
Testing of Java Web Services for Robustness∗

Chen Fu, Barbara Ryder Ana Milanova David Wonnacott
Department of Computer Science Department of Computer Science Department of Computer Science

Rutgers University Rensselaer Polytechnic Institute Haverford College
Piscataway, NJ 08854 Troy, NY 12180 Haverford, PA 19041

{chenfu, ryder}@cs.rutgers.edu milanova@cs.rpi.edu davew@cs.haverford.edu

ABSTRACT
This paper presents a new compile-time analysis that enables a test-
ing methodology for white-box coverage testing of error recovery
code (i.e., exception handlers) in Java web services using compiler-
directed fault injection. The analysis allows compiler-generated
instrumentation to guide the fault injection and to record the re-
covery code exercised. (An injected fault is experienced asa Java
exception.) The analysis (i) identifies theexception-flow ’def-uses’
to be tested in this manner, (ii) determines the kind of faultto be
requested at a program point, and (iii) finds appropriate locations
for code instrumentation. The analysis incorporates refinements
that establish sufficient context sensitivity to ensure relatively pre-
cise def-use links and to eliminate some spurious def-uses due to
demonstrably infeasible control flow. A runtime test harness cal-
culates test coverage of these links using anexception def-catch
metric. Experiments with the methodology demonstrate the utility
of the increased precision in obtaining good test coverage on a set
of moderately-sized Java web services benchmarks.

Keywords
Def-Use Testing, Java, Exceptions, Test Coverage Metrics,Web
Services

1. INTRODUCTION
The emergence of the Internet as a ubiquitous computing infras-

tructure means that a wide range of applications – such as on-line
auctions, instant messaging, grid weather prediction programs –
are being designed as web services. These services must meetthe
challenges of maintaining performance and availability, while sup-
porting large numbers of users, who demand reliability fromthese
codes that are becoming more and more commonplace. A good
analogy is to the telephone system, a technology that one expects
to be ’always working’; the phone company demands only minutes
of down time per year from its software. New testing technologies

∗This work was supported in part by NSF grants EIA-0103722 and
EIA-9986046. This paper is available as Rutgers Departmentof
Computer Science Technical Report Number DCS-TR-545.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

are needed to address the issue of reliability in this environment.
Besides the traditional testing of functionality, there isa need to
ensure reasonable application response to system/resources prob-
lems, in order to have performance gracefully degrade rather than
experience application crashes. The robustness testing research in
this paper addresses the problem of how to test the reliability of
Java web services in the face of infrequent, but anticipatable system
problems, which are responded to using Java’s exception handling
mechanism.

Traditional fault-injection testing of software in the operating
system community is conducted in a black-box manner, using a
probabilistic analysis to determine whether or not a software com-
ponent will work properly when subjected to specific fault loads
and workloads [2, 15]. Testing is accomplished by simulating
faults caused by environmental errors during test throughfault in-
jection [10, 12, 18, 21, 39]. Testers assume that applications run
under specific workloads, and then inject faults randomly into the
running code, selecting faults according to distribution functions
derived from observation of real systems. After observing applica-
tion reaction to the fault load, the testers derive data describing the
likelihood that the application will deliver correct service (i.e., not
crash) under the given fault loads and workloads [2].

Unfortunately, this approach does not ensure that the errorre-
covery code in an application is ever exercised nor that the pro-
gram takes an appropriate action in the presence of faults. In ad-
dition, given the probabilistic nature of the approach, it is hard to
force application execution into the untested parts of error recov-
ery code during further testing. Because many web services are
written using components with unknown internal structure,testers
need to identify vulnerabilities to system problems automatically
(i.e., with the help of software tools). The testing of errorrecovery
code in web services is necessary for ensuring the high reliability
required of these systems.

Our methodology uses the tools of white-box def-use testingto
aid a tester of web services in this task. There is a large bodyof ex-
isting work onwhite-boxtesting methodologies [5, 29, 17], aimed
at exercising as much application code as possible during testing,
and measuring code coverage using various program constructs
such as control-flow edges, branches and basic blocks. However,
traditional white-box testing techniques normally do not target cov-
erage of error recovery code, that is, code which handles errors that
occur with small probability due to interactions with the comput-
ing environment (e.g., disk crashes, network congestion, operating
system bugs). This is code that may not be executable merely by
manipulating program inputs.

Our analysis techniques identify program points vulnerable to
certain faults and the corresponding error recovery code for these
specific system faults. The techniques provided allow compiler-

inserted instrumentation to inject appropriate faults as needed and
to gather recovery code coverage information. This enablesa tester
to systematically exercise the error recovery code, by causing exe-
cution to exercise the vulnerable operations. Thus the methodology
provides a means to obtain validation of application robustness in
the presence of system faults.

In our approach, it is important to be able to identify as precisely
as possible where an exception, thrown in response to an experi-
enced fault (i.e., a def), is handled (i.e., a use). A key concern in
general for def-use testing is how to minimize the number of spu-
rious def-uses reported by the analysis. Since these def-uses can-
not be exercised by any test, a human being has to examine them,
among the uncovered def-use links after testing, and determine (if
she can) that they are spurious. This is a time-consuming, diffi-
cult job, especially for large object-oriented applications that use
polymorphism heavily. Therefore, it is crucial to use a veryprecise
analysis that, while practical in cost, can eliminate many of these
spurious def-uses. This is a key goal of our newexception-catch
link analysis.

Our target applications are Java web services because thesepro-
grams are widely used to build large-scale distributed cooperative
systems. Java is used increasingly to build components for these
services. Furthermore, the exception construct and mandatory ex-
ception handling mechanism facilitates both constructionand anal-
ysis of error recovery in a Java program, thus providing a good
basis for validating our methodology for automatic identification
and testing of error recovery code.

In a previous paper [15], we gave a general overview of our
methodology for testing of error recovery code, and defined ap-
propriate coverage metrics. We presented a proof-of-concept case
study in which a proxy server application was instrumented by
hand, and then fault injection was performed and recorded byexe-
cuting the instrumentation. In this paper we have defined andim-
plemented a compile-time exception-catch link analysis, fully auto-
mated the program instrumentation process, and experimented with
several versions of analyses on a data set of moderately-sized web
services applications.

