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ABSTRACT

This paper presents a new compile-time analysis that enalibest-
ing methodology for white-box coverage testing of errooxery
code (i.e., exception handlers) in Java web services usimpiter-
directed fault injection. The analysis allows compilengmted
instrumentation to guide the fault injection and to recdrd te-
covery code exercised. (An injected fault is experienced dava
exception.) The analysis (i) identifies teeception-flow 'def-uses’
to be tested in this manner, (ii) determines the kind of faulbe
requested at a program point, and (iii) finds appropriatations
for code instrumentation. The analysis incorporates referds
that establish sufficient context sensitivity to ensuratiegly pre-
cise def-use links and to eliminate some spurious def-usedal
demonstrably infeasible control flow. A runtime test hameal-
culates test coverage of these links usingeaneption def-catch
metric. Experiments with the methodology demonstrate thigyu
of the increased precision in obtaining good test coverage set
of moderately-sized Java web services benchmarks.
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1. INTRODUCTION

The emergence of the Internet as a ubiquitous computingsnfr
tructure means that a wide range of applications — such dis@n-
auctions, instant messaging, grid weather prediction narag —
are being designed as web services. These services mustheaeet
challenges of maintaining performance and availabilityilevsup-
porting large numbers of users, who demand reliability ftbese

codes that are becoming more and more commonplace. A good

analogy is to the telephone system, a technology that onecexp
to be 'always working’; the phone company demands only neisiut
of down time per year from its software. New testing techgiEe
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are needed to address the issue of reliability in this enument.
Besides the traditional testing of functionality, thereaizeed to
ensure reasonable application response to system/resopirab-
lems, in order to have performance gracefully degrade raktze
experience application crashes. The robustness tessegneh in
this paper addresses the problem of how to test the retialoifi
Java web services in the face of infrequent, but anticipa&stem
problems, which are responded to using Java’s exceptiodlingn
mechanism.

Traditional fault-injection testing of software in the opéng
system community is conducted in a black-box manner, using a
probabilistic analysis to determine whether or not a saftvwam-
ponent will work properly when subjected to specific fauthds
and workloads [2, 15]. Testing is accomplished by simugatin
faults caused by environmental errors during test thrdagh in-
jection[10, 12, 18, 21, 39]. Testers assume that applications run
under specific workloads, and then inject faults randomiy the
running code, selecting faults according to distributiandtions
derived from observation of real systems. After observipgliaa-
tion reaction to the fault load, the testers derive datarilgiag the
likelihood that the application will deliver correct segei(i.e., not
crash) under the given fault loads and workloads [2].

Unfortunately, this approach does not ensure that the eeror
covery code in an application is ever exercised nor that the p
gram takes an appropriate action in the presence of fauitad4
dition, given the probabilistic nature of the approachsihard to
force application execution into the untested parts ofreroov-
ery code during further testing. Because many web serviees a
written using components with unknown internal structtesters
need to identify vulnerabilities to system problems autiicadly
(i.e., with the help of software tools). The testing of emecovery
code in web services is necessary for ensuring the highbiiitja
required of these systems.

Our methodology uses the tools of white-box def-use testing
aid a tester of web services in this task. There is a large bbdy-
isting work onwhite-boxtesting methodologies [5, 29, 17], aimed
at exercising as much application code as possible durstmtg
and measuring code coverage using various program cotsstruc
such as control-flow edges, branches and basic blocks. Hwowev
traditional white-box testing techniques normally do rmoget cov-
erage of error recovery code, that is, code which handlessttat
occur with small probability due to interactions with themgaut-
ing environment (e.g., disk crashes, network congestiparaiing
system bugs). This is code that may not be executable meyely b
manipulating program inputs.

Our analysis techniques identify program points vulnerabl
certain faults and the corresponding error recovery codéhese
specific system faults. The techniques provided allow ctemypi



inserted instrumentation to inject appropriate faults esded and
to gather recovery code coverage information. This enabtester
to systematically exercise the error recovery code, byingiexe-

cution to exercise the vulnerable operations. Thus the odetbgy

provides a means to obtain validation of application robess in
the presence of system faults.

In our approach, it is important to be able to identify as ey
as possible where an exception, thrown in response to ariexpe
enced fault (i.e., a def), is handled (i.e., a use). A key eamén
general for def-use testing is how to minimize the numbermof s
rious def-uses reported by the analysis. Since these ésfaan-
not be exercised by any test, a human being has to examing them
among the uncovered def-use links after testing, and deter(if
she can) that they are spurious. This is a time-consumirffy; di
cult job, especially for large object-oriented applicachat use
polymorphism heavily. Therefore, itis crucial to use a vergcise
analysis that, while practical in cost, can eliminate mahthese
spurious def-uses. This is a key goal of our nexeeption-catch
link analysis

Our target applications are Java web services becauseptese
grams are widely used to build large-scale distributed ecatfve
systems. Java is used increasingly to build componentshéset
services. Furthermore, the exception construct and marnydex-
ception handling mechanism facilitates both construcsiod anal-
ysis of error recovery in a Java program, thus providing adgoo
basis for validating our methodology for automatic ideaéfion
and testing of error recovery code.

In a previous paper [15], we gave a general overview of our
methodology for testing of error recovery code, and defined a
propriate coverage metrics. We presented a proof-of-quirease
study in which a proxy server application was instrumentgd b
hand, and then fault injection was performed and recordegkby
cuting the instrumentation. In this paper we have definedimAd
plemented a compile-time exception-catch link analysiy iuto-
mated the program instrumentation process, and experat@rith
several versions of analyses on a data set of moderatedg-gieb
services applications.

The specific contributions of this paper are:

e Design of a new compile-time exception-catch link analysis
to identify error recovery code in relation to certain reseu
usage program points (i.e., a def-use analysis for potentia
exceptions involving resource usage). This analysis essen
tially is an interprocedural def-use dataflow analysis walc
lation with two new refinements: (i) performing a points-
to analysis using limited context sensitivity by inliningre
structors that set object fields (in order to avoid conflating
objects, especially in libraries with long call chains) dig
using the absence of data reachability through object-refer
ences to confirm thanfeasibility of some links, by showing
the corresponding interprocedural paths to be infeasible.
Demonstration ofautomatic program instrumentation di-
rected by our analysis, that effectively constructs a céenpi
directed fault injection engine frodMendosug24], an exist-
ing fault injection framework.

Empirical validation of our methodology using several
moderate-sized Java web services applications, including
comparison of our new analysis with less precise, lessycostl
class-based analyses adapted to find exception-flow def-use
These studies demonstrate the appropriateness of the preci
sion of our analysis for this task, in that on average, 84% of
all exception-flow def-use links are covered by the testing.

