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Abstract. There has been approximately a ten year history of reference analyses
for object-oriented programming languages. Approaches vary as to how different
analyses account for program execution flow, how they capture calling context,
and how they model objects, reference variables and the possible calling structure
of the program. A taxonomy of analysis dimensions that affect precision (and
cost) will be presented and illustrated by examples of existing reference analysis
techniques.

1 Introduction

Almost 25 years after the introduction of Smalltalk-80, object-orientation is a mature,
accepted technology. Therefore, it is appropriate now to take a historical look at analy-
ses for object-oriented programming languages, examining how they have evolved, par-
ticularly with respect to ensuring sufficient precision, while preserving practical cost.
Object-oriented languages allow the building of software from parts, encouraging code
reuse and encapsulation through the mechanisms of inheritance and polymorphism.
Commonly, object-oriented languages also allow dynamic binding of method calls, dy-
namic loading of new classes, and querying of program semantics at runtime using
reflection.

To understand the control flow in an object-oriented program requires knowledge of
the types of objects which can act as receivers for dynamic method dispatches. Thus, to
know the possible calling structure in a program, the set of possible object types must
be known; but to determine the set of possible types of objects, some representation of
possible interprocedural calling structure must be used. Essentially the program repre-
sentation (i.e., the calling structure) is dependent on the analysis solution andvice versa.
This interdependent relationship makes analysis of object-oriented languages quite dif-
ferent from that of procedural languages [18]. In addition, dynamic class loading may
require a runtime recalculation of some analysis results [42].

Therefore, there is a fundamental need forreference analysisin any analysis of
object-oriented languages, in order to obtain a program representation. The termrefer-
ence analysisis used to define an analysis that seeks to determine information about the
set of objects to which a reference variable or field may point during execution. This
study will discuss the dimensions of reference analysis which lead to variations in the
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precision obtained in its solution. Examining these dimensions will illustrate similari-
ties and differences between analyses, and identify sources of precision and tradeoffs in
cost. Examples of these dimensions will be discussed in the context of different analy-
ses. Open issues not yet fully addressed will also be discussed.

Optimizing compilers and program development tools, such as test harnesses, refac-
toring tools, semantic browsers for program understanding, and change impact analysis
tools, use reference analysis and its client analyses (e.g., side effect analysis, escape
analysis, def-use analysis). There are real tradeoffs between the usability of the analy-
sis results in terms of precision and the cost of obtaining them, the time and memory
required. These tradeoffs are especially significant for interactive tools. It is important,
therefore, to validate analyses by measures corresponding to their eventual use in client
applications, even if a full application is not built. Use of benchmark suites which allow
evaluation of different techniques using the same input data-sets is crucial; more efforts
for building such suites should be encouraged by the research community.

This study is not an attempt at an encyclopedic categorization of all analyses of
object-oriented languages; rather the goal is to enumerate characteristics which differ-
entiate the precision (and affect the cost) of different analyses and to give examples of
different design choices in existing analyses. There are other papers which cover many
of the existing reference analyses and compare and contrast them [18, 28]. This paper,
by design, will be incomplete in the set of analyses mentioned.

Overview. Section 2 presents the dimensions of precision to be discussed and ex-
plain them intuitively. Section 3 discusses each dimension more fully, cites reference
analysis examples of choices with respect to that dimension, and then discusses the rel-
ative influence of that dimension on reference analysis precision (and cost). Section 4
presents some open issues with regard to analysis of object-oriented programs. Finally,
Section 5 summarizes these discussions.

2 Preliminaries

Recall thatreference analysisdetermines information about the set of objects to which
a reference variable or reference field may point during execution. Historically, various
kinds of reference analyses have been developed.Class analysisusually involves calcu-
lation of the set of classes (i.e., types) associated with the objects to which a reference
variable can refer during program execution; this information has been used commonly
for call graph construction. Intuitively, class analysis can be thought of as a reference
analysis in which one abstract object represents all the instantiations of a class.Points-to
analysisof object-oriented languages is a term used often for analyses that distinguish
different instantiations of a class (i.e., different objects). Points-to analyses [23, 33] are
often designed as extensions to earlier pointer analyses for C [43, 3].Refers-to analy-
sis [45] is a term sometimes used to distinguish a points-to analysis for object-oriented
languages from a points-to analysis for general-purpose pointers in C. The termrefer-
ence analysiswill be used as denoting all of these analyses for the remainder of this
paper.