The specific contributions of this paper are:
• Design of a new compile-time exception-catch link analysis

to identify error recovery code in relation to certain resource
usage program points (i.e., a def-use analysis for potential
exceptions involving resource usage). This analysis essen-
tially is an interprocedural def-use dataflow analysis calcu-
lation with two new refinements: (i) performing a points-
to analysis using limited context sensitivity by inlining con-
structors that set object fields (in order to avoid conflating
objects, especially in libraries with long call chains) and(ii)
using the absence of data reachability through object refer-
ences to confirm theinfeasibilityof some links, by showing
the corresponding interprocedural paths to be infeasible.

• Demonstration ofautomatic program instrumentation di-
rected by our analysis, that effectively constructs a compiler-
directed fault injection engine fromMendosus[24], an exist-
ing fault injection framework.

• Empirical validation of our methodology using several
moderate-sized Java web services applications, including
comparison of our new analysis with less precise, less costly
class-based analyses adapted to find exception-flow def-uses.
These studies demonstrate the appropriateness of the preci-
sion of our analysis for this task, in that on average, 84% of
all exception-flow def-use links are covered by the testing.

Overview. The rest of this paper is organized as follows. In
Section 2 we describe our coverage metric, which is a slight variant

of the original metric described in [15], and give an overview of
the compiler-directed fault injection methodology. In Section 3,
we discuss our compile-time analysis for exception-flow def-uses
and its precision increasing refinements. In Section 4 we report our
empirical results on moderate-sized Java applications, describing
the impact on the exception-flow def-uses obtained, of varying the
compile-time analysis used. In Section 5 we describe related work.
Finally, we present our conclusions.

2. MEASURING COVERAGE OF FAULT-
HANDLING CODE

We take advantage of the Java exception handling mechanism
to help identify error recovery code.Exceptionsin Java are used to
respond to error conditions [3]. Eachcatch block is potentially the
starting point of error recovery code for a matching error/exception
raised during the lifetime of the correspondingtry block.

Faults, Exceptions, Coverage Metric.We begin with a set of
faults that are of interest to the tester – for example, some testing
may focus on disk and network errors. The set of relevant fault-
sensitive operations depends on the set of faults in which weare
interested; often these operations are calls to C library functions
within the Java JDK libraries.1 A fault-sensitive operation isaf-
fectedby a fault in that an exception is produced when the opera-
tion occurs and experiences a fault as a run-time error. We denote
P to be the set of fault-sensitive operations corresponding to the
specific set of faults of interest. In this paper we focus on faults
related to JavaIOExceptions.

In any given program execution, each element ofP could possi-
bly produce an exception that reaches some subset of the program’s
catch blocks.2 By viewing fault-sensitive operations as the defini-
tion points of exceptions, andcatch blocks as uses of exceptions,
we can define a coverage metric in terms ofexception-catch (e-c)
links. This definition is analogous to theall-usesmetric [33] of
traditional def-use analysis:

Definition (e-c link): Given a setP of fault-sensitive operations
that may produce exceptions in response to the faults of interest,
and a setC of catch blocks in a program to be tested, we say there
is apossible e-c link(p, c) betweenp ∈ P andc ∈ C if p could
possible triggerc; we say that a givene-c link is experiencedin a
set of test runsT , if p actually transfers control toc by throwing an
exception during a test inT .

Definition (Overall Exception Def-catch Coverage): Given a set
F of the possiblee-c linksof a program, and a setE of thee-c links
experienced in a set of test runsT , we say theoverall exception
def-catch coverageof the program byT is |E|

|F |
.

A high overall exception def-catch coverage indicates a thorough
test, but a low coverage may result from either insufficient testing
(i.e. a smallE) or an overly conservative estimate ofF , the set
of possible e-c links. As in other forms of coverage testing, it is
unacceptable forF to omit anye-c linkspossible at runtime, so
our analysis must be conservative, producing a superset ofF in the
presence of imprecision. This is a common problem in software
testing; it is addressed by using an analysis that isas precise as
possibleto eliminate many infeasible paths and by human tester

1In our algorithm description, we assume the set of fault-sensitive
operations is known, because they can be precalculated oncefrom
the Java libraries and reused for all the programs subject tofault-
injection testing with this same set of faults.
2There is a many-to-many relationship between system faultsand
Java exceptions [15]. For this paper we assume that the tester
merely has to choose one or more exceptions of interest. For more
details, see [15].

examination. As we will see in Section 4, the precision of our
analysis has a significant impact on the coverage results forthe
benchmarks.

Fault Injection Framework. Once we have calculated the pos-
siblee-c linksfor a program with the analysis in Section 3, then for
a specific fault-sensitive operation, we have identified thecatch
blocks that may handle the resulting exception, if it occurs. Given
the semantics of Java, there must be avulnerablestatement exe-
cuted during the correspondingtry block, that resulted in the exe-
cution of the fault-sensitive operation. The tester must try to have
execution exercise both this vulnerable statement, often acall, and
the fault-sensitive operation, so that the recovery code isreached.
Obtaining test data to accomplish this task is the same test case
generation problem presented by any def-use coverage metric.

The compiler uses the set ofe-c linksfound to identify where
to place the instrumentation that will communicate withMendo-
sus[24], the fault injection engine, during execution. This commu-
nication will request the injection of a particular fault when execu-
tion reaches thetry block containing the vulnerable operation and
will result in the recording of the execution of the corresponding
catch block.

Tester provided

Fault set

Tester provided

Fault set

Fault Injector-

Mendosus

Fault Injector-

Mendosus

Java
Application

Java
Application

Instrumented

Java Program

Instrumented

Java Program

Exception-Catch

Link Analysis

Exception-Catch

Link Analysis

Measured

Exception

Def-Catch

Coverage

Measured

Exception

Def-Catch

Coverage

Compile time

Run time

Possible

E-C links

Possible

E-C links

Observed

E-C links

Observed

E-C links

Figure 1: Compiler-directed fault injection framework

Figure 1 shows the organization of our fault-injection system.
The box labeledcompile timeshows that for a chosen set of faults,
corresponding to some set of exceptions and their fault-sensitive
operations, the analysis presented in Section 3 calculatesthe pos-
siblee-c linksand the vulnerable statements that are susceptible to
them. The compiler inserts the instrumentation calling on Men-
dosus to insert a fault during execution of the corresponding try
block and the recording instrumentation for recovery code in the
catch block. Then, the tester runs the program and gathers the
observed e-c linksfrom that run. The tester then may have to try
to make the program execute other vulnerable statements (i.e., by
varying the inputs) in order to cover more of the possiblee-c links.
Finally, the test harness calculates the overall exceptiondef-catch
coverage for this test suite.