Overview. The rest of this paper is organized as follows. In
Section 2 we describe our coverage metric, which is a slighanat

of the original metric described in [15], and give an ovenvief
the compiler-directed fault injection methodology. In Sec 3,
we discuss our compile-time analysis for exception-flow ukeds
and its precision increasing refinements. In Section 4 werteur
empirical results on moderate-sized Java applicationscrifeng
the impact on the exception-flow def-uses obtained, of varye
compile-time analysis used. In Section 5 we describe r\atek.
Finally, we present our conclusions.

2. MEASURING COVERAGE OF FAULT-
HANDLING CODE

We take advantage of the Java exception handling mechanism
to help identify error recovery cod&xceptionsn Java are used to
respond to error conditions [3]. Eacht ch block is potentially the
starting point of error recovery code for a matching erparéption
raised during the lifetime of the correspondingy block.

Faults, Exceptions, Coverage Metric.We begin with a set of
faults that are of interest to the tester — for example, s@sing
may focus on disk and network errors. The set of relevant-faul
sensitive operations depends on the set of faults in whiclanse
interested; often these operations are calls to C librangtfans
within the Java JDK libraries. A fault-sensitive operation iaf-
fectedby a fault in that an exception is produced when the opera-
tion occurs and experiences a fault as a run-time error. \Wetde
P to be the set of fault-sensitive operations correspondintné
specific set of faults of interest. In this paper we focus artfa
related to JavéOExceptions

In any given program execution, each elemenPafould possi-
bly produce an exception that reaches some subset of theapmisy
cat ch blocks.? By viewing fault-sensitive operations as the defini-
tion points of exceptions, antht ch blocks as uses of exceptions,
we can define a coverage metric in termsr€eption-catch (e-c)
links. This definition is analogous to thal-usesmetric [33] of
traditional def-use analysis:

Definition (e-c link: Given a setP of fault-sensitive operations
that may produce exceptions in response to the faults ofesie
and a se of cat ch blocks in a program to be tested, we say there
is apossible e-c linkp, c) betweerp € P andc € C if p could
possible trigger; we say that a givee-c linkis experiencedn a

set of test rung’, if p actually transfers control toby throwing an
exception during a test ifi.

Definition (Overall Exception Def-catch Coverdge Given a set
F of the possible-c linksof a program, and a sét of thee-c links
experienced in a set of test rufis we say theoverall exception
def-catch coveragef the program byl is %

A high overall exception def-catch coverage indicates eotingh
test, but a low coverage may result from either insufficiestihg
(i.e. a smallE) or an overly conservative estimate Bf the set
of possible e-c links As in other forms of coverage testing, it is
unacceptable foF' to omit anye-c linkspossible at runtime, so
our analysis must be conservative, producing a superdétimthe
presence of imprecision. This is a common problem in softwar
testing; it is addressed by using an analysis thatsigprecise as
possibleto eliminate many infeasible paths and by human tester

In our algorithm description, we assume the set of faulskise
operations is known, because they can be precalculatedfmme
the Java libraries and reused for all the programs subjefeLit-

injection testing with this same set of faults.

2There is a many-to-many relationship between system fanltis
Java exceptions [15]. For this paper we assume that ther teste
merely has to choose one or more exceptions of interest. Bog m
details, see [15].



examination. As we will see in Section 4, the precision of our
analysis has a significant impact on the coverage resultshéor
benchmarks.

Fault Injection Framework. Once we have calculated the pos-
siblee-c linksfor a program with the analysis in Section 3, then for
a specific fault-sensitive operation, we have identifieddhtech
blocks that may handle the resulting exception, if it occ@s/en
the semantics of Java, there must beutnerablestatement exe-
cuted during the correspondingy block, that resulted in the exe-
cution of the fault-sensitive operation. The tester mustdrhave
execution exercise both this vulnerable statement, oftzallaand
the fault-sensitive operation, so that the recovery codeashed.
Obtaining test data to accomplish this task is the same &t ¢
generation problem presented by any def-use coveragecmetri

The compiler uses the set efc linksfound to identify where
to place the instrumentation that will communicate wiflendo-
sus[24], the fault injection engine, during execution. Thisrocou-
nication will request the injection of a particular fault efhexecu-
tion reaches ther y block containing the vulnerable operation and
will result in the recording of the execution of the corresging

cat ch block.
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Figure 1: Compiler-directed fault injection framework

Figure 1 shows the organization of our fault-injection eyst
The box labeledompile timeshows that for a chosen set of faults,
corresponding to some set of exceptions and their fauliisesm
operations, the analysis presented in Section 3 calcuia¢egos-

object-based, distinguishing between exception objeeated by
differentnew() statements. ThBataReachanalysis serves as a
postpass filter which uses the reference points-to graph3[@of
the program to discard as many infeasibte linksin the set pro-
duced by exception-flow analysis as possible, so as to iserte
precision of the entire analysis. Intuitively, both of themnalysis
phases can vary in their precision, because they effegtarel pa-
rameterized by the points-to and call graph constructicalyaes
used as their inputs. Various analysis choices are avaifablcall
graph construction [13, 4, 16] which differ in their cost ating
precision of the resulting graph. The empirical resulicutsed
in Section 4 show that the precision of the call graph andtpein
graph has significant impact on the precision of the finallinkset

obtained.
Exception—-Flow Analysis

possible e—c links

Call Graph

Points—to Grapl———>(_ DataReach Filter (Optional)

possible e—c links
Figure 2: Two phases of exception-catch link analysis

3.1 Exception-flow analysis

In Java, if code in some method throws an exceﬁt'm'rher the
exception is handled within the method by definingaach block
for it, or the method declares in its signature that it migindtv this
kind of exception when called. In the latter case, its callust
either handle the exception or declare that they throw itels[&].
We want to find the relationship betweeat ch blocks and fault-
sensitive operations. We useHt ow statement” to represent all
fault-sensitive operations in our discussions for sinipliove ac-
tually mean all instructions or calls that may throw someegtion,
if a fault occurs.

