anomaly detection and present the
security model for detection systems. Then we discuss the two independent prop-
erties of a program anomaly detection method: the detection capability and the
scope of the norm. Last, we give an overview of our unified framework.

2.1 Security Model

Considering both transactional (terminating after a transaction/computation)
and continuous (constantly running) program executions, we define a precise
program trace based on an autonomous portion of a program execution, which
is a consistent and relatively independent execution segment that can be isolated
from the remaining execution, e.g., an routine, an event handling procedure (for
event-driven programs), a complete execution of a program, etc.

Definition 1. A precise program trace T is the sequence of all instructions ex-
ecuted in an autonomous execution portion of a program.

T is usually recorded as the sequence of all executed instruction addresses1

and instruction arguments. In real-world executions, addresses of basic blocks
can be used to record T without loss of generality since instructions within a
basic block are executed in a sequence.

We formalize the problem of program anomaly detection in Definition 2.

1 Instruction addresses are unique identifiers of specific instructions.



Definition 2. Program anomaly detection is a decision problem whether a pre-
cise program trace T is accepted by a language L. L presents the set of all normal
precise program traces in either a deterministic means (L = {T | T is normal})
or a probabilistic means (L = {T | P (T) > η}).

In Definition 2, η is a probabilistic threshold for selecting normal traces from
arbitrary traces that consist of instruction addresses. Either parametric and non-
parametric probabilistic methods can construct probabilistic detection models.

In reality, no program anomaly detection system uses T to describe pro-
gram executions due to the significant tracing overhead. Instead, a practical
program trace is commonly used in real-world systems.

Definition 3. A practical program trace T̈ is a subsequence of a precise program
trace T. The subsequence is formed based on alphabet Σ, a selected/traced subset
of all instructions, e.g., system calls.

We list three categories of commonly used practical traces in real-world pro-
gram anomaly detection systems. The traces result in black-box, gray-box, and
white-box detection approaches with an increasing level of modeling granularity.

• Black-box level traces: only the communications between the process and
the operating system kernel, i.e., system calls, are monitored. This level of
practical traces has the smallest size of Σ among the three. It is the coarsest
trace level while obtaining the trace incurs the smallest tracing overhead.

• White-box level traces: all (or a part of) kernel-space and user-space activities
of a process are monitored. An extremely precise white-box level trace T̈ is
exactly a precise trace T where all instructions are monitored. However,
real-world white-box level traces usually define Σ as the set of function calls
to expose the call stack activity.

• Gray-box level traces: a limited white-box level without the complete static
program analysis information [24], e.g., all control-flow graphs. Σ of a gray-
box level trace only contains symbols (function calls, system calls, etc.) that
appear in dynamic traces.

We describe the general security model of a real-world program anomaly
detection system in Definition 4. The security model derives from Definition 2
but measures program executions using T̈ instead of T.

Definition 4. A real-world program anomaly detection system Λ defines a lan-
guage LΛ (a deterministic or probabilistic set of normal practical program traces)
and establishes an attestation procedure GΛ to test whether a practical program
trace T̈ is accepted by LΛ.

A program anomaly detection system Λ usually consist of two phases: training
and detection. Training is the procedure forming LΛ and building GΛ from known
normal traces {T̈ | T̈ is normal}. Detection is the runtime procedure testing
incoming traces against LΛ using GΛ. Traces that cannot be accepted by LΛ in
the detection phase are logged or aggregated for alarm generation.



2.2 Detection Capability

The detection capability of a program anomaly detection method Λ is its ability
to detect attacks or anomalous program behaviors. Detection capability of a
detection system Λ is characterized by the precision of Λ. We define precision of Λ
as the ability of Λ to distinguish different precise program traces in Definition 5.
This concept is independent of whether the scope of the norm is deterministically
or probabilistically established (discussed in Section 2.3).

Definition 5. Given a program anomaly detection method Λ and any practical
program trace T̈ that Λ accepts, the precision of Λ is the average number of
precise program traces T that share an identical subsequence T̈.

Our definition of program anomaly detection system precision is a gener-
alization of average branching factor (using regular grammar to approximate
the description of precise program traces) [59] and average reachability measure
(using context-free grammar to approximate the description of precise program
traces) [28]. The generation is achieved through the using of T, the most precise
description of a program execution. average in Definition 5 can be replaced by
other aggregation function for customized evaluation.

We formalize the relation between the expressive power of LΛ (defined by
detection method Λ) and the detection capability of Λ in Theorem 1.

Theorem 1. The detection capability of a program anomaly detection method
Λ is determined by the expressive power of the language LΛ corresponding to Λ.