3. COMPILE-TIME ANALYSIS
Figure 2 illustrates the high level structure of the two-phased

compile-time exception-catch link analysis which we designed to
calculatee-c linksin Java programs.Exception-flowanalysis takes
a static representation (i.e., AST) of a Java program as wellas
its call graph, and produces thee-c linkset of the given program.
Unlike previous exception-flow analyses [34, 20, 44] which relied
on interprocedural propagation of exception types, our analysis is

object-based, distinguishing between exception objects created by
different new() statements. TheDataReachanalysis serves as a
postpass filter which uses the reference points-to graph [35, 37] of
the program to discard as many infeasiblee-c linksin the set pro-
duced by exception-flow analysis as possible, so as to increase the
precision of the entire analysis. Intuitively, both of these analysis
phases can vary in their precision, because they effectively are pa-
rameterized by the points-to and call graph construction analyses
used as their inputs. Various analysis choices are available for call
graph construction [13, 4, 16] which differ in their cost andthe
precision of the resulting graph. The empirical results discussed
in Section 4 show that the precision of the call graph and points-to
graph has significant impact on the precision of the finale-c linkset
obtained.

possible e−c links

Call Graph

AST
Exception−Flow Analysis

Points−to Graph (Optional)DataReach Filter

possible e−c links

Figure 2: Two phases of exception-catch link analysis

3.1 Exception-flow analysis
In Java, if code in some method throws an exception3 either the

exception is handled within the method by defining acatch block
for it, or the method declares in its signature that it might throw this
kind of exception when called. In the latter case, its callers must
either handle the exception or declare that they throw it as well [3].
We want to find the relationship betweencatch blocks and fault-
sensitive operations. We use “throw statement” to represent all
fault-sensitive operations in our discussions for simplicity; we ac-
tually mean all instructions or calls that may throw some exception,
if a fault occurs.

A naive analysis that relies only on examination of user declared
exception types incatch blocks and method signatures is too inac-
curate to yield information of practical use. In part this isbecause
the declared exception can be a supertype, subsuming many excep-
tion types that actually cannot be thrown in this context. Moreover,
a method may declare that some exception may be thrown, when
actually no exceptions can ever be raised; this can occur when the
implementation of some method has changed, but the method dec-
laration is not updated. Dynamic dispatch can add to the impreci-
sion of the declared exception information. Suppose classA is the
superclass ofB and methodbar() is declared in both of them, but
only A.bar() may throw an exception of classE when called. If
some other methodfoo() contains a calla.bar() for a of static
typeA, thenfoo() must define a handler for exceptionE or declare
that it throws this exception. However if at runtime referencea al-
ways points to aB object, no exception can ever be thrown at the
call site.

Our exception-flow analysis is an interprocedural dataflow anal-
ysis that calculates for eachcatch block, all thethrow statements
whose exceptions could potentially be handled by thatcatch. This

3We are only consideringcheckedexceptions, since exceptions re-
lated to I/O faults are checked.

is a form ofdef-useanalysis as shown in the following section.
Exception-flow as a dataflow analysis.We defineexception-

flow as the flow of each exception object thrown perthrow state-
ment along the exception handing path [31] — from thethrow
statement to thecatch block where it is handled.

According to the semantics of exception handling in Java [3], we
can assume there exists a variable for each executing Java thread
that refers to the currently active exception object. During execu-
tion, anythrow andcatch operations are definitions and uses of
that variable, respectively. Thus, we can apply a variant ofthe tra-
ditional Reaching-Definition [1] dataflow analysis to this problem,
but there are some unique aspects of exception-flow that require
special handling:

1. Types are associated with each use and definition. A use
(i.e., acatch) kills all the reaching definitions whose type is
a subtype of the type of the use.

2. The dataflow is in the reverse direction to execution flow;
thus exception-flow is a backwards dataflow problem.

3. The key control-flow statements in a method aretry and
catch blocks,throw statements and method calls. All other
statements do not affect the exception-flow solution (given
that the call graph is an input to this problem). The order of
these statements within a method is of no consequence. What
is important is whether or not athrow or method call is con-
tained in atry block nest.4 Therefore, within a method, we
are only interested in paths from the method entry to each
try-catch block or to athrow or a method call not con-
tained in anytry-catch block.

The analysis is interprocedural because of the nature of excep-
tion handling: an exception propagates along the dynamic call stack
until a proper handler is reached. Our analysis is performedon a
call graph whose edge annotations record the correspondingcall
sites, since call sites may occur within differenttry-catch blocks,
which clearly affects the solution.5 Within each method, the
analysis calculates those exceptions which reach the entryto that
method, by consideringthrows and method calls not contained
within anytry-catch block and thosetry-catch blocks within
the method. The former statements yield some of those exceptions
possibly raised and not handled in the method. Statements within
the try-catch blocks may also yield unhandled exceptions, de-
pending on the types of the respectivecatch blocks. Thus the pro-
gram representation used is a variant of a call graph, where each
method node has an inner structure consisting of an edge fromthe
entry node to each uncoveredthrow or method call, and an edge
to each outermosttry-catch block.

We define for each method the set of reaching exception objects
that can reach its entry:

Definition (ReachingThrows(methodM)): The set of allthrow
statements for which there exists an exception handling path [31]
from the throw statement to methodM , and the exceptions are
not handled in methodM . Figure 3 gives an example illustrat-
ing the definition ofReachingThrows. We can see that the call
site bar() inside methodfoo() is inside thetry block, so that
SocketException thrown inbar() will be handled (i.e., killed)
in foo(). However, exceptionOtherException, also possibly
thrown bybar(), will not be handled and thus appears inReach-
ingThrows(foo). If the call tobar() had not been placed within

4In Java,try blocks can be nested within each other. Handlers are
associated with exceptions in inner to outer order [3].
5Adding these annotations is not difficult for any call graph con-
struction algorithm.

a try-catch block in foo(), then both exceptions (i.e.,Socke-
tException, OtherException) would appear inReachingTh-
rows(foo). Therefore, our analysis can be considered to have some
flow-sensitiveaspects, in that it captures the relation oftry-catch
blocks to the call sites andthrow statements within them.