A naive analysis that relies only on examination of userated
exception types inat ch blocks and method signatures is too inac-
curate to yield information of practical use. In part thidbecause

siblee-c linksand the vulnerable statements that are susceptible to the declared exception can be a supertype, subsuming meeg-ex

them. The compiler inserts the instrumentation calling oenM
dosus to insert a fault during execution of the correspandiry
block and the recording instrumentation for recovery cauéie

tion types that actually cannot be thrown in this contextrédwer,
a method may declare that some exception may be thrown, when
actually no exceptions can ever be raised; this can occun Wie

cat ch block. Then, the tester runs the program and gathers the implementation of some method has changed, but the mettwd de

observed e-c linksfrom that run. The tester then may have to try
to make the program execute other vulnerable statemeetshy
varying the inputs) in order to cover more of the possisielinks
Finally, the test harness calculates the overall except@afrcatch
coverage for this test suite.

3. COMPILE-TIME ANALYSIS

Figure 2 illustrates the high level structure of the two-gdth
compile-time exception-catch link analysis which we dasit) to
calculatee-c linksin Java programsException-flowanalysis takes
a static representation (i.e., AST) of a Java program as agll
its call graph, and produces tleec link set of the given program.
Unlike previous exception-flow analyses [34, 20, 44] whielied
on interprocedural propagation of exception types, outyaigis

laration is not updated. Dynamic dispatch can add to theewgipr
sion of the declared exception information. Suppose @ddsshe
superclass o8 and methodar () is declared in both of them, but
only A bar () may throw an exception of clagswhen called. If
some other methotloo() contains a calh. bar () for a of static
typeA, thenf oo() must define a handler for exceptigror declare
that it throws this exception. However if at runtime referea al-
ways points to @ object, no exception can ever be thrown at the
call site.

Our exception-flow analysis is an interprocedural datafloal-a
ysis that calculates for eaclat ch block, all thet hr ow statements
whose exceptions could potentially be handled by ¢hath. This

We are only consideringheckedexceptions, since exceptions re-
lated to I/O faults are checked.



is a form ofdef-useanalysis as shown in the following section.

Exception-flow as a dataflow analysis.We defineexception-
flow as the flow of each exception object thrown par ow state-
ment along the exception handing path [31] — from the ow
statement to theat ch block where it is handled.

According to the semantics of exception handling in Javaj@]
can assume there exists a variable for each executing Jaadth
that refers to the currently active exception object. Dyiéxecu-
tion, anyt hr ow andcat ch operations are definitions and uses of
that variable, respectively. Thus, we can apply a variathetfra-
ditional Reaching-Definition [1] dataflow analysis to thi®plem,
but there are some unique aspects of exception-flow thaireequ
special handling:

1. Types are associated with each use and definition. A use

(i.e., acat ch) kills all the reaching definitions whose type is
a subtype of the type of the use.

. The dataflow is in the reverse direction to execution flow;
thus exception-flow is a backwards dataflow problem.

. The key control-flow statements in a method arg and
cat ch blocks,t hr owstatements and method calls. All other
statements do not affect the exception-flow solution (given
that the call graph is an input to this problem). The order of

these statements within a method is of no consequence. What

is important is whether or nottanr owor method call is con-
tained in at ry block nestt Therefore, within a method, we
are only interested in paths from the method entry to each
try-cat ch block or to at hr ow or a method call not con-
tained in anyt r y- cat ch block.

The analysis is interprocedural because of the nature afpexc
tion handling: an exception propagates along the dynanfiisteak
until a proper handler is reached. Our analysis is perforored
call graph whose edge annotations record the corresporudithg
sites, since call sites may occur within different/- cat ch blocks,
which clearly affects the solutior’. Within each method, the
analysis calculates those exceptions which reach the amthat
method, by consideringhr ows and method calls not contained
within anyt ry- cat ch block and thoser y- cat ch blocks within
the method. The former statements yield some of those arospt
possibly raised and not handled in the method. Statemeititénwi
thetry- cat ch blocks may also yield unhandled exceptions, de-
pending on the types of the respectiw ch blocks. Thus the pro-
gram representation used is a variant of a call graph, wrexh e
method node has an inner structure consisting of an edgetfrem
entry node to each uncoveredr ow or method call, and an edge
to each outermostr y- cat ch block.

We define for each method the set of reaching exception abject
that can reach its entry:

Definition (ReachingThrows(method/)): The set of allt hr ow
statements for which there exists an exception handlinly jii]
from the throw statement to methadd, and the exceptions are
not handled in method/. Figure 3 gives an example illustrat-
ing the definition ofReachingThrows We can see that the call
site bar () inside method oo() is inside thet ry block, so that
Socket Except i on thrown inbar () will be handled (i.e., killed)
in foo(). However, exceptior her Excepti on, also possibly
thrown bybar (), will not be handled and thus appearsirach-
ingThrows(foo) If the call tobar () had not been placed within

4In Javat ry blocks can be nested within each other. Handlers are
associated with exceptions in inner to outer order [3].

5Adding these annotations is not difficult for any call grajgimc
struction algorithm.

atry-catch block infoo(), then both exceptions (i.eSpcke-

t Exception, O her Exception) would appear irReachingTh-
rows(foo) Therefore, our analysis can be considered to have some
flow-sensitivaspects, in that it captures the relation of- cat ch
blocks to the call sites arnchr ow statements within them.

ReachingThrows(oo )
O her Excepti on thrown in bar

voi d foo(’/s t hrows Exception{
try{ /

_zhar();

/ }catch (I OException ioe){..}
it
!
\
\ Socket Excepti on
N O her Excepti on

ReachingThrowd(ar )

thrown in bar
thrown in bar

voi d”bar (Q throws Exception{

t hr ow new Socket Except i on()
\
t hr ow new Ot her Exception();

}

Figure 3: Example of ReachingThrows

The dataflow equations for tiReachingThrowproblem are de-
fined on the annotated call graph of the progfawie defineRT(m)
the ReachingThrows at the entry to methadas

RT(m) =

U,er(gen(t) — kill(trynest(t)))
U chECS Um’etar-gets(cs) (RT(ml) - ki”(tryneSt(cs)))7
whereT is the set of throws imn; gen(t) is the exception thrown
by t hr ow statement; trynest(k)is the (possibly empty) nest of
try- cat ch blocks containing statemeht kill(trynest(k)is the set
of t hr ows of exception types handled by that ch blocks cor-
responding tdrynest(k) or @ if trynest(k)is empty;C'S is the set
of call sites inm; andtargets(cs) is the set of all run-time tar-
get methods that can be reached by call sitéhere can be more
than one target of a polymorphic call). Note also that thedffet
ference operation must respect the exception inheritaiecarbhy;
subtraction of a kill set including exception typenust remove any
exceptions of subtypes efas well as itself.

These dataflow equations are consistent with the definition
of a monotone dataflow analysis framework [25] and therefore
amenable to fixed-point iteratio.