Proof. Consider two detection methods Λ1 (LΛ1
) and Λ2 (LΛ2

) where Λ1 is more
precise than Λ2, one can always find two precise program traces T1/T2, so that
T1/T2 are expressed by LΛ1 in two different practical traces T̈1Λ1/T̈2Λ1 , but
they can only be expressed by LΛ2

as an identical T̈Λ2
. Because the definition

of the norm is subjective to the need of a detection system, in theory, one can
set T1/T2 to be normal/anomalous, respectively. In summary, Λ1 with a more
expressive LΛ1

can detect the attack T2 via practical trace T̈2Λ1
, but Λ2 cannot.

Theorem 1 enables the comparison between detection capabilities of different
detection systems through their corresponding languages. It lays the foundation
of our unified framework. The more expressive LΛ describes a normal precise
trace T through a practical trace T̈, the less likely an attacker can construct an
attack trace T′ mimicking T without being detected by Λ.

2.3 Scope of the Norm

Not all anomaly detection systems agree on whether a specific program behavior
(a precise program trace T) is normal or not. Even given the set of all practical
program traces Σ∗ with respect to a specific alphabet Σ (e.g., all system calls),
two detection systems Λ1 and Λ2 may disagree on whether a specific T̈ ∈ Σ∗ is
normal or not. Σ∗ denotes the set of all possible strings/traces over Σ.



Definition 6. The scope of the norm SΛ (of a program anomaly detection sys-
tem Λ) is the selection of practical traces to be accepted by LΛ.

While LΛ is the set of all normal practical traces, SΛ emphasizes on the
selection process to build LΛ, but not the expressive power (detection capability)
of LΛ. SΛ does not influence the detection capability of Λ.

For instance, VPStatic [19] (denoted as Λs) utilizes a pushdown automaton
(PDA) to describe practical program traces. Therefore, its precision is deter-
mined by the expressiveness of context-free languages2. SΛs

is all legal control
flows specified in the binary of the program. VtPath [18] (denoted as Λv) is an-
other PDA approach, but SΛv is defined based on dynamic traces. Since dynamic
traces commonly forms a subset of all feasible execution paths, there exists T̈
not in the training set of Λ2. Thus, T̈ will be recognized as anomalous by Λ2

yet normal by Λ1. Because the precisions of Λ1 and Λ2 are the same, Λ2 can be
made to detect T̈ as normal by including T̈ in its training set (changing SΛv

).
There are two types of scopes of the norm:

• Deterministic scope of the norm is achieved through a deterministic
language LΛ = {T̈ | T̈ is normal}. Program anomaly detection systems
based on finite state automata (FSA), PDA, etc. belong to this category.

• Probabilistic scope of the norm is achieved through a stochastic lan-
guage LΛ = {T̈ | P (T̈) > η}. Different probability threshold η results in
different SΛ and different LΛ/Λ. Program anomaly detection systems based
on hidden Markov model, one-class SVM, etc. belong to this category.

2.4 Overview of Our Unified Framework

We develop a unified framework presenting any program anomaly detection
method Λ. Our framework unifies Λ by the expressive power of LΛ.

We illustrate our unified framework in Fig. 1 showing its hierarchical struc-
ture3. In Fig. 1, L-1 to L-4 indicate four major precision levels with decreasing
detection capabilities according to the expressive power of LΛ. The order of
precision levels marks the potential of approaches within these levels, but not
necessarily the practical detection capability of a specific method4. Our design
is based on both the well-defined levels in Chomsky hierarchy and the existing
milestones in the evolution of program anomaly detection.

L-1: context-sensitive language level (most powerful level)
L-2: context-free language level
L-3: regular language level
L-4: restricted regular language level (least powerful level)

2 Context-sensitive languages correspond to pushdown automata.
3 The hierarchy is reasoned via Chomsky hierarchy [12], which presents the hierarchical

relation among formal grammars/languages.
4 For example, one detection approach Λa in L-2 without argument analysis could be

less capable of detecting attacks than an approach Λb in L-3 with argument analysis.
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Fig. 1. The hierarchy of our program anomaly detection framework. L-1 to L-4 are
four major precision levels with decreasing detection capabilities.

The restricted regular language corresponding to L-4 does not enforce spe-
cific adjacent elements for any element in a string (program trace). Two optional
properties within L-1, L-2 and L-3 are path sensitivity and flow sensitivity (Sec-
tion 5.2). We prove the theoretical accuracy limit (the outmost circle in Fig. 1) in
Section 3 with an abstract detection machine M̃ . We abstract existing methods
in Section 4 and identify their positions in our unified framework in Section 5.
We present details of our framework and point out the connection between levels
in our framework and grammars in Chomsky hierarchy in Section 5. We describe
the evolution from L-4 methods to L-1 methods in Section 6.2.

3 Accuracy Limit of Program Anomaly Detection

We describe an abstract detection machine, M̃ , to differentiate between any two
precise program traces. Thus, M̃ detects any anomalous program traces given a
scope of the norm. A practical program trace T̈ that M̃ consumes is a precise
program trace T. We prove that M̃ has the identical capability of differentiating
between traces (execution paths) as the program itself. Therefore, M̃ is the
accuracy limit of program anomaly detection models.