}

thrown inOtherException bar

barReachingThrows()

SocketException bar

OtherException barthrown in
fooReachingThrows()

void foo() throws Exception{
 try{
 bar();
 }catch (IOException ioe){..}
}

void bar() throws Exception{
...
 throw new SocketException();
...
 throw new OtherException();

thrown in

Figure 3: Example of ReachingThrows

The dataflow equations for theReachingThrowsproblem are de-
fined on the annotated call graph of the program.6 We defineRT(m),
the ReachingThrows at the entry to methodm, as

RT (m) =⋃
t∈T

(gen(t) − kill(trynest(t)))
∪

⋃
cs∈CS

⋃
m′∈targets(cs)(RT (m′) − kill(trynest(cs))),

whereT is the set of throws inm; gen(t) is the exception thrown
by throw statementt; trynest(k)is the (possibly empty) nest of
try-catch blocks containing statementk; kill(trynest(k)is the set
of throws of exception types handled by thecatch blocks cor-
responding totrynest(k), or ∅ if trynest(k)is empty;CS is the set
of call sites inm; and targets(cs) is the set of all run-time tar-
get methods that can be reached by call sitecs (there can be more
than one target of a polymorphic call). Note also that the setdif-
ference operation must respect the exception inheritance hierarchy;
subtraction of a kill set including exception typee must remove any
exceptions of subtypes ofe as well ase itself.

These dataflow equations are consistent with the definition
of a monotone dataflow analysis framework [25] and therefore,
amenable to fixed-point iteration.7

Worst case complexity. The dataflow problem so defined is
distributive and 2-bounded [25]; therefore, the complexity of the
analysis isO(n2) wheren is the number of methods. Given our
program representation, the time cost of processing each method to
find the constant terms in these equations is linear in the number of
try-catch blocks, call sites andthrow statements in the method,
which is bounded above byk, the maximum number of statements
in a method; this adds akn term to the above complexity. There-
fore, the overall worst case complexity is dominated by thatof the
dataflow equations solution,O(n2).

6Under certain conditions[3],finallys behave likecatches
and/orthrows. Our algorithm handles these situations correctly,
but we omit the details involvingfinallys for brevity.
7The iteration is only necessary here to handle interprocedural
loops. Our implementation uses a prioritized worklist algorithm;
nodes in the worklist are kept in postorder order.

Analogous to classical dataflow use-def/def-use chains, our anal-
ysis producese-c linksbetween each of thethrow statements and
their correspondingcatch blocks. By performing exception-flow
analysis, we can find all thee-c links(ti, hj) wherethrow ti can
potentially triggercatch block hj . Furthermore, by recording
the interprocedural propagation path ofti, we can provide the call
chains fromhj to ti to help the human tester understand why a
specifice-c link is not covered in some test.

Selective constructor inlining.The exception-flow analysis de-
scribed previously relies on having an annotated call graphfor the
program. In order to increase precision, we added selectivecon-
text sensitivity to the points-to analysis that we use to build the
call graph. Rather than building a full and costly context-sensitive
points-to analysis, we performedselective constructor inlining; that
is, we inlined each constructor at its call sites, when that construc-
tor contained athis reference field initialization using one of its pa-
rameters. Without this transformation, a context-insensitive anal-
ysis would make it seem that the same-named fields of all objects
initialized in this constructor could point to all the parameters so
used [27, 26]. If we run a context-insensitive points-to analysis af-
ter this transformation, we obtain some degree of context sensitiv-
ity for constructors, eliminating some imprecision and obtaining a
more precise call graph and points-to graph for both our exception-
flow and DataReach analysis phases.

3.2 Data reachability analysis (DataReach)
We want to use a fairly precise program analysis to eliminate

as many infeasible interprocedural paths as possible, to reduce the
work that otherwise must be done by human testers whene-c links
based on these paths cannot be covered. Using a more precise anal-
ysis for call graph construction such as points-to analysis[35, 37]
helps to reduce the number of infeasiblee-c linksfound. However,
in practice even a very precise call graph building algorithm intro-
duces many infeasiblee-c links. Figure 4 is an example of typical
use of the Java network-disk I/O packages. Figure 5 illustrates how
infeasiblee-c linksare introduced even given a fairly precise call
graph for the code. As we can see, thetry block in readFile
is only sensitive to disk faults and thetry block in readNet is
only sensitive to network faults. But exception-flow information
is merged inBufferedInputStream.fill() and propagated to
bothreadFile andreadNet; thus, two infeasiblee-c linksare in-
troduced which reduce the subsequent possible runtime coverage
to less than 50%.

This can be solved by using a different program representation
such as a call tree [38] instead of a call graph. However, construct-
ing a call tree by compile-time analysis is too expensive andonce
constructed, this representation is too large to scale appropriately.
For example, to remove the infeasiblee-c linksin Figure 5, the call
tree algorithm must be able to find that there are only two feasi-
ble call chains which share a middle segment of length three.To
separate these two chains would require a context-sensitive points-
to analysis analogous to 4-CFA [40, 41], an expensive analysis.
In many cases the length of the shared segment is even longer
(e.g., when you need to wrap the basic InputStream with more than
one filter class, such asBufferedInputStream & DataInput-
Stream).

The intuitive idea of our approach is to use data reachability to
confirm control-flow reachability, in that interproceduralpaths re-
quiring receiver objects of a specific type can be shown to be infea-
sible if those type of objects are not reachable through dereferences
at the relevant call site. Continuing with Figure 4, consider the call
sitein.read() in methodreadFile. We want to know whether
SocketInputStream.read()can be called during the lifetime of

void readFile(String s){
byte[] buffer = new byte[256];
try{
InputStream f =new FileInputStream(s);
InputStream in=new BufferedInputStream(f);
for (...)
c = in.read(buffer);

}catch (IOException e){ ...}
}

void readNet(Socket s){
byte[] buffer = new byte[256];
try{
InputStream n =s.getInputStream();
InputStream in=new BufferedInputStream(n);
for (...)
c = in.read(buffer);

}catch (IOException e){ ...}
}

Figure 4: Code Example for Java I/O Usage
readFile

FilterInputStream.read(byte[])

BufferedInputStream.fill()

BufferedInputStream.read(byte[],int,int)

BufferedInputStream.read1(byte[],int,int)

FileInputStream.read(...)