Worst case complexity. The dataflow problem so defined is
distributive and 2-bounded [25]; therefore, the compiexit the
analysis isO(n?) wheren is the number of methods. Given our
program representation, the time cost of processing eatitoch&o
find the constant terms in these equations is linear in thebeuwf
t ry- cat ch blocks, call sites andhr ow statements in the method,
which is bounded above by, the maximum number of statements
in a method; this adds /an term to the above complexity. There-
fore, the overall worst case complexity is dominated by didhe
dataflow equations solutioi)(n?).

SUnder certain conditions[3]fi nal | ys behave likecat ches
and/ort hr ows. Our algorithm handles these situations correctly,
but we omit the details involvingi nal | ys for brevity.

"The iteration is only necessary here to handle interpraeédu
loops. Our implementation uses a prioritized worklist aitdpon;
nodes in the worklist are kept in postorder order.



Analogous to classical dataflow use-def/def-use chainsmal-
ysis produceg-c linkshetween each of thiehr ow statements and
their correspondingat ch blocks. By performing exception-flow
analysis, we can find all the-c links(¢;, h;) wheret hr ow ¢; can
potentially triggercat ch block h;. Furthermore, by recording
the interprocedural propagation pathtgfwe can provide the call
chains fromh; to t; to help the human tester understand why a
specifice-c linkis not covered in some test.

Selective constructor inlining. The exception-flow analysis de-
scribed previously relies on having an annotated call gfapthe
program. In order to increase precision, we added selectine
text sensitivity to the points-to analysis that we use tddothie
call graph. Rather than building a full and costly contestsitive
points-to analysis, we performeelective constructor inlininghat
is, we inlined each constructor at its call sites, when tbastruc-
tor contained ahis reference field initialization using one of its pa-
rameters. Without this transformation, a context-ind@resianal-
ysis would make it seem that the same-named fields of all tshjec
initialized in this constructor could point to all the paraters so
used [27, 26]. If we run a context-insensitive points-tolgsia af-
ter this transformation, we obtain some degree of contaxtite-
ity for constructors, eliminating some imprecision andaihing a
more precise call graph and points-to graph for both our gbiae-
flow and DataReach analysis phases.

3.2 Data reachability analysis (DataReach)

We want to use a fairly precise program analysis to eliminate
as many infeasible interprocedural paths as possiblediocesthe
work that otherwise must be done by human testers vehelinks
based on these paths cannot be covered. Using a more pneaise a
ysis for call graph construction such as points-to analjis 37]
helps to reduce the number of infeasible linksfound. However,
in practice even a very precise call graph building algaeniihtro-
duces many infeasible-c links Figure 4 is an example of typical
use of the Java network-disk 1/0 packages. Figure 5 illtestrhow
infeasiblee-c linksare introduced even given a fairly precise call
graph for the code. As we can see, they block inreadFil e
is only sensitive to disk faults and the y block inreadNet is
only sensitive to network faults. But exception-flow infation
is merged inBuf f eredl nput Stream fi |l | () and propagated to
bothr eadFi | e andr eadNet ; thus, two infeasibl@-c linksare in-
troduced which reduce the subsequent possible runtimeagee
to less than 50%.

This can be solved by using a different program represemtati
such as a call tree [38] instead of a call graph. However,toacts
ing a call tree by compile-time analysis is too expensive amck
constructed, this representation is too large to scaleogpiately.
For example, to remove the infeasilde linksin Figure 5, the call
tree algorithm must be able to find that there are only twoifeas
ble call chains which share a middle segment of length thiee.
separate these two chains would require a context-semgpitints-
to analysis analogous to 4-CFA [40, 41], an expensive aisalys

In many cases the length of the shared segment is even longer

(e.g., when you need to wrap the basic InputStream with ninzne t
one filter class, such @uf f er edl nput St r eamé& Dat al nput -
St ream).

The intuitive idea of our approach is to use data reachghiit
confirm control-flow reachability, in that interprocedugths re-
quiring receiver objects of a specific type can be shown tofeai
sible if those type of objects are not reachable throughfelemaces
at the relevant call site. Continuing with Figure 4, consithe call
sitei n. read() in methodr eadFi | e. We want to know whether
Socket I nput St r eam r ead() can be called during the lifetime of

void readFile(String s){
byte[] buffer = new byte[256];
tryf
I nput Stream f =new Fi | el nput Strean{(s);
I nput Stream i n=new Buf f er edl nput Strean{f);
for (...)
¢ = in.read(buffer);
}catch (I Oexception e){ ...}

—

voi d readNet (Socket s){
byte[] buffer = new byte[256];
try{
I nput Stream n =s. getl nput Stream();
I nput St ream i n=new Buf f er edl nput Strean(n);
for (...)
¢ = in.read(buffer);
}catch (I Oexception e){ ...}

Figure 4: Code Example for Java I/0O Usage

readNet

FilterInputStream.read (byte[]) "
1
1

BufferedInputStream.read (bytel], int" int)

L :.'

1

. !
BufferedInputStream.fill () , 1

AN g 1

< ’ -
1 S~ R 1

Fi,‘LeInputStream.read(. ) ":>=SQcketInputStream.readﬁ )

Disk Access - ---=-===-""""  TT=-. Network Access

Call Graph Edges—  Feasible e—c linf='= = Infeasible e—c link- - - - -»

Figure 5: Call Graph for Java I/O Usage

in.read(). Inthe explanation below, we refer im. read() as
theoriginal call and toSocket | nput St ream r ead() as thetar-

get call site The argument about data reachability relies on the fol-
lowing intuition: if Socket I nput St r eam r ead() is called, some
object ofSocket I nput St r eammust have been created previously
to serve as the receiver. There are only three ways this cam:.oc

1. The object is createduring the lifetime of the original call
and passed to the target call site by assignments between
method return values and local variables.

2. The object is associated with by field dereferences of one
of the global variables (i.e., Java static fields), that odeu-
ing the lifetime of the original call.

3. The object is associated with by field dereferences of one
of the arguments of the original call (including the receiye
that occurduring the lifetime of the original call.

Therefore given an original call site, we can express thsilida
ity of a particular call path in terms of whether some datahedil-
ity is possible according to these conditions. For exantplehow
thee-c linkreferred to above is infeasible, we verify that there is no
object in the points-to set of the receiver of the target sigdl with
type Socket | nput St r eamthat can either be created in one of the



methpds reachable from the.ongmal call, or reachable bgsl; Boolean reachable(U, receiver, method)
tive field loads from the receiver or the arguments of theioaig {
call site or static fields. This means that the exception-flefvuse

path is infeasible. Note, we only consider object fields aatics
fields loaded irmethods reachable from the original callearly,

we need reasonably precise points-to information [23, 85ptain

the high-quality data reachability information.