3.1 The Ultimate Detection Machine

The abstract machine M̃ is a 9-tuple M̃ = (Q,Σ, Γ,A,Ω, δ, s0, Z, F ) where the
symbols are described in Table 1. M̃ operates from s0. If an input string/trace
T̈ reaches a final state in F , then T̈ is a normal trace.

M̃ consists of three components: a finite state machine, a stack Π, and a
random-access register Υ . In M̃ , both Π and Υ are of finite sizes. Indirect ad-
dressing, i.e., the value of a register can be dereferenced as an address of another
register, is supported by Υ and A ⊂ Ω. Because a random-access register can
simulate a stack, Π can be omitted in M̃ without any computation power loss.



Table 1. Descriptions of symbols in M̃ . All sets are of finite sizes.

Name Description

Q States Set of states
Σ Input alphabet Set of input symbols
Γ Stack alphabet Set of symbols on the stack
A Register addresses Set of addresses of all registers
Ω Register alphabet Set of symbols stored in registers
δ Transition relation Subset of Q× (Σ ∪ {ε})× Γ ×Ω∗ ×Q× Γ ∗ ×Ω∗

s0 Initial state State to start, s0 ∈ Q
Z Initial stack symbol Initial symbol on the stack, Z ⊆ Q
F Final states Set of states where T̈ is accepted, F ⊆ Q

ε denotes an empty string.
Ω∗ or Γ ∗ denotes a string over alphabet Ω or Γ , respectively.

We keep Π in M̃ to mimic the execution of a real-world program. It helps extend
M̃ for multi-threading (Section 3.3) and unify M̃ in our framework (Section 5.1).

A transition in M̃ is defined by δ, which is a mapping from (Σ ∪ {ε}) ×
Q × Γ × Ω∗ to Q × Γ ∗ × Ω∗. Given an input symbol σ ∈ Σ ∪ {ε}, the current
state q ∈ Q, the stack symbol γ ∈ Γ (stack top), and all symbols in the register
{ωi | ωi ∈ Ω, 0 ≤ i ≤ |A|}, the rules in δ chooses a new state q′ ∈ Q, pops γ,
pushes zero or more stack symbols γ0γ1γ2 . . . onto the stack, and update {ωi}.

3.2 The Equivalent Abstract Machine of An Executing Program

We state the precision of the abstract detection machine M̃ in Theorem 2 and
interpreter both sufficiency and necessity aspects of the theorem.

Theorem 2. M̃ is as precise as the target program; M̃ can detect any anoma-
lous traces if the scope of the norm is specified and M̃ is constructed.

Sufficiency: M̃ has the same computation power as any real-world executing
program so that LM̃ can differentiate any two precise program traces.

Necessity: detection machines that are less powerful than M̃ cannot differen-
tiate any two arbitrary precise program traces of the target program.

Although a Turing machine is commonly used to model a real-world program
in execution, an executing program actually has limited resources (the tape
length, the random access memory size or the address symbol count) different
from a Turing machine. This restricted Turing machine is abstracted as linear
bounded automaton [34]. We prove Theorem 2 by Lemma 1 and Lemma 2.

Lemma 1. A program that is executing on a real-world machine is equivalent
to a linear bounded automaton (LBA).

Lemma 2. M̃ is equivalent to a linear bounded automaton.



Proof. We prove that M̃ is equivalent to an abstract machine M̈ and M̈ is
equivalent to an LBA, so M̃ is equivalent to an LBA.

M̈ is an abstract machine similar to M̃ except that Υ (the register) in M̃ is
replaced by two stacks Π0 and Π1. size(Υ ) = size(Π0) + size(Π1).

We prove that M̃ and M̈ can simulate each other below.

– One random-access register can simulate one stack with simple access rules
(i.e., last in, first out) enforced. Thus, Υ can be split into two non-overlapping
register sections to simulate Π0 and Π1.

– Π0 and Π1 together can simulate Υ by filling Π0 with initial stack symbol
Z to its maximum height and leaving Π1 empty. All the elements in Π0 are
counterparts of all the units in Υ . The depth of an element in Π0 maps to
the address of a unit in Υ . To access an arbitrary element e in Π0, one pops
all elements higher than e in Π0 and pushes them into Π1 until e is retrieved.
After the access to e, elements in Π1 are popped and pushed back into Π0.

M̈ is equivalent to an LBA: M̈ consists of a finite state machine and three
stacks, Π (same as Π in M̃), Π0, Π1 (the two-stack replacement of Υ in M̃).
M̈ with three stacks is equivalent to an abstract machine with two stacks [48].
Two stacks is equivalent to a finite tape when concatenating them head to head.
Thus, M̈ is equivalent to an abstract machine consisting of a finite state machine
and a finite tape, which is a linear bounded automaton.