Disk Access

Call Graph Edges

SocketInputStream.read(...)

readNet

Network Access

e−c linkInfeasiblee−c linkFeasible

Figure 5: Call Graph for Java I/O Usage

in.read(). In the explanation below, we refer toin.read() as
theoriginal call and toSocketInputStream.read() as thetar-
get call site. The argument about data reachability relies on the fol-
lowing intuition: if SocketInputStream.read() is called, some
object ofSocketInputStreammust have been created previously
to serve as the receiver. There are only three ways this can occur:

1. The object is createdduring the lifetime of the original call
and passed to the target call site by assignments between
method return values and local variables.

2. The object is associated within by field dereferences of one
of the global variables (i.e., Java static fields), that occur dur-
ing the lifetime of the original call.

3. The object is associated within by field dereferences of one
of the arguments of the original call (including the receiver),
that occurduring the lifetime of the original call.

Therefore given an original call site, we can express the feasibil-
ity of a particular call path in terms of whether some data reachabil-
ity is possible according to these conditions. For example,to show
thee-c linkreferred to above is infeasible, we verify that there is no
object in the points-to set of the receiver of the target callsite with
typeSocketInputStream that can either be created in one of the

methods reachable from the original call, or reachable by transi-
tive field loads from the receiver or the arguments of the original
call site or static fields. This means that the exception-flowdef-use
path is infeasible. Note, we only consider object fields and static
fields loaded inmethods reachable from the original call. Clearly,
we need reasonably precise points-to information [23, 35] to obtain
the high-quality data reachability information.

DataReach Algorithm. The DataReach algorithm requires that
we have the points-to graph and call graph of the program [23,
35]. First, we calculateuniverse: the set of all methods that are
reachable from the given original call (according to the call graph).
This set contains all the instructions that can be executed during
the lifetime of the original call. Second, we collect all thenew
statements inuniversefrom which we can deriveN : the set of all
objects created during the lifetime of the original call. Third, we
collect all the static field loads inuniverse, and calculateS: the
union of the points-to sets of static fields loaded during thelifetime
of the original call. Fourth, we calculateP : the union of points-to
sets of arguments (including receivers) of the original call site, and
setU = N ∪ S ∪ P . Fifth, we collect all the instance field loads
in universeand calculateU∗: the closure ofU under the instance
field dereferences that may occur during the lifetime of the original
call. Finally, we intersectU∗ with the points-to set of the receiver
of the target call site. If we are trying to prove the infeasibility of
a particular library call for example, we merely need to showthat
there are no objects in the intersection with type appropriate for the
call to have occurred.

The algorithm in Figure 6 is based on the ideas stated above.
This algorithm actually calculates the setreachablemethods, the
set of all methods reachable through data reachability fromthe
given original call.

In summary, if a fault occurs during the original call, then an ex-
ception may be handled by acatch block associated with thetry
in which the original call is nested. In this case, there is a corre-
spondinge-c linkresulting from an excepting call to some method
f or throw in methodf during the lifetime of the original call. If
the reachablemethodsset does not containf , then thee-c link is
spurious (i.e., corresponds to an infeasible control-flow path).

Worst case complexity.The algorithm is actually extended from
optimistic RTA, where thewhile loop iterates at mostn (number of
methods) times. At first glance, methodreachable()may be called
n ∗E times whereE is the number of call graph edges. But when-
ever reachable()returns false, the call edge can be added into a
map indexed by the objects needed to make the call edge “reach-
able”. And when more objects are added intoU, the map can be
checked to instantiate some of the call edges. We have the refer-
ences to the objects and we can implemente the “map” by adding
annotations on object nodes in the points to graph, thus bothof
these operations are constant time. Soreachable()only needs to be
calledE times. The cost of runningreachable()will not exceed the
number of objects pointed to by the receiver, which is bounded by
but often much smaller thanr: number of objects in the points-to
graph, (e.g., the total number of object creation sites in the pro-
gram). For calculatingU, remember that the algorithm collects an
object along an edge in the points-to graph at most once. Assume
that the maximum number of fields in an object ist. Then, over the
entire algorithm we explore at mostO(r2t) edges in the points-to
graph. So the worst case complexity of DataReach is dominated by
O(E ∗ r + r2t) (i.e., at most cubic in terms of the program size,
where bothE andr are proportional toO(n) in practice).

4. EMPIRICAL RESULTS
In this section we discuss the instrumentation used in our

Boolean reachable(U, receiver, method)
{

if method is private or static, return true;
intersection = U∩ receiver’s points-to set
if there are objects in intersection

with type that resolve to method
return true;

else return false;
}

Set closure(U, fieldset)
{

for each object in U
for each field of object

if (field in fieldset)
U += pointsto set(object.field);

}

Main Algorithm:
reachablemethods = empty
fieldset = empty
pendingarcs = call edges from the original call site
U = points-to sets of arguments of the original call site
while reachablemethods changed

for each arc in pendingarcs
if reachable(U, arc.receiver, arc.targetmethod)

remove arc from pendingarcs
reachablemethods += arc.targetmethod
pendingarcs += call edges from arc.targetmethod
fieldset += instance field references in arc.targetmethod
U += new objects created in arc.targetmethod
U += points-to sets of static fields in arc.targetmethod
U = closure(U, fieldset)

end if
end for

end while

Figure 6: DataReach Algorithm

methodology and report our experimental findings.

4.1 Instrumentation
The methodology described in Section 2 requires that the Java

program be instrumented to report coverage of thee-c linksexer-
cised and to communicate withMendosusto request specific faults.
A detailed description of the methodology was described in our
previous paper [15]; we briefly summarize here.

The instrumentation is accomplished through method calls.For
eache-c link(p, c), we first locate thecatch block c, and the cor-
respondingtry block. At the entry of thetry block, a special
method call is inserted to directMendosusto inject the fault se-
lected at static instrumentation time. At the entry of thecatch
block another method call is inserted to query and record thecall
stack encapsulated in the caught exception. The instrumentation
methods called are designed so that each instrumentation point can
be turned on and off by a command line option or an environment
variable. Note that the fault must be selected so that one andonly
one fault-sensitive operation8 will fail and throw an exception. In
addition, we record the I/O objects created by the user code during
execution, in order to limit the scope of the injected faultsto this
set.

8e.g., network read/write, disk read/write, network accept, network
connection, etc..