DataReach Algorithm. The DataReach algorithm requires that
we have the points-to graph and call graph of the program [23, }
35]. First, we calculateniverse the set of all methods that are
reachable from the given original call (according to the gedph).
This set contains all the instructions that can be executeihgl
the lifetime of the original call. Second, we collect all thew
statements imniversefrom which we can derivéV: the set of all
objects created during the lifetime of the original call.irtihwe
collect all the static field loads inniverse and calculates: the
union of the points-to sets of static fields loaded duringifeéme }
of the original call. Fourth, we calculat@: the union of points-to
sets of arguments (including receivers) of the original sigd, and
setU = N U S U P. Fifth, we collect all the instance field loads
in universeand calculatd/*: the closure ofU under the instance
field dereferences that may occur during the lifetime of thigiical
call. Finally, we intersect/™ with the points-to set of the receiver
of the target call site. If we are trying to prove the infed#ipof
a particular library call for example, we merely need to stibat
there are no objects in the intersection with type appropfia the
call to have occurred.

The algorithm in Figure 6 is based on the ideas stated above.
This algorithm actually calculates the setichablemethods the
set of all methods reachable through data reachability ftoen
given original call.

In summary, if a fault occurs during the original call, thenex-
ception may be handled bycat ch block associated with ther y
in which the original call is nested. In this case, there iDae:

if method is private or static, return true;
intersection = UN receiver’s points-to set
if there are objects in intersection
with type that resolve to method
return true;
else return false;

Set closure(U, fieldset)

for each object in U
for each field of object
if (field in fieldset)
U += pointsto_set(object.field);

Main Algorithm:

reachablemethods = empty

fieldset = empty

pendingarcs = call edges from the original call site

U = points-to sets of arguments of the original call site

while reachablamethods changed

for each arc in pendingrcs
if reachable(U, arc.receiver, arc.targeéthod)

remove arc from pendingrcs
reachablemethods += arc.targehethod
pendingarcs += call edges from arc.targaethod
fieldset += instance field references in arc.tamgethod
U += new objects created in arc.targaethod
U += points-to sets of static fields in arc.targaéthod
U = closure(U, fieldset)

: : . . end if
spondinge-c linkresulting from an excepting call to some method

; ) o > end for

f orthrowin methodf during the lifetime of the original call. If end while

the reachablemethodsset does not contaifi, then thee-c linkis
spurious (i.e., corresponds to an infeasible control-flathp

Worst case complexity.The algorithm is actually extended from
optimistic RTA, where thevhile loop iterates at most (number of
methods) times. At first glance, methashchable()may be called .
n x E times whereF is the number of call graph edges. But when- 4.1 Instrumentation
ever reachable()returns false, the call edge can be added into a  The methodology described in Section 2 requires that tha Jav
map indexed by the objects needed to make the call edge “reach program be instrumented to report coverage ofefelinksexer-
able”. And when more objects are added ittpthe map can be cised and to communicate wilMendosugo request specific faults.
checked to instantiate some of the call edges. We have the ref A detailed description of the methodology was describedun o
ences to the objects and we can implemente the “map” by adding previous paper [15]; we briefly summarize here.
annotations on object nodes in the points to graph, thus bbth The instrumentation is accomplished through method chlis.

Figure 6: DataReach Algorithm

methodology and report our experimental findings.

these operations are constant time.r&wxhable(Jonly needs to be
calledFE times. The cost of runningeachable(will not exceed the
number of objects pointed to by the receiver, which is bodriue
but often much smaller thanm number of objects in the points-to
graph, (e.g., the total number of object creation sites enpio-

eache-c link (p, ¢), we first locate theat ch block ¢, and the cor-
respondingt ry block. At the entry of the ry block, a special
method call is inserted to diredendosuso inject the fault se-
lected at static instrumentation time. At the entry of the ch

block another method call is inserted to query and record:dtle

stack encapsulated in the caught exception. The instratient
methods called are designed so that each instrumentatiohgam

be turned on and off by a command line option or an environment
variable. Note that the fault must be selected so that onealyd
one fault-sensitive operati®will fail and throw an exception. In
addition, we record the I/O objects created by the user cadegl
execution, in order to limit the scope of the injected fatdtghis

set.

gram). For calculatingy, remember that the algorithm collects an
object along an edge in the points-to graph at most once. rAassu
that the maximum number of fields in an object.ihen, over the
entire algorithm we explore at moéi(r2t) edges in the points-to
graph. So the worst case complexity of DataReach is dondriste
O(E * r 4 r*t) (i.e., at most cubic in terms of the program size,
where bothE andr are proportional t@(n) in practice).

4. EMPIRICAL RESULTS 8e.g., network read/write, disk read/write, network accaptwork
In this section we discuss the instrumentation used in our connection, etc..



4.2 Experimental setup & benchmarks PIll PCs using Linux 2.2.14-5.0; we used IBM Java 2.13 Virtua

We implemented exception-flow analysis and DataReach anal- Machine for Linux for all of our benchmarkdiendosuswas run-
ysis as two separate modules in the Java analysis and tramsfo ~ Ning as a daemon process on each of these machines.
tion framework Soot [37] version 2.0.1, using a 2.8GHz P-lw P In this testing we made the usual assumptions that (i) fauks
with Linux 2.4.20-13.9 and the SUN JVM 1.30B for Linux. By ~ independent of each other, and (ii) faults occur rarely. Wg o-
separating the two phases of our analysis, we were able o sho jected one fault per run, resulting in at most @nellnkcoven_ed per
the gains from adding the DataReach postpass. Soot prosides test run; therefore, we needed to run each benchmark séveesl

call graph builder usin@lass Hierarchy Analysi€CHA) [13]. We each time targeting oreec link Because we lack a model for faults
implemented another call graph builder usiRgpid Type Analy-  that tend to happen together, systematically testing ntare one
sis (RTA) [4]. Soot also providespark a field-sensitive, flow- fault atattimeis dlffl.cult..Atestlng harness was conskedct{vhlch
insensitive and context-insensitive points-to analyaifofm of 0- iterated over the-c linksinformation file, repeatedly running one
CFA) [41, 36, 35, 23]. The instrumentation phase is also @npl ~Penchmark program as necessary. As usual it was the tester’s
mented as a separate module in Soot. sponsibility to find proper inputs and program configuragioso

We experimented with the following six different analysine that designated vulnerable statement (and fault-seasiieration)
figurations® were executed.