Most of the analyses used here as examples are reference analyses which are fun-
damental to understanding the semantics of object-oriented programs. Recall from Sec-



tion 1, that the interprocedural control flow of an object-oriented program cannot be
known without the results of these analyses. Thus, other analyses – including side ef-
fect, escape,1 def-uses, and redundant synchronization analyses – require a reference
analysis in order to obtain a representation of interprocedural flow for a program. Thus,
reference analyses are crucial to any analysis of object-oriented code.

The characteristics or dimensions that directly affect reference analysis precision
are presented below. The design of a specific analysis can be described by choices in
each of these dimensions. After the brief description here, in Section 3 each dimension
and the possible choices it offers will be illustrated in the context of existing analyses.

– Flow sensitivity. Informally, if an analysis isflow-sensitive, then it takes into ac-
count the order of execution of statements in a program; otherwise, the analysis is
calledflow-insensitive. Flow-sensitive analyses performstrong updates(or kills);
for example, this occurs when a definition of a variable supersedes a previous defi-
nition. The classical dataflow analyses [2, 25, 19] are flow-sensitive, as are classical
abstract interpretations [12].

– Context sensitivity. Informally, if an analysis distinguishes between different call-
ing contexts of method, then it iscontext-sensitive; otherwise, the analysis is called
context-insensitive. Classically, there are two approaches for embedding context
sensitivity in an analysis, a call string approach and a functional approach [38].
Call stringsrefer to using the top sequence on the call stack to distinguish the in-
terprocedural context of dataflow information; the idea is that dataflow information
tagged with consistent call strings corresponds to the same calling context (which
is being distinguished). The functional approach involves embedding information
about program state at the call site, and using that to distinguish calls from one
another.

– Program representation (i.e., calling structure).Because of the interdependence
between possible program calling structure and reference analysis solution in object-
oriented languages, there are two approaches to constructing an interprocedural
representation for an object-oriented program. A simple analysis can obtain an ap-
proximation of the calling structure to be used by the subsequent reference anal-
ysis. Sometimes this representation is then updated using the analysis solution,
when certain edges have been shown to be infeasible. Alternatively, the possible
call structure can be calculated lazily, on-the-fly, interleaved with reference analy-
sis steps. The latter approach only includes those methods in the call graph which
arereachablefrom program start according to the analysis solution.

– Object representation.This dimension concerns the elements in the analysis solu-
tion. Sometimes one abstract object is used to represent all instantiations of a class.
Sometimes a representative of each creation site (e.g.,new) is used to represent all
objects created at that site. These two naming schemes are those most often used,
although alternatives exist.

– Field sensitivity. An object or an abstract object may have its fields represented
distinctly in the solution; this is called afield-sensitiveanalysis. If the fields in an

1 Sometimes reference analysis is performed interleaved with the client analysis, for exam-
ple [36, 11, 5, 49, 6].



object are indistinguishable with respect to what they reference, then the analysis
is termedfield-insensitive.

– Reference representation.This dimension concerns whether each reference rep-
resentative corresponds to a unique reference variable or to groups of references,
and whether the representative is associated with the entire program or with sec-
tions of the program (e.g., a method). This dimension relates to reference variables
as object representation relates to objects.

– Directionality. Generally, flow-insensitive analyses treat an assignmentx = y as
directional, meaning information flows fromy to x , or alternatively assymmetric
meaning subsequent to the assignment, the same information is associated withx
andy . These approaches can be formulated in terms of constraints which areuni-
fication(i.e., equality) constraints for symmetric analyses orinclusion(i.e., subset)
constraints for directional analyses.

By varying analysis algorithm design in each of these dimensions, it is possible to
affect the precision of the resulting solution. The key for any application is to select an
effective set of choices that provide sufficient precision at practical cost.

3 Dimensions of Analysis Precision

There is much in common in the design of pointer analysis for C programs and some
reference analyses for Java andC++. Both flow-sensitive and context-sensitive tech-
niques were used in pointer analysis [21]. In general, the analysis community decided
that flow sensitivity was not scalable to large programs. Context sensitivity for C pointer
analysis also was explored independent of flow sensitivity [17, 22, 35], but the verdict
on its effectiveness is less clear. Keeping calling contexts distinguished is of varying im-
portance in a C program, depending on programming style, whereas in object-oriented
codes it seems crucial for obtaining high precision for problems needing dependence
information, for example. In general, program representation in pointer analysis was
on the statement level, represented by an abstract syntax tree or flow graph. Solution
methodologies included constraint-based techniques and dataflow approaches that al-
lowed both context-sensitive and context-insensitive formulations.