In summary, M̃ is equivalent to an LBA and Lemma 2 holds. ut

3.3 Usage and Discussion

Operation of M̃ : M̃ consists of a random-access register Υ and a stack Π.
The design of M̃ follows the abstraction of an executing program. Π simulates
the call stack of a process and Υ simulates the heap. The transition δ in M̃
is determined by the input symbol, symbols in Υ and the top of Π, which is
comparable to a real-world process. Given a precise trace T of a program, M̃
can be operated by emulating all events (instructions) of T through M̃ .

Multi-threading handling: although M̃ does not model multi-threading pro-
gram executions, it can be easily extended to fulfill the job. The basic idea is
to model each thread using an M̃ . Threads creating, forking and joining can be
handled by copying the finite state machine and stack of an M̃ to a new one or
merging two M̃s. δ needs to be extended according to the shared register access
among different M̃s as well as the joining operation between M̃s.

Challenges to realize M̃ in practice: M̃ serves as a theoretical accuracy
limit. It cannot be efficiently realized in the real world because

1. The number of normal precise traces is infinite.
2. The scope of the norm requires a non-polynomial time algorithm to learn.

The first challenge is due to the fact that a trace T̈ of a program can be
of any length, e.g., a continuous (constantly running) program generates traces



in arbitrary lengths until it halts. Most existing approaches do not have the
problem because they only model short segments of traces (e.g., n-grams with a
small n [21], first-order automaton transition verification [19]).

Pure dynamic analysis cannot provide a complete scope of the norm. The sec-
ond challenge emerges when one performs comprehensive static program analysis
to build M̃ . For example, one well-known exponential complexity task is to dis-
cover induction variables and correlate different control-flow branches.

4 Abstractions of Existing Detection Methods

In this section, we analyze existing program anomaly detection models and ab-
stract them in five categories. We identify their precision (or detection capability)
in our framework in Section 5.

Finite state automaton (FSA) methods represent the category of program
anomaly detection methods that explicitly employs an FSA. Kosoresow and
Hofmeyr first utilized a deterministic finite state automaton (DFA) to charac-
terize normal program traces [36] via black-box level traces (building a DFA for
system call traces). Sekar et al. improved the FSA method by adopting a limited
gray-box view [50]. Sekar’s method retrieves program counter information for
every traced system call. If two system calls and program counters are the same,
the same automaton state is used in the FSA construction procedure.

Abstraction: all FSA methods explicitly build an FSA for modeling normal
program traces. A transition of such an FSA can be described in (1). pi is an
automaton state that is mapped to one or a set of program states. Each program
state can be identified by a system call (black-box level traces) or a combination
of system call and program counter (gray-box level traces). s∗ denotes a string
of one or more system calls.

pi
s∗−→ pi+1 (1)

n-gram methods represent the category of program anomaly detection meth-
ods those utilize sequence fragments to characterize program behaviors. n-grams
are n-item-long5 substrings6 of a long trace, and they are usually generated by
sliding a window (of length n) on the trace. The assumption underlying n-gram
methods is that short trace fragments are good features differentiating normal
and anomalous long system call traces [23]. A basic n-gram method tests whether
every n-gram is in the known set of normal n-grams [21].

Abstraction: a set of n-gram (of normal program behaviors) is equivalent
to an FSA where each state is an n-gram [60]. A transition of such an FSA can
be described in (2). The transition is recognized when there exist two normal
n-grams, (s0, s1, . . . , sn−1) and (s1, . . . , sn−1, sn), in any normal program traces.

(s0, s1, . . . , sn−1)
sn−→ (s1, . . . , sn−1, sn) (2)

5 n can be either a fixed value or a variable [45,63].
6 Lookahead pair methods are subsequent variants of n-gram methods [35].



Since n-gram methods are built on a membership test, various determinis-
tic [45,62] and probabilistic [17,61] means are developed to define the scope of the
norm (the set of normal n-grams) and perform the membership test. And system
call arguments were added to describe system calls in more details [7, 55,57].

Pushdown automaton (PDA) methods represent the category of program
anomaly detection methods those utilize a PDA or its equivalents to model
program behaviors. DPA methods are more precise than FSA methods because
they can simulate user-space call stack activities [18].

An FSA connects control-flow graphs (CFGs) of all procedures into a monomor-
phic graph, which lacks the ability to describe direct or indirect recursive function
calls [31, 59]. A PDA, in contrast, keeps CFGs isolated and utilizes a stack to
record and verify function calls or returns [18,19,29]. Thus, it can describe recur-
sions. However, only exposing the stack when system calls occur is not enough
to construct a deterministic DPA [19]. There could be multiple potential paths
transiting from one observed stack state Γi to the next stack state Γi+1. Giffin
et al. fully exposed all stack activities in Dyck model [30] by embedding loggers
for function calls and returns via binary rewriting.