1. CHA — Build call graph with Class Hierarchy Analysis. 4.3 Empirical data

g' Eiﬁ o EUI:S ca:: grapE Wlt.h Rgpld I;I'ype Analysis. Table 2 lists the number @fc linksreported for each benchmark
' —Bu _ca grap usmg. park. ) in each analysis configuration. The last column shows thebeum
4. InPTA — Build call graph with Spark plus selective con-  of e-c linksactually covered for each benchmark in the fault injec-

structor inlining. . . tion test. Table 3 is the overall exception def-catch cayefar all
5. PTA-DR — Use Spark to provide the points-to graph and call the benchmarks derived from the data in Table 2. We can see fro
graph plus use DataReach as a postpass filter. the tables that the use of points-to analysis for call graptszuc-

6. INPTA-DR — Use Spark plus selective constructor inlin- tion dramatically reduced the numberest linksreported in all of
ing to provide the points-to graph and call graph, and use the benchmarks. With RTA or CHA, the number of faése links
DataReach as a postpass filter. reported is 2 to 6 times more than the acteral linksthat we can

We used four Java web service applications of moderate size a cover in the testing™*

our benchmarks.

e JNFS, a server application that runs on top of a native file FTPD 34| 34| 16 16 16 13 11
system and listens to and handles requests for both read and JINFS 104] 104 39 39 22 19 16
write accesses to files. The server communicates with vari- |Haboob| 96| 73| 12| 12 12 12 10
ous Clients Via RMI [32] Mufﬁn 480| 258| 112 112 87 42 35

e Haboob, a simple web server based on SEDA, a staged event-
driven architecture [48]

e Muffin, a web filtering proxy server [28]

Table 2: Number of e-c links

Program| CHA | RTA| PTA|InPTA|PTA-DR| InPTA-DR
Name Classes Methods LOC FTPD 32%|32%|69%| 69% 69% 85%
FTPD 11(1407)| 128(7479)| 2783 INFS | 15%]|15%|41%| 41%| 72% 84%
JNES 56(1664)| 447(9603)| 10478 Haboob | 10%] 14%| 83%| 83%| 83% 83%
Haboob | 338(1403)| 1323(7432)| 39948 Muffin | 7%]14%|31%| 31%| 40% 83%
Muffin | 278(1365)| 2080(7677)| 32892

Table 3: Overall Exception Def-catch Coverage, in percenige

Table 1: Benchmarks The context sensitivity obtained by adding selective aoiesbr
Column 2 of Table 1 is the number of user classes, with those in inlining before performing points-to analysis had littféeeet on any
parenthesis comprising the JDK library classes reachadne éach of the benchmarks, when we only consider call graph cortsbruc
application. The data in column 3 are the number of user meth- However, when combined with the DataReach postpass, ttie add
ods and those in parenthesis are the JDK library methodhabbe tional precision provided, reduced the number of repoetedinks

from each application. Column 4 gives the number of linesoofec in three out of four benchmarks (i.e., compare colurRié and
in user code source files. The method reachability inforomais INPTA-DRin Table 2). For thes-c linksreported bylnPTA-DR
calculated by Spark, with lines of code calculated usinguthiéX the coverage percentage of all four benchmarks was stathitir
we utility. INFS is the only multi-node applicatiotf. approximately 84% with small variance. In Muffin, the aduafial
As shown in Figure 1, dynamic testing is conducted by running precision helps cut the number of repored linksby more than
the instrumented code with various workloads to exercifferdi half (see Table 2). Thus it is clear that DataReach is a ctiént
ent vulnerable points in the applications. Experieneadlinksare precise points-to analysis, where added precision can make
recorded in a log file during the test. By processing ¢he link ference.
information file and log file after the test we obtain the cawger Haboob is special in that it is the only benchmark that usetfa s

data. The dynamic tests were performed on a cluster of 800MHz constructed non-blocking network library, which does natéas
much polymorphism as the standard JDK library. This is whey th

9Selective constructor inlining and DataReach were onlyduse
where stated explicitly. HRecall that all of these analyses aafemeaning that if one anal-
0Currently, we assume the network supporting RMI is reliathiat ysis fails to report &-c linkthat another analysis reports, then that
is, currently we ignore faults that affect RMI transportati e-c linkis spurious.



simple PTA analysis is sufficient to analyze Haboob, as shiown
Table 2.

Figure 7 shows the running times of each part of the statit ana
ysis on each benchmark using configurations PTA-DR and IRPTA
DR. Running times of the instrumentation phase are too stoall

be shown, under 2 seconds for all the benchmarks. Our currentor g. doi t .

analysis always finished in less than an hour. In the worst cas
for the INPTA-DR configuration, the time our analysis tooKitwl
onee-c linkin a program is less than 3 minutes. We believe that
an optimized implementation of DataReach will improve aer
analysis performance significantly. DataReach is time warsg,

but it is effective in reducing spuriowesc links(i.e., comparing the
columns for PTA and PTA-DR, inPTA and inPTA-DR in Table 2).
For two of the benchmarks, Muffin and JNFS, where our analysis
took much longer to finish, DataReach used about 90% of thé tot
running time; for the other two benchmarks, it cost about 5%
the total running time.

4.4 Uncoverede-c linksin Muffin

Using the INPTA-DR configuration of our analysis we were able
to identify and coverat ch blocks related to I/O fault recovery,
leaving only a small portion, 16% to 17%, as needing human in-
spection. Let's examine more closely some of these uncdweie
linksto find out why they remained uncovered by our testing. As a
case study we will use our Muffin benchmark, examining thesev
uncoverede-c linksproduced by INPTA-DR. They can be parti-
tioned into 2 categories according to the reasons why theyeir
covered.