4.2 Experimental setup & benchmarks
We implemented exception-flow analysis and DataReach anal-

ysis as two separate modules in the Java analysis and transforma-
tion framework Soot [37] version 2.0.1, using a 2.8GHz P-IV PC
with Linux 2.4.20-13.9 and the SUN JVM 1.3.108 for Linux. By
separating the two phases of our analysis, we were able to show
the gains from adding the DataReach postpass. Soot providesa
call graph builder usingClass Hierarchy Analysis(CHA) [13]. We
implemented another call graph builder usingRapid Type Analy-
sis (RTA) [4]. Soot also providesSpark, a field-sensitive, flow-
insensitive and context-insensitive points-to analysis (a form of 0-
CFA) [41, 36, 35, 23]. The instrumentation phase is also imple-
mented as a separate module in Soot.

We experimented with the following six different analysis con-
figurations9

1. CHA — Build call graph with Class Hierarchy Analysis.
2. RTA — Build call graph with Rapid Type Analysis.
3. PTA — Build call graph using Spark.
4. InPTA — Build call graph with Spark plus selective con-

structor inlining.
5. PTA-DR — Use Spark to provide the points-to graph and call

graph plus use DataReach as a postpass filter.
6. InPTA-DR — Use Spark plus selective constructor inlin-

ing to provide the points-to graph and call graph, and use
DataReach as a postpass filter.

We used four Java web service applications of moderate size as
our benchmarks.

• FTPD, a Ftp Server in Java by Peter Sorotokin v0.6
• JNFS, a server application that runs on top of a native file

system and listens to and handles requests for both read and
write accesses to files. The server communicates with vari-
ous clients via RMI [32]

• Haboob, a simple web server based on SEDA, a staged event-
driven architecture [48]

• Muffin, a web filtering proxy server [28]

Name Classes Methods LOC
FTPD 11(1407) 128(7479) 2783
JNFS 56(1664) 447(9603) 10478
Haboob 338(1403) 1323(7432) 39948
Muffin 278(1365) 2080(7677) 32892

Table 1: Benchmarks

Column 2 of Table 1 is the number of user classes, with those in
parenthesis comprising the JDK library classes reachable from each
application. The data in column 3 are the number of user meth-
ods and those in parenthesis are the JDK library methods reachable
from each application. Column 4 gives the number of lines of code
in user code source files. The method reachability information is
calculated by Spark, with lines of code calculated using theUNIX
wc utility. JNFS is the only multi-node application.10

As shown in Figure 1, dynamic testing is conducted by running
the instrumented code with various workloads to exercise differ-
ent vulnerable points in the applications. Experiencede-c linksare
recorded in a log file during the test. By processing thee-c link
information file and log file after the test we obtain the coverage
data. The dynamic tests were performed on a cluster of 800MHz
9Selective constructor inlining and DataReach were only used
where stated explicitly.

10Currently, we assume the network supporting RMI is reliable; that
is, currently we ignore faults that affect RMI transportation.

PIII PCs using Linux 2.2.14-5.0; we used IBM Java 2.13 Virtual
Machine for Linux for all of our benchmarks.Mendosuswas run-
ning as a daemon process on each of these machines.

In this testing we made the usual assumptions that (i) faultsare
independent of each other, and (ii) faults occur rarely. We only in-
jected one fault per run, resulting in at most onee-c linkcovered per
test run; therefore, we needed to run each benchmark severaltimes,
each time targeting onee-c link. Because we lack a model for faults
that tend to happen together, systematically testing more than one
fault at at time is difficult. A testing harness was constructed, which
iterated over thee-c linksinformation file, repeatedly running one
benchmark program as necessary. As usual it was the tester’sre-
sponsibility to find proper inputs and program configurations, so
that designated vulnerable statement (and fault-sensitive operation)
were executed.

4.3 Empirical data
Table 2 lists the number ofe-c linksreported for each benchmark

in each analysis configuration. The last column shows the number
of e-c linksactually covered for each benchmark in the fault injec-
tion test. Table 3 is the overall exception def-catch coverage for all
the benchmarks derived from the data in Table 2. We can see from
the tables that the use of points-to analysis for call graph construc-
tion dramatically reduced the number ofe-c linksreported in all of
the benchmarks. With RTA or CHA, the number of falsee-c links
reported is 2 to 6 times more than the actuale-c linksthat we can
cover in the testing.11

Program CHA RTA PTA InPTA PTA-DR InPTA-DR Covered
FTPD 34 34 16 16 16 13 11
JNFS 104 104 39 39 22 19 16
Haboob 96 73 12 12 12 12 10
Muffin 480 258 112 112 87 42 35

Table 2: Number of e-c links

Program CHA RTA PTA InPTA PTA-DR InPTA-DR
FTPD 32% 32% 69% 69% 69% 85%
JNFS 15% 15% 41% 41% 72% 84%
Haboob 10% 14% 83% 83% 83% 83%
Muffin 7% 14% 31% 31% 40% 83%

Table 3: Overall Exception Def-catch Coverage, in percentage

The context sensitivity obtained by adding selective constructor
inlining before performing points-to analysis had little effect on any
of the benchmarks, when we only consider call graph construction.
However, when combined with the DataReach postpass, the addi-
tional precision provided, reduced the number of reportede-c links
in three out of four benchmarks (i.e., compare columnsPTA and
InPTA-DR in Table 2). For thee-c linksreported byInPTA-DR,
the coverage percentage of all four benchmarks was stabilized at
approximately 84% with small variance. In Muffin, the additional
precision helps cut the number of reportede-c linksby more than
half (see Table 2). Thus it is clear that DataReach is a clientof
precise points-to analysis, where added precision can makea dif-
ference.

Haboob is special in that it is the only benchmark that uses a self-
constructed non-blocking network library, which does not have as
much polymorphism as the standard JDK library. This is why the

11Recall that all of these analyses aresafemeaning that if one anal-
ysis fails to report ae-c linkthat another analysis reports, then that
e-c link is spurious.

simple PTA analysis is sufficient to analyze Haboob, as shownin
Table 2.