Abstraction: a typical PDA method consumes white-box level traces [19]
or gray-box level traces [43]. The internal (user-space) activities of the running
program between system calls are simulated by the PDA. Denote a system call
as s and a procedure transition as f . We describe the general PDA transition in
(3) where Γi/Γi+1 is the stack before/after the transition, respectively.

pi, Γi
f or s−−−−→ pi+1, Γi+1 (3)

System call arguments can be added to describe calls in more details like
they are used in previous models. In addition, Bhatkar et al. utilized data-flow
analysis to provide complex system call arguments verification, e.g., unary and
binary relations [4]. Giffin et al. extended system call arguments to environment
values, e.g., configurations, and built an environment-sensitive method [28].

Probabilistic methods differ from deterministic program anomaly detection
approaches that they use stochastic languages to define the scope of the norm
(Section 2.3). Stochastic languages are probabilistic counterparts of deterministic
languages (e.g., regular languages). From the automaton perspective, stochastic
languages correspond to automata with probabilistic transition edges.

Abstraction: existing probabilistic program anomaly detection methods are
probabilistic counterparts of FSA, because they either use n-grams or FSA with
probabilistic transitions edges. Typical probabilistic detection methods include
hidden Markov model (HMM) [61, 64], classification methods [16, 37, 41, 46], ar-
tificial neural network [27], data mining approaches [40], etc. Gu et al. presented
a supervised statistical learning model, which uses control-flow graphs to help
the training of its probabilistic model [32].



Probabilistic FSA does not maintain call stack structures7, and it constrains
existing probabilistic approaches from modeling recursions precisely. In theory,
FSA and probabilistic FSA only differ in their scopes of the norm; one is deter-
ministic the other is probabilistic. The precision or detection capability of the
two are the same as explained in Section 2.3. Different thresholds in parametric
probabilistic models define different scopes of the norm, but they do not directly
impact the precision of a model.

N-variant methods define the scope of the norm with respect to the current
execution path under detection. They are different from the majority of detection
methods that define the scope of the norm as all possible normal execution paths.

In N-variant methods, a program is executed with n replicas [14]. When one
of them is compromised, others – that are executed with different settings or in
different environments – could remain normal.

The anomaly detection problem in N-variant methods is to tell whether one
of the concurrently running replicas is behaving differently from its peers; N-
variant methods calculate the behavior distance among process replicas. Gao
et al. proposed a deterministic alignment model [25] and probabilistic hidden
Markov model [26] to calculate the distances.

Abstraction: existing N-variant models are FSA or probabilistic FSA equiv-
alents. The precision is limited by their program execution description based on
n-grams. This description forms a deterministic/probabilistic FSA model under-
lying the two existing N-variant methods.

5 Unification Framework

We develop a hierarchical framework to uniformly present any program anomaly
detection method in terms of its detection capability. We identify the detection
capabilities of existing program anomaly detection methods (Section 4) and the
theoretical accuracy limit (Section 3) in our framework.

5.1 Major Precision Levels of Program Anomaly Detection

We abstract any program anomaly detection method Λ through its equivalent
abstract machine. Λ is unified according to the language LΛ corresponding to
the abstract machine. We summarize four major precision levels defined in our
unified framework in Table 2. We describe them in detail below in the order of
an increasing detection capability.

L-4: restricted regular language level. The most intuitive program anomaly
detection model, which reasons events individually, e.g., a system call with or
without arguments. No event correlation is recorded or analyzed.

An L-4 method corresponds to a restricted FSA, which accepts a simple type
of regular languages L4 that does not enforce specific adjacent elements for any
element in a string (practical program trace T̈).

7 Probabilistic PDA has not been explored by the anomaly detection community.



Table 2. Precision levels in our framework (from the most to the least accurate).

Precision Levels Limitationa Chomsky Level

L-1 methods Program execution equivalent Type-1 grammars
L-2 methods First-order reasoning Type-2 grammars
L-3 methods Cannot pair calls and returns Type-3 grammars
L-4 methods Individual event test Type-3 grammars

a The key feature that distinguishes this level from a level of higher precision.
b The restricted regular language does not enforce specific adjacent events for any

event in a program trace.

L-4 methods are the weakest detection model among the four. It is effective
only when anomalous program executions can be indicated by individual events.
For example, sys open() with argument “/etc/passwd” indicates an anomaly.

A canonical example of L-4 methods is to analyze individual system events in
system logs and summarize the result through machine learning mechanisms [16].

L-3: regular language level. The intermediate program anomaly detection
model, which records and verifies first-order event transitions (i.e., the relation
between a pair of adjacent events in a trace, which is an extra feature over L-4
methods) using type-3 languages (regular grammar).

An L-3 method corresponds to an FSA, which naturally describes first-order
transitions between states. Each state can be defined as one or multiple events,
e.g., a system call, n-grams of system calls. One state can be detailed using its
arguments, call-sites, etc. The formal language L3 used to describe normal traces
in an L-3 method is a type-3 language.