The first category consists efc linksnot covered for subtle rea-
sons which are really hard to discover through static arglysit
not so difficult for programmers to reason about. There agec4
links in this category. One of them involvestay- cat ch block
which handles exceptions thrown because of faults in a TGP co
nection. By examining the code we found that it is part of a re-
solver which translates machine names (i.e., ASCII stjing3$P
addresses by communication (coded in another method with se
ratet ry- cat ch block) with a given DNS server. However, TCP
is only used when a message is large enough, which will not oc-

cur since the messages are just domain names and IP addresse

Although thise-c link was not covered, the input data required
to cover thise-c linkwould need to include extremely long URL
names to force use of TCP; this is information that a humateites
can determine but is very difficult for an automatic analysiss-
certain. By not being able to cover thésc linkeasily, our method-
ology focuses the attention of the tester on this part of tduec
Considering the other 8-c linksin the first category, they in-
volve handlers of exceptions thrown when readingrari | e and
the exceptions thrown because of problems in network regamjn
erations. In Java, 8BRLFi | e can be a local file or a remote file

thesee-c links!? There are several hundred call paths given for this
singlee-c link

org.doit.
org.doit.

muf fi n. Handl er. processRequest ()
muf fin. Https. recvRepl y()
muf fi n. Reply. read()

org.doit.nmuffin. Reply.read()
java.io. Sequencel nput Stream read()
java. util.zi p. &l Pl nput Stream read()

j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.

util.zip.InflaterlnputStreamread()
util.zip.InflaterlnputStreamfill ()
i 0. Buf f er edl nput St ream read()

i 0. Buf f eredl nput Stream readl()

i 0o.Bufferedl nputStreamfill()
util.jar.Jarl nput Streamread()
util.zip. ZiplnputStreamread()
util.zip. Zi pl nput St ream r eadEnd()
util.zip. ZiplnputStreamreadFul | y()
i 0. Pushbackl nput St r eam read()
io.FilterlnputStreamread()
io.FilelnputStreamread()

We inspected these call chains and found all of the call shain
for this particulare-c linkshare the same prefix, but afsrquen-
cel nput St ream r ead() they begin to vary by selectingead()
methods from different subclassesl afput St r eamand following
different permutations of calls. After reading the souroee of
Sequencel nput St r eamwe found that this class uses a container
classEnuner at i on to keep track of subsequenhput St r eans.
Although no object ofazl PI nput St r eamhas ever be assigned to
the subsequent input streamSafquencel nput St r eam the usage
of the container class confuses the points-to analysispraduc-
ing the current resultr ead() in Sequencel nput St r eam may
callread() in GzZI Pi nput St r eamand also almost every subclass
of I nput St ream

Call chains for all 3e-c linksshare the same characteristics de-
scribed here; they all involve the use of containers. This-ph
nomenon is caused by context-insensitive points-to arsalys a
manner similar to the analysis imprecision for construgtdis-
cussed previously. More precise points-to analysis [26feskes
gﬂs problem by distinguishing calls by their receiver ajerhen
analyzing methods, thus producing a less connected pmints-
graph; this should reduce the call chains fag-a link or maybe
even make it possible for DataReach to judge thatetfeelink is
actually infeasible. We believe that additional contexisstvity
added to the points-to analysis would further improve ttegigion
of oure-c links but further experimentation is needed.

5. RELATED WORK

This paper presents exception-catch link analysis andsisiu
def-use testing of Java program recovery code. There is piech

which must be accessed via the network, depending on its nameyjoys research relevant to this work, but due to limitatiohspace,

which is the value of somsét ri ng variable. In Muffin all of the
URLFi | es are actually local files, only subject to disk access ex-
ceptions.

The second category is composed of-8 linkswhich are dif-
ficult to confirm as feasible or not by human inspection. As-men
tioned in Section 3.1 our analysis provides the call chdias start
from ¢; and end withp; for any e-c link (ps;, ¢;). But even with
these call chains given, the job of deciding whether an uvereal/
e-c linkin this category is actually infeasible is hard, since these
call paths are prohibitively long and confusing to tracee Exam-
ple given below is one of the possible call chains found fax of

we will discuss only the most closely related results.

Dataflow testing and coverage metricsThere is a large body
of work that explores def-use alataflow testingn different pro-
gramming language paradigms. The seminal papers estadblegsh
set of related dataflow test coverage metrics and explahedin-
terrelations [33, 14]. The contribution of our work is to aefiand
implement a def-use analysis of appropriate precisiorfaidy ac-
curately matches exceptions (i.e., representative eixcepbjects
created at specific creation sites) to their handlers. TEhisspe-

12parameters are omitted for readability.
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Figure 7: Time Cost Break-down of Static Program Analysis

cially important to ensure the dependability of the web eyapilons
that are our focus [15].

Sinha et. al defined an interesting and novel set of coverage m
rics for testing exception constructs and gave their sulpsiomre-
lations [42]. The metrics were defined for checked exceptmx:
plicitly thrown in user code, however they seem easily esitda
to both implicit and explicit checked exceptions. Our olleea-
ception def-catch coverage metric seems equivalent totenesd
version of theirall-e-deactscriteria defined for both implicit and
explicit exceptions. Because we are most interested invezgo
code that deals with problems due to system interaction$ooues
on implicit checked exceptions that are thrown in JDK libear
whereas they deal with user-thrown exceptions, that arbaily
user-defined as well. No exception analysis or implemenriagi-
perience with their metrics is presented.

The overall exception def-catch coverage metric dex links
that relates resource-usage faults to specific excepti@ttsb dif-
fers slightly from our previousverall fault-catchcoverage met-
ric [15]. Our original metric required the injection of eakind
of fault that could trigger a particular exception for a fasgnsitive
instruction, rather than trying to cause a specific excegbaccur.
Both metrics are analogous to thk-usesmetric in traditional def-
use testing [33], with fault-sensitive operations coroegjing to

tion.

As stated in Section 1, traditional fault-injection tegtiis per-
formed by treating the application as a black box. Succgadied
by how often the application does not crash in response to-an i

jected fault. Other white-box, control-flow coverage nustrhave

been proposed by some groups for use with fault-injectistirtg;
these correspond to previous metrics (e.g., branch, edijbasic
block coverage) and have been summarized previously [15].

Analysis of exception handling. Two previous exception-flow
analyses were aimed at improving exception handling innarog,
for example avoiding exception handling through subsuongi34,
20]. These differ from our exception-catch link analysisignifi-
cant ways. First, their call graph is constructed usingschasrar-
chy analysis, which yields a very imprecise call graph [13S&c-
ond, these analyses trace exception types through theraph @f
the program to the relevantt ch clauses that might handle them.
Conceptually, these analyses use one abstract objectgss:. dn
operation that can throw a particular exception is treasealsource
of an abstract object that is then propagated along reverseot-
flow paths to possible handlers (i.eat ch blocks).