Figure 7 shows the running times of each part of the static anal-
ysis on each benchmark using configurations PTA-DR and InPTA-
DR. Running times of the instrumentation phase are too smallto
be shown, under 2 seconds for all the benchmarks. Our current
analysis always finished in less than an hour. In the worst case
for the InPTA-DR configuration, the time our analysis took tofind
onee-c link in a program is less than 3 minutes. We believe that
an optimized implementation of DataReach will improve overall
analysis performance significantly. DataReach is time consuming,
but it is effective in reducing spuriouse-c links(i.e., comparing the
columns for PTA and PTA-DR, inPTA and inPTA-DR in Table 2).
For two of the benchmarks, Muffin and JNFS, where our analysis
took much longer to finish, DataReach used about 90% of the total
running time; for the other two benchmarks, it cost about 50%of
the total running time.

4.4 Uncoverede-c linksin Muffin
Using the InPTA-DR configuration of our analysis we were able

to identify and covercatch blocks related to I/O fault recovery,
leaving only a small portion, 16% to 17%, as needing human in-
spection. Let’s examine more closely some of these uncovered e-c
links to find out why they remained uncovered by our testing. As a
case study we will use our Muffin benchmark, examining the seven
uncoverede-c linksproduced by InPTA-DR. They can be parti-
tioned into 2 categories according to the reasons why they are not
covered.

The first category consists ofe-c linksnot covered for subtle rea-
sons which are really hard to discover through static analysis, but
not so difficult for programmers to reason about. There are 4e-c
links in this category. One of them involves atry-catch block
which handles exceptions thrown because of faults in a TCP con-
nection. By examining the code we found that it is part of a re-
solver which translates machine names (i.e., ASCII strings) to IP
addresses by communication (coded in another method with sepa-
ratetry-catch block) with a given DNS server. However, TCP
is only used when a message is large enough, which will not oc-
cur since the messages are just domain names and IP addresses.
Although thise-c link was not covered, the input data required
to cover thise-c link would need to include extremely long URL
names to force use of TCP; this is information that a human tester
can determine but is very difficult for an automatic analysisto as-
certain. By not being able to cover thise-c linkeasily, our method-
ology focuses the attention of the tester on this part of the code.

Considering the other 3e-c links in the first category, they in-
volve handlers of exceptions thrown when reading aURLFile and
the exceptions thrown because of problems in network reading op-
erations. In Java, aURLFile can be a local file or a remote file
which must be accessed via the network, depending on its name
which is the value of someString variable. In Muffin all of the
URLFiles are actually local files, only subject to disk access ex-
ceptions.

The second category is composed of 3e-c linkswhich are dif-
ficult to confirm as feasible or not by human inspection. As men-
tioned in Section 3.1 our analysis provides the call chains that start
from cj and end withpi for any e-c link (pi, cj). But even with
these call chains given, the job of deciding whether an uncovered
e-c link in this category is actually infeasible is hard, since these
call paths are prohibitively long and confusing to trace. The exam-
ple given below is one of the possible call chains found for one of

thesee-c links.12 There are several hundred call paths given for this
singlee-c link.

org.doit.muffin.Handler.processRequest()
org.doit.muffin.Https.recvReply()
org.doit.muffin.Reply.read()
org.doit.muffin.Reply.read()
java.io.SequenceInputStream.read()
java.util.zip.GZIPInputStream.read()
java.util.zip.InflaterInputStream.read()
java.util.zip.InflaterInputStream.fill()
java.io.BufferedInputStream.read()
java.io.BufferedInputStream.read1()
java.io.BufferedInputStream.fill()
java.util.jar.JarInputStream.read()
java.util.zip.ZipInputStream.read()
java.util.zip.ZipInputStream.readEnd()
java.util.zip.ZipInputStream.readFully()
java.io.PushbackInputStream.read()
java.io.FilterInputStream.read()
java.io.FileInputStream.read()

We inspected these call chains and found all of the call chains
for this particulare-c linkshare the same prefix, but afterSequen-
ceInputStream.read() they begin to vary by selectingread()
methods from different subclasses ofInputStream and following
different permutations of calls. After reading the source code of
SequenceInputStream we found that this class uses a container
classEnumeration to keep track of subsequentInputStreams.
Although no object ofGZIPInputStream has ever be assigned to
the subsequent input stream ofSequenceInputStream, the usage
of the container class confuses the points-to analysis intoproduc-
ing the current result:read() in SequenceInputStream may
call read() in GZIPinputStream and also almost every subclass
of InputStream.

Call chains for all 3e-c linksshare the same characteristics de-
scribed here; they all involve the use of containers. This phe-
nomenon is caused by context-insensitive points-to analysis, in a
manner similar to the analysis imprecision for constructors dis-
cussed previously. More precise points-to analysis [26] addresses
this problem by distinguishing calls by their receiver object when
analyzing methods, thus producing a less connected points-to
graph; this should reduce the call chains for ae-c link, or maybe
even make it possible for DataReach to judge that thee-c link is
actually infeasible. We believe that additional context sensitivity
added to the points-to analysis would further improve the precision
of our e-c links, but further experimentation is needed.

5. RELATED WORK
This paper presents exception-catch link analysis and its use in

def-use testing of Java program recovery code. There is muchpre-
vious research relevant to this work, but due to limitationsof space,
we will discuss only the most closely related results.

Dataflow testing and coverage metrics.There is a large body
of work that explores def-use ordataflow testingin different pro-
gramming language paradigms. The seminal papers established a
set of related dataflow test coverage metrics and explained their in-
terrelations [33, 14]. The contribution of our work is to define and
implement a def-use analysis of appropriate precision thatfairly ac-
curately matches exceptions (i.e., representative exception objects
created at specific creation sites) to their handlers. This is espe-

12Parameters are omitted for readability.

1

10

100

1,000

10,000

Benchmarks

S
e

c
o

n
d

 (
lo

g
)

Inline PTA Exception-Flow DataReach Total

Inline 3.9 4.2 4.2 6.7

PTA 56.7 53.7 67.7 62.2 659.4 453.1 304.5 307.2

Exception-Flow 15.4 12.1 16.8 12.5 20.9 17.5 25.1 19.2

DataReach 144.6 155.8 71.7 97.2 2,419.2 3,490.4 2,618.0 4,581.3

Total 220.6 221.6 160.4 171.9 3,103.7 3,961.0 2,954.3 4,907.7

InPTA-DR PTA-DR InPTA-DR PTA-DR InPTA-DR PTA-DR InPTA-DR PTA-DR

FTPD Haboob JNFS Muffin

Figure 7: Time Cost Break-down of Static Program Analysis

cially important to ensure the dependability of the web applications
that are our focus [15].