L-3 methods consume black-box traces. The monitoring is efficient because
internal activities are not exposed. However, L-3 methods cannot take advantage
of exposed internal activities of an executing program. For example, procedure
returns cannot be verified by L-3 methods because L3 (regular grammar) cannot
pair arbitrary events in traces; L-3 methods cannot model recursions well.

Canonical L-3 methods include DFA program anomaly detection [36], n-
grams methods [23], statically built FSA [50], and FSA with call arguments [7].

L-2: context-free language level. The advanced program execution model,
which verifies first-order event transitions with full knowledge (aware of any
instructions) of program internal activities in the user space.

An L-2 method corresponds to a PDA, which expands the description of an
FSA state with a stack (last in, first out). Procedure transitions (nested call-
sites) can be stored in the stack so that L-2 methods can verify the return of each
function/library/system call. The formal language L2 used to describe normal
traces in an L-2 method is a type-2 (context-free) language.

Gray-box or white-box traces are required to expose program internal ac-
tivities (e.g., procedure transitions) so that the stack can be maintained in L-2
methods. Walking the stack when a system call occurs is an efficient stack expose
technique [18]. However, the stack change between system calls is nondetermin-



istic. A more expensive approach exposes every procedure transition via code
instrumentation [30], so that the stack is deterministic.

Canonical L-2 methods include VPStatic [19], VtPath [18], and Dyck [30].
Moreover, Bhatkar et al. applied argument analysis with data-flow analysis (re-
ferred to by us as DFAD) [4], and Giffin et al. correlated arguments and envi-
ronmental variables with system calls (referred to by us as ESD) [28].

L-1: context-sensitive language level. The most accurate program anomaly
detection model in theory, which verifies higher-order event transitions with full
knowledge of program internal activities.

L-1 methods correspond to a higher-order PDA, which extends a PDA with
non-adjacent event correlations, e.g., induction variables.

We develop Theorem 3 showing that higher-order PDA and M̃ (Section 3)
are equivalent in their computation power. The proof of Theorem 2 points out M̃
and linear bounded automaton (LBA) are equivalent. Therefore, these three are
abstract machines representing the most accurate program anomaly detection.

The formal language L1 used to describe normal traces in an L-1 method is
a type-1 (context-sensitive) language.

We formally describe an L-1 method, i.e., M̃ , in Section 3. Any other LBA
or M̃ equivalents are also L-1 methods.

Theorem 3. L-1 methods are as precise as the target executing program.

We provide a proof sketch for Theorem 3. First, M̃ is as precise as the execut-
ing program (Theorem 2 in Section 3). Next, we give the sketch of the proof
that the abstract machine of L-1 methods, i.e., a higher-order PDA, is equiva-
lent to M̃ : a higher-order PDA characterizes cross-serial dependencies [6], i.e.,
correlations between non-adjacent events. Therefore, it accepts context-sensitive
languages [53], which is type-1 languages accepted by M̃ .

Although the general context-sensitive model (higher-order PDA or M̃) has
not been realized in the literature, Shu et al. demonstrated the construction of
a constrained context-sensitive language model (co-oc in Fig. 1) [54]. The model
quantitatively characterizes the co-occurrence relation among non-adjacent func-
tion calls in a long trace. Its abstraction is the context-sensitive language Bach [49].

Probabilistic detection methods and our hierarchy are orthogonal. The
reason is that probabilistic models affect the scope of the norm definition, but not
the precision of the detection (explained in Section 2.3). For instance, a proba-
bilistic FSA method (e.g., HMM [61,64], classification based on n-grams [16,46])
is an L-3 method. It cannot model recursion well because there is no stack in the
model. The precision of a probabilistic FSA method is the same as the precision
of a deterministic FSA method, except that the scope of the norm is defined
probabilistically. A similar analysis holds for N-variant methods. All existing
N-variant methods [25,26] are L-3 methods.

Instruction arguments are part of events in T. However, argument analysis
does not increase the precision level of a detection method, e.g., an n-gram
approach with argument reasoning is still an L-3 approach.



Table 3. Terminology of Sensitivity in Program Anomaly Detection.

Calling context Flow Path Environment

Sensitive Objects Call sites Instruction Branch Arguments
order dependency configurations

Precision Levela L-4 L-3 L-2 L-2

Descriptionb RL RL CFL CFL

a The least precise level required to specify the sensitivity.
b The least powerful formal language required for describing the sensitivity.

RL: regular language. CFL: context-free language.

5.2 Sensitivity in a Nutshell

We describe optional properties (sensitivities) within L-1 to L-3 in our hier-
archical framework with respect to sensitivity terms introduced from program
analysis. We summarize the terminology of sensitivity in Table 3 and explain
them and their relation to our framework.

Calling context sensitivity concerns the call-site of a call. In other words,
it distinguishes a system/function call through different callers or call-sites.
Calling-context-sensitive methods8 are more precise than non-calling-context-
sensitive ones because mimicked calls from incorrect call-sites are detected.