Some reference analyses calculated finite sets of types (i.e., classes) for reference
variables, that characterized the objects to which they may refer. The prototypical prob-
lem for which these analyses were used iscall graph construction(i.e., dynamic dis-
patch resolution). More recently, reference analyses have been used for discovering
redundant synchronizations, escaping objects and side-effect analysis [11, 5, 6, 49, 41,
36, 33, 26, 23, 32]. These client analyses require more precision than call graph con-
struction and thus, provide interesting different applications for analysis comparison.

Recall that the dimensions of analysis precision include:flow sensitivity, context
sensitivity, program representation, object representation, field sensitivity, reference
representationanddirectionality. In the following discussions, each dimension is con-
sidered and examples of reference analyses using specific choices for each dimension
are cited. The goal here is to better understand how these analyses differ, not to select a
bestreference analysis.



3.1 Flow sensitivity

An early example of a flow- and context-sensitive reference analysis was presented by
Chatterjee et. al [8]. This algorithm was designed as a backwards and forwards dataflow
propagation on the strongly connected component decomposition of the approximate
calling structure of the program. Although the successful experiments performed on
programs written in a subset ofC++ showed excellent precision of the reference solu-
tion obtained, there were scalability problems with the approach.

Whaley and Lam [48] and Diwan et. al [15] designed techniques that perform a
flow-sensitive analysis within each method, allowing kills in cases where an assignment
is unambiguous. For example, an assignmentp = q does allow the algorithm to re-
initialize the set of objects to whichp may point here only to those objects to which
q may point; this is an example of akill assignment. By contrast, the assignmentp.f
= q is not akill assignment because the object whosef field is being mutated is not
necessarily unique. This use of flow sensitivity has the potential of greater precision,
but this potential has not yet been demonstrated for a specific analysis application.

Given that object-oriented codes generally have small methods, the expected payoff
of flow sensitivity on analysis precision would seem minimal. Concerns about scalabil-
ity have resulted in many analyses abandoning the use of flow sensitivity, in favor of
some form of context sensitivity.

3.2 Context sensitivity

Classically, there are two approaches to embedding context sensitivity in an analysis,
using call strings and functions [38].Call stringsrefer to using the top sequence on the
runtime call stack to distinguish the interprocedural context of dataflow information;
the idea is only to combine dataflow information tagged with consistent call strings
(that is, dataflow information that may exist co-temporally during execution). Work
in control flow analysis by Shivers [39], originally aimed at functional programming
languages, is related conceptually to the Sharir and Pnueli call string approach. These
control flow analyses are distinguished by the amount of calling context remembered;
the analyses are calledk-CFA, wherek indicates the length of the call string maintained.
The functional approach uses information about the state of computation at a call site
to distinguish different call sites. Some reference analyses that solely use inheritance
hierarchy information are context-insensitive [15, 14, 4]; some later, more precise anal-
yses2 are also context-insensitive to ensure scalability (according to their authors) [15,
47, 45, 33, 23, 48].

Other reference analyses use both the call-string and functional notions of classical
context sensitivity [38]. Palsberg and Schwartzbach presented a 1-CFA reference anal-
ysis [29]. Plevyak and Chien [30] described an incremental approach to context sen-
sitivity, which allows them to refine an original analysis when more context is needed
to distinguish parts of a solution due to different call sites; their approach seems to
combine the call string and functional approaches in order to handle both polymorphic
functions and polymorphic containers. Agesen [1] sought to improve upon the Pals-
berg and Schwartzbach algorithm by specifically adding a functional notion of context

2 which incorporate interprocedural flow through parameters



sensitivity. In his Cartesian product algorithm, he defined different contexts using tu-
ples of parameter types that could access a method; these tuples were computed lazily
and memoized for possible sharing between call sites. Grove and Chambers [18] also
explored the two notions of context sensitivity in different algorithms, using both call
strings and tuples of parameter type sets (analogous to Agesen’s Cartesian product al-
gorithm). Milanova et. al definedobject sensitivity[26], a functional approach that ef-
fectively allows differentiation of method calls by distinct receiver object.