Jo et. al[20] present an interprocedural set-based [1@jmian-
flow analysis; only checked exceptions are analyzed. Exymeris
show that this is more accurate than an intraprocedural S@ke-

definitions of exceptions ancht ch blocks corresponding to uses.
Overall fault-catch coverage requires the applicationhef ¢com-
plete range of faults during testing, consistent with éxgsbper-
ating systems fault-injection technology. In this papecduse we
are injecting faults at the interface between JDK 1/0O meshaad
native methods rather than at the device-level [15], we cadif-
ferentiate between some device-level faults that resutiénsame
exception, and thus we inject only one fault to trigger eaaep-

analysis on a set of benchmarks five of which contain more than
1000 methods. Robillard et. al [34] describe a dataflow analy
sis that propagates both checked and unchecked exceppes ty
interprocedurally. Neither approach analyzes Java igsarless
source code is available (not the case for the JDK). They kach

dle a large subset of the Java language, but make the chadoeito

or approximate some constructs (e tatic initializers, finallg).
Both of these analyses are more imprecise than ours, elipecia



in their approximation of interprocedural control-flow;ither of
them trace definitions of specific exception objects to thpjro-
priatecat ch blocks®®

Another analysis of programs containing exception hagdlin
constructs [43] calculates control dependences in theepoesof
implicit checked exceptions in Java. This analysis focasedefin-
ing a new interprocedural program representation thatsegex-
ceptional control-flow in user code. In a more recent tecme-
port [44], Sinha et. al present an interprocedural prograpra-
sentation which more accurately embeds the possible nattap
dural control-flow through exception constructs (ite.ys,cat chs
andfi nal 1 ys). Class hierarchy analysis is used to construct the
call edges in this representation. An exception-flow anslis
defined by propagation of exception types on this repregenta
to calculate links between explicitly thrown checked exme s
in user code and their possible handlers. It seems cleathisat
analysis could be extended to include implicit checked ptiors
as well, assuming that the program representation couldbbe ¢
structed from the bytecodes of the JDK library methods, &iad t
the fault-sensitive operations could be identified. The Giéfsion
of our analysis seems the most similar to the analysis preden
in [44]; this version is shown on our benchmarks to be too anpr
cise for obtaining coverage &-c linkscorresponding to implicit
checked exceptions, the focus of our work.

Choi et. al [8] designed a new intraprocedural control-flow
representation, that accounted for operations that mighegte
unchecked exceptions call€®Els, potentially excepting instruc-
tions they used this representation as a basis for safe dataflaw an
yses for an optimizing compiler. It is difficult to comparesthrep-
resentation with the others described here, because thayrealif-
ferent sorts of exceptions, such IdallPointerExceptionthat cor-
respond to different possibly excepting instructions.

Exceptions and compilation.Dynamic analyses have been de-
veloped to enable optimization of exception handling ingpaons
that use exceptions to direct control-flow between methedsh
as some of the Java Spec compiler benchmarks [47]). The IBM
Tokyo JIT compiler [31], successfully uses a feedbacketé@e op-
timization to inline exception handling paths and elimétatr ows
in order to optimize exception-intensive programs whosdope
mance can be improved up to 18% without affecting perforraanc
of non-intensive codes. IhaTTe[22], exception handlers are pre-
dicted from profiles of previous executions and exceptiamdliag
code is only translated in the JIT on demand, so as to avoickste
when it is not necessary. THdRL VM [9] performs lazy excep-
tion throwing, in that it avoids creating exception objeatdere
possible, unless they are live on entry to their handler.

Points-to analysis. There is a wide variety of reference and
points-to analyses for Java which differ in terms of cost pret
cision. The information computed by these analyses candntas
input to our exception-flow and data reachability analysésarly,
the precision of the underlying analysis affects the qualftthe
computed coverage requirements. A detailed discussioninfgp
to and reference analyses and the dimensions of precisithreiin
design spectrum appears in [36]. Our partially contexsiise
points-to analysis is most closely related to the contertiive
analyses in our previous work [27, 26]. These approachesl avo

BNote, in our analysis we use the usual approximation of retirdi
guishing the individual instances of exceptions creatdétlesame
creation site, but instead use one representative exoephject
for them. This does not affect the accuracy of &e linkscom-
putation, whereas the abstract exception object used Isg tiveo
algorithms cannot distinguish between exceptions of theesgpe
created by two different sites.

the cost of non-discriminatory context sensitivity, whisbems to
be impractical; they rely on techniques which preserve tiaetp
cality of the underlying context-insensitive analysis lhimprov-
ing precision substantially. This is achieved by effedsivaelecting
parts of the program for which the analysis computes more pre
cise information, either by using parameterization meidms as
in [27, 26], or partial constructor inlining as in our curteaigo-
rithm. Other context-sensitive points-to analyses thetrsé be
substantially more costly than ours, are presented in [8,13Q, 7];
these analysis algorithms implement non-discriminatardntext
sensitivity.

Infeasible paths. Bodik et al. present an algorithm for static
detection of infeasible paths using branch correlationyaisg for
the purposes of refining the computation of def-use coverage
quirements in C programs [6]. Our data reachability analjsi
cuses on the detection of infeasible paths in Java whicke drig
to object-oriented features and idioms such as polymonuhikis
is not addressed in [6]. Souter and Pollock present a methodo
ogy (without empirical investigation) for demand-drivenadysis
for the detection of type infeasible call chains [45, 46]marly
to their work, our analysis is demand-driven as we analyeetb-
gram starting from the original call. However, our data tresdul-
ity analysis propagates information in terms of object$eiad of
classes which will result in more precise analysis resuitaaddi-
tion, our work proposes a technique for summarizing thecesfef
callees; this problem is not addressed in [45] and [46]. Qupke
RTA-like technique for collecting potential receiver otfie proves
suitable for the problem of eliminating infeasildeclinks; the em-
pirical results demonstrate that it can eliminate subittntmber
of infeasible links.

6. CONCLUSIONS

We have defined a fairly precise exception-catch link anslys
which has been shown useful on our benchmarks for testing the
robustness of Java web services. Our full analysis alguoritht-
performs other (less precise) versions of the analysesvinaives-
tigated on our benchmarks, and exhibits significant pregigains
in the set ofe-c linkscalculated. Our use of data unreachability to
infer control-flow unreachability shows promise in allogins to
prune spurioug-c links

Our automatic compiler-directed fault injection methaxtpl ap-
plied to our benchmarks leaves, on average, approxima@éty df
the links uncovered and therefore needing to be examinechioy a
man tester. This is an upper bound on fhkse positive e-c links
that are reported for these benchmarks. Given that testiby its
nature an interactive activity, the uncovered linkscan be seen
as drawing a tester’s attention to recovery code that reduiman
reasoning as part of the normal testing process.

Our future plans include testing application uses of otlaeaJ
JDK libraries, such agmva.net, java.rmiand expanding our analy-
sis to handle multi-node programs and middleware that usfigzo
uration files for dynamic loading of classes.
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