Flow sensitivity concerns the order of events according to control-flow graphs
(CFG). Only legal control flows according to program binaries can be normal,
e.g., [50]. Flow sensitive methods bring static program analysis to anomaly
detection and rule out illegal control flows from the scope of the norm.

Path sensitivity concerns the branch dependencies among the binary (in a sin-
gle CFG or cross multiple CFGs). Infeasible paths (impossibly co-occurring
basic blocks or branches) can be detected by a path-sensitive method. Full
path sensitivity requires exponential time to discover. Existing solutions
take some path-sensitive measures, e.g., Giffin et al. correlated less than
20 branches for a program in ESD [28].

Environment sensitivity correlates execution paths with executing environ-
ments, e.g., arguments, configurations, environmental variables. Several types
of infeasible paths such as an executed path not specified by the correspond-
ing command line argument can be detected by an environment-sensitive
method [28]. Environment sensitivity is a combination of techniques includ-
ing data-flow analysis, path-sensitive analysis, etc.

8 Calling context sensitivity (or context sensitivity in short) in program analysis should
be distinguished from the term context-sensitive in formal languages. The latter
characterizes cross-serial dependencies in a trace, while the former identifies each
event (e.g., a system call) in a trace more precisely.



6 Attack/Detection Evolution and Open Problems

In this section, we describe the evolution of program anomaly detection systems
using the precision levels in our framework. New solutions aim to achieve better
precision and eliminate mimicry attacks. We point out future research directions
from both precision and practicality perspectives.

6.1 Inevitable Mimicry Attacks

Mimicry attacks are stealthy program attacks designed to subvert program
anomaly detection systems by mimicking normal behaviors. A mimicry attack
exploits false negatives of a specific detection system Λ. The attacker constructs
a precise trace T′ (achieving the attack goal) that shares the same practical
trace T̈Λ with a normal T to escape the detection.

The first mimicry attack was described by Wagner and Soto [60]. They uti-
lized an FSA (regular grammar) to exploit the limited detection capability of n-
gram methods (L-3 methods). In contrast, L-2 methods, such as [18,19,30], inval-
idate this type of mimicry attacks with context-free grammar description of pro-
gram traces. However, mimicry attacks using context-free grammars, e.g., [20,38],
are developed to subvert these L-2 methods.

As program anomaly detection methods evolve from L-4 to L-1, the space for
mimicry attacks becomes limited. The functionality of mimicry attacks decreases
since the difference between an attack trace and a normal trace attenuates.
However, an attacker can always construct a mimicry attack against any real-
world program anomaly detection system. The reason is that the theoretical
limit of program anomaly detection (L-1 methods) cannot be efficiently reached,
i.e., M̃ described in Section 3 requires exponential time to build.

6.2 Evolution From L-4 to L-1

A detection system Λ1 rules out mimicry traces from a less precise
Λ2 to achieve a better detection capability. We describe the upgrade of
detection systems from a lower precision level to a higher precision level. Intu-
itively, L-3 methods improve on L-4 methods as L-3 methods analyze the order
of events. We summarize four features to upgrade an L-3 method (abstracted as
a general FSA) to L-2 and L-1 methods in Fig. 2.

1 expanding a state horizontally (with neighbor states)
2 describing details of states (call-sites, arguments, etc.)
3 expanding a state vertically (using a stack)
4 revealing relations among non-adjacent states

The four features are not equally powerful for improving the precision of
an anomaly detection method. 1 and 2 are complementary features, which
do not change the major precision level of a method. 3 introduces a stack and
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Fig. 2. Four approaches for improving a basic L-3 method (FSA).

upgrades an L-3 method to an L-2 method. 4 discovers cross-serial dependencies
and establishes a context-sensitive language [53], which results in an L-1 method.

Most of the existing program anomaly detection methods can be explained
as a basic L-3 method plus one or more of these features. L-3 with 1 yields an
n-gram method [23]. L-3 with 2 was studied in [44]. L-3 with 3 is a basic L-2
method. More than one feature can be added in one program anomaly detection
system. L-3 with 1 and 2 was studied by Sufatrio and Yap [55] and Gaurav
et al. [57]. L-3 with 2 and 3 was studied by Bhatkar et al. [4] and Giffin et
al. [28]. M̃ (described in Section 3) provides 3 and 4 as basic features. 2 can
be added to M̃ to describe each state in more details.

6.3 Open Problems

We point out several open problems in program anomaly detection research.

Precision As illustrated in our framework (Fig. 1), there is a gap between
the theoretical accuracy limit (the best L-1 method) and the state-of-the-art
approaches in L-2 (e.g., ESD [28]) and constrained L-1 level (e.g., co-oc [54]).

L-2 models: existing detection methods have not reached the limit of L-2
because none of them analyze the complete path sensitivity. Future solutions can
explore a more complete set of path sensitivity to push the detection capability
of a method towards the best L-2 method.