This active experimentation with context sensitivity demonstrates its perceived im-
portance in the analysis community as enabling a more precise analysis. The prevalence
of method calls in an object-oriented program leads to the expectation that more precise
analyses for object-oriented languages can be obtained by picking the ’right’ practical
embedding of context sensitivity.

3.3 Program representation (i.e., calling structure)

Early reference analyses [15, 14, 4] were used to provide a static call graph that initial-
ized computation for a subsequent, more precise reference analysis [29, 8, 23, 45]. Other
analyses constructed the call graph lazily, as new call edges became known due to dis-
covery of a new object being referred to [27, 31, 48, 33, 26, 23]. Grove and Chambers
discuss the relative merits of both approaches and conclude that the lazy construction
approach is preferred [18].

Clearly, the trend is to use the lazy construction approach so that the analysis in-
cludes a reachability calculation for further accuracy. This can be especially significant
when programs are built using libraries; often only a few methods from a library are
actually accessed and excluding unused methods can significantly affect analysis cost
as well as precision.

3.4 Object representation

Representation choices in analyses often are directly related to issues of precision.
There are two common choices for reference analysis. First, an analysis can use one
abstract object per class to represent all possible instantiations of that class. Second,
objects can be identified by their creation site; in this case, all objects created by a spe-
cific newstatement are represented by the same abstract object. Usually the reason for
selecting the first representation over the second is efficiency, since it clearly leads to
less precise solutions.

The early reference analyses [15, 14, 4, 29] all used one abstract object per class.
Some later reference analyses made this same choice [45, 47] citing reasons of scala-
bility. Other analyses used creation sites to identify equivalence classes of objects each
corresponding to one representative object in the reference analysis solution [33, 18, 23,
48]. There are other, more precise object naming schemes which establish finer-grained
equivalence classes for objects [18, 26, 27, 31, 24].

While the use of one abstract object per class may suffice for call graph construction,
for richer semantic analyses (e.g., side effect, def-use and escape analyses) the use of a
representative for each object creation site is preferable.



3.5 Field sensitivity

Another representation issue is whether or not to preserve information associated with
distinct reference fields in an object. One study [33] indicated that not distinguishing
object fields may result in imprecision and increased analysis cost. The majority of anal-
yses which use representative objects also distinguish fields because of this precision
improvement.

It is interesting that Liang et. al [23] reported that there appeared to be little dif-
ference in precision when fields were used either with an abstract object per class or
a representative object per creation site with inclusion constraints; more experimenta-
tion is needed to understand more fully the separate effects of each of the dimensions
involved in these experiments.

3.6 Reference representation

This dimension concerns to whether or not each reference is represented by a unique
representative throughout the entire program. For most reference analyses, this is the
case. Sometimes, all the references of the same type are represented by one abstract ref-
erence of that type [45]. Alternatively there can be one abstract reference per method [47].
These two alternatives reduce the number of references in the solution, so that the anal-
ysis is more efficient.

Tip and Palsberg [47] explored many dimensions of reference representation. Sev-
eral analyses were defined whose precision lay between RTA [4] and 0-CFA [39, 18].
They experimented with abstract objects without fields and an unique reference repre-
sentation (i.e., CTA analysis), abstract objects with fields and an unique reference rep-
resentation (i.e., MTA analysis), abstract objects and one abstract reference per method
(i.e., FTA analysis), and abstract objects with fields with one abstract reference per
method (i.e., XTA analysis). The XTA analysis resulted in the best performance and
precision tradeoff for call graph construction, their target application.

The VTA analysis [45] of the SABLE research project at McGill University specif-
ically contrasted the use of unique reference representatives versus the use of one ab-
stract reference representative per class. The latter was found to be too imprecise to be
of use.

3.7 Directionality

Reference analysis usually is formulated as constraints that describe the sets of objects
to which a reference can point and how these sets are mutated by the semantics of var-
ious assignments to (and through) reference variables and fields. There is a significant
precision difference between symmetric and directional reference analyses, which are
formulated as unification constraints or inclusion constraints, respectively. The unifica-
tion constraints are similar to those used in Steensgaard’s pointer analysis for C [43];
the inclusion constraints are similar to those used by Andersen’s pointer analysis for
C [3] .