L-1 models: higher-order relations among states can then be discovered to
upgrade an L-2 method to L-1. However, heuristics algorithms need to be de-
veloped to avoid exponential modeling complexity. Another choice is to develop
constrained L-1 approaches (e.g., co-oc [54]), which characterize some aspects of
higher-order relations (e.g., co-occurrence but not order).



Probabilistic models: existing probabilistic approaches, i.e., probabilistic FSA
equivalents, are at precision level L-3. Probabilistic PDA and probabilistic LBA
can be explored to establish L-2 and even L-1 level probabilistic models.

Practicality In contrast to the extensive research in academia, the security
industry has not widely adopted program anomaly detection technologies. No
products are beyond L-3 level with black-box traces [33]. The main challenges
are eliminating tracing overhead and purifying training dataset.

Tracing overhead issue: L-2 and L-1 methods require the exposure of user-
space program activities, which could result in over 100% tracing overhead on
general computing platforms [3]. However, Szekeres et al. found that the industry
usually tolerates at most 5% overhead for a security solution [56].

Polluted training dataset issue: most existing program anomaly detection ap-
proaches assume the training set contains only normal traces. Unless the scope
of the norm is defined as legal control flows, which can be extracted from the
binary, the assumption is not very practical for a real-world product. A pol-
luted training dataset prevents a precise learning of the scope of the norm for a
detection model, which results in false negatives in detection.

7 Control-Flow Enforcement Techniques

Control-flow enforcements, e.g., Control-Flow Integrity (CFI) [1] and Code-
Pointer Integrity (CPI) [39], enforce control-flow transfers and prevent illegal
function calls/pointers from executing. They evolve from the perspective of
attack countermeasures [56]. They are equivalent to one category of program
anomaly detection that defines the scope of the norm as legal control flows [52].

7.1 Control-Flow Enforcement

Control-flow enforcement techniques range from the protection of return ad-
dresses, the protection of indirect control-flow transfers (CFI), to the protection
of all code pointers (CPI). They aim to protect against control-flow hijacks,
e.g., stack attacks [42]. We list milestones in the development of control-flow
enforcement techniques below (with an increasing protection capability).

Return address protection: Stack Guard [13], Stack Shield [58].
Indirect control-flow transfer protection: CFI [1], Modular CFI [47].
All code pointer protection: CPI [39].

7.2 Legal Control Flows as the Scope of the Norm

In program anomaly detection, one widely adopted definition of the scope of
the norm SΛ is legal control flows (Section 2.3); only basic block transitions
that obey the control flow graphs are recognized as normal. The advantage of
such definition is that the boundary of SΛ is clear and can be retrieved from
the binary. No labeling is needed to train the detection system. This definition



of SΛ leads to a fruitful study of constructing automata models through static
program analysis9, e.g., FSA method proposed by Sekar et al. [50] and PDA
method proposed by Feng et al. [18].

7.3 Comparison of the Two Methods

We discuss the connection and the fundamental difference between control-flow
enforcement and program anomaly detection.

Connection Modern control-flow enforcement prevents a program from execut-
ing any illegal control flow. It has the same effect as the category of program
anomaly detection that defines the scope of the norm as legal control flows. From
the functionality perspective, control-flow enforcement even goes one step fur-
ther; it halts illegal control flows. Program anomaly detection should be paired
with prevention techniques to achieve the same functionality.

Difference A system can either learn from attacks or normal behaviors of a
program to secure the program. Control-flow enforcement evolves from the for-
mer perspective while program anomaly detection evolves from the latter. The
specific type of attacks that control-flow enforcement techniques tackle is control-
flow hijacking. In other words, control-flow enforcement techniques do not pre-
vent attacks those obey legal control flows, e.g., brute force attacks. Program
anomaly detection, in contrast, detects attacks, program bugs, anomalous usage
patterns, user group shifts, etc. Various definitions of the scope of the norm re-
sult in a rich family of program anomaly detection models. One family has the
same detection capability as control-flow enforcement.

8 Conclusion

Program anomaly detection is a powerful paradigm discovering program attacks
without the knowledge of attack signatures. In this paper, we provided a general
model for systematically analyzing i) the detection capability of any model, ii)
the evolution of existing solutions, iii) the theoretical accuracy limit, and iv) the
possible future paths toward the limit.

Our work filled a gap in the literature to unify deterministic and probabilistic
models with our formal definition of program anomaly detection. We presented
and proved the theoretical accuracy limit for program anomaly detection. We de-
veloped a unified framework presenting any existing or future program anomaly
detection models and orders them through their detection capabilities. Accord-
ing to our unified framework, most existing detection approaches belong to the
regular and the context-free language levels. More accurate context-sensitive
language models can be explored with pragmatic constraints in the future. Our
framework has the potential to serve as a roadmap and help researchers approach
the ultimate program defense without attack signature specification.

9 Dynamically assigned transitions cannot be precisely pinpointed from static analysis.
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