Precision differences between these constraint formulations for C pointer analysis
were explained by Shapiro and Horwitz [37]. Considering the pointer assignment state-
mentp = q , the unification analysis will union the points-to set ofp with the points-to



set ofq, effectively saying both pointer variables can point to the same set of objects af-
ter this assignment; this union is accomplished recursively, so that if*p is also a pointer
then its set is unioned to that of*q . An inclusion analysis will conclude after this same
assignment statement that the points-to set ofp includes the points-to set ofq, main-
taining the direction of the assignment.3 Similar arguments can show why inclusion
constraints can be expected to yield more a precise reference analysis solution than uni-
fication constraints as was shown by Liang et. al [23]. Ruf developed a context-sensitive
analysis based on unification constraints as part of a redundant synchronization removal
algorithm [36].

Solution procedures for both types of constraints are polynomial time (in the size of
the constraint set), but unification constraints can be solved in almost linear worst case
cost [43], whereas inclusion constraints have cubic worst case cost. Although these
worst case costs are not necessarily experienced in practice, this difference has been
considered significant until recently when newer techniques have shown that inclusion
constraints in reference analysis can be solved effectively in practice [16, 44, 20, 33,
48, 26]. Thus, it seems that the increased precision of inclusion constraints are worth
the possible additional cost, but this may depend on the accuracy needs of the specific
analysis application.

4 Open Issues

There still are open issues in the analysis of object-oriented languages for which solu-
tions must be found. Some of them are listed below.

– Reflection.Programs with reflection constructs can create objects, generate method
calls, and access fields of objects at runtime whose declared types cannot be known
at compile-time. This creates problems for analyses, because the program is effec-
tively incomplete at compile-time. Most analyses transform a program to account
for the effects of reflection before analyzing the program empirically.

– Native methods.Calls to native methods (i.e., methods not written in the object-
oriented language, often written in C) may have dataflow consequences that must
be taken into account by a safe analysis.

– Exceptions.In Java programs checked exceptions appear explicitly and unchecked
exceptions appear implicitly; both can affect flow of control. Since obtaining a
good approximation to possible program control flow is a requirement for a precise
analysis, some approaches have been tried [40, 7, 9, 10], but this is still an open
problem.

– Dynamic class loading.Dynamic class loading may invalidate the dynamic dis-
patch function previously calculated by a reference analysis [42]. This suggests
the possibility of designing an incremental reference analysis; however, it will be
difficult to determine the previously-derived information that has been invalidated.

– Incomplete programs. Often object-oriented programs are either libraries or li-
brary clients, and thus partial programs. Analysis of such codes has been addressed [47,

3 A combination of these constraints was used for C pointer analysis by Das and showed good
precision in empirical experiments for practical cost [13].



46, 34], but more work is needed. Having a good model for partial program analysis
for object-oriented languages may allow analyses to be developed for component-
based programs; it is likely however, that some reliance on component-provider-
based information may be necessary.

– Benchmarks.It is very important to use benchmark suites in testing analyses, be-
cause reproducibility is required for strong empirical validation. Some researchers
have used the SPEC compiler benchmarks,4 or have shared collected benchmark
programs.5

5 Conclusions

Having presented an overview of the dimensions of precision in reference analysis of
object-oriented languages, the current challenge in analysis research is to match the
right analyses to specific client applications, with appropriate cost and precision. This
task is aided by a clear understanding of the role of each dimension in the effectiveness
of the resulting analysis solution.

The nature of object-oriented languages is that programs are constructed from many
small methods and that method calls (with possible recursion) are the primary control
flow structure used. Thus, it is critical to include some type of context sensitivity in
an analysis, to obtain sufficient precision for tasks beyond simple dynamic dispatch.
Arguably, the functional approach offers a more practical mechanism than the call-
string approach embodied in k-CFA analyses and it seems to be more cost effective. It
is also clear that a solution procedure using inclusion constraints can be practical and
delivers increased precision over cheaper unification constraint resolution.

These opinions are held after experimentation by the community with many dimen-
sions of analysis precision. However, no one analysisfitsevery application and many of
the analyses discussed will be applicable to specific problems because their precision
is sufficientto do the job. A remaining open question isCan the analysis community
deliver useful analyses for a problem at practical cost?The answer is yet to be deter-
mined.
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