Sinha et. al defined an interesting and novel set of coverage met-
rics for testing exception constructs and gave their subsumption re-
lations [42]. The metrics were defined for checked exceptions ex-
plicitly thrown in user code, however they seem easily extensible
to both implicit and explicit checked exceptions. Our overall ex-
ception def-catch coverage metric seems equivalent to an extended
version of theirall-e-deactscriteria defined for both implicit and
explicit exceptions. Because we are most interested in recovery
code that deals with problems due to system interactions, wefocus
on implicit checked exceptions that are thrown in JDK libraries,
whereas they deal with user-thrown exceptions, that are probably
user-defined as well. No exception analysis or implementation ex-
perience with their metrics is presented.

The overall exception def-catch coverage metric fore-c links,
that relates resource-usage faults to specific exception objects, dif-
fers slightly from our previousoverall fault-catchcoverage met-
ric [15]. Our original metric required the injection of eachkind
of fault that could trigger a particular exception for a fault-sensitive
instruction, rather than trying to cause a specific exception to occur.
Both metrics are analogous to theall-usesmetric in traditional def-
use testing [33], with fault-sensitive operations corresponding to
definitions of exceptions andcatch blocks corresponding to uses.
Overall fault-catch coverage requires the application of the com-
plete range of faults during testing, consistent with existing oper-
ating systems fault-injection technology. In this paper, because we
are injecting faults at the interface between JDK I/O methods and
native methods rather than at the device-level [15], we cannot dif-
ferentiate between some device-level faults that result inthe same
exception, and thus we inject only one fault to trigger each excep-

tion.
As stated in Section 1, traditional fault-injection testing is per-

formed by treating the application as a black box. Success isjudged
by how often the application does not crash in response to an in-
jected fault. Other white-box, control-flow coverage metrics have
been proposed by some groups for use with fault-injection testing;
these correspond to previous metrics (e.g., branch, edge and basic
block coverage) and have been summarized previously [15].

Analysis of exception handling.Two previous exception-flow
analyses were aimed at improving exception handling in programs,
for example avoiding exception handling through subsumption [34,
20]. These differ from our exception-catch link analysis insignifi-
cant ways. First, their call graph is constructed using class hierar-
chy analysis, which yields a very imprecise call graph [13, 4]. Sec-
ond, these analyses trace exception types through the call graph of
the program to the relevantcatch clauses that might handle them.
Conceptually, these analyses use one abstract object per class. An
operation that can throw a particular exception is treated as a source
of an abstract object that is then propagated along reverse control-
flow paths to possible handlers (i.e.,catch blocks).

Jo et. al [20] present an interprocedural set-based [19] exception-
flow analysis; only checked exceptions are analyzed. Experiments
show that this is more accurate than an intraprocedural JDK-style
analysis on a set of benchmarks five of which contain more than
1000 methods. Robillard et. al [34] describe a dataflow analy-
sis that propagates both checked and unchecked exception types
interprocedurally. Neither approach analyzes Java libraries unless
source code is available (not the case for the JDK). They eachhan-
dle a large subset of the Java language, but make the choice toomit
or approximate some constructs (e.g.,static initializers, finallys).
Both of these analyses are more imprecise than ours, especially

in their approximation of interprocedural control-flow; neither of
them trace definitions of specific exception objects to theirappro-
priatecatch blocks.13

Another analysis of programs containing exception handling
constructs [43] calculates control dependences in the presence of
implicit checked exceptions in Java. This analysis focuseson defin-
ing a new interprocedural program representation that exposes ex-
ceptional control-flow in user code. In a more recent technical re-
port [44], Sinha et. al present an interprocedural program repre-
sentation which more accurately embeds the possible intraproce-
dural control-flow through exception constructs (i.e.,trys,catchs
andfinallys). Class hierarchy analysis is used to construct the
call edges in this representation. An exception-flow analysis is
defined by propagation of exception types on this representation
to calculate links between explicitly thrown checked exceptions
in user code and their possible handlers. It seems clear thatthis
analysis could be extended to include implicit checked exceptions
as well, assuming that the program representation could be con-
structed from the bytecodes of the JDK library methods, and that
the fault-sensitive operations could be identified. The CHAversion
of our analysis seems the most similar to the analysis presented
in [44]; this version is shown on our benchmarks to be too impre-
cise for obtaining coverage ofe-c linkscorresponding to implicit
checked exceptions, the focus of our work.

Choi et. al [8] designed a new intraprocedural control-flow
representation, that accounted for operations that might generate
unchecked exceptions calledPEIs, potentially excepting instruc-
tions; they used this representation as a basis for safe dataflow anal-
yses for an optimizing compiler. It is difficult to compare their rep-
resentation with the others described here, because they capture dif-
ferent sorts of exceptions, such asNullPointerException, that cor-
respond to different possibly excepting instructions.

Exceptions and compilation.Dynamic analyses have been de-
veloped to enable optimization of exception handling in programs
that use exceptions to direct control-flow between methods,such
as some of the Java Spec compiler benchmarks [47]). The IBM
Tokyo JIT compiler [31], successfully uses a feedback-directed op-
timization to inline exception handling paths and eliminatethrows
in order to optimize exception-intensive programs whose perfor-
mance can be improved up to 18% without affecting performance
of non-intensive codes. InLaTTe[22], exception handlers are pre-
dicted from profiles of previous executions and exception handling
code is only translated in the JIT on demand, so as to avoid thecost
when it is not necessary. TheMRL VM [9] performs lazy excep-
tion throwing, in that it avoids creating exception objects, where
possible, unless they are live on entry to their handler.

Points-to analysis. There is a wide variety of reference and
points-to analyses for Java which differ in terms of cost andpre-
cision. The information computed by these analyses can be used as
input to our exception-flow and data reachability analyses;clearly,
the precision of the underlying analysis affects the quality of the
computed coverage requirements. A detailed discussion of points-
to and reference analyses and the dimensions of precision intheir
design spectrum appears in [36]. Our partially context-sensitive
points-to analysis is most closely related to the context-sensitive
analyses in our previous work [27, 26]. These approaches avoid

13Note, in our analysis we use the usual approximation of not distin-
guishing the individual instances of exceptions created atthe same
creation site, but instead use one representative exception object
for them. This does not affect the accuracy of thee-c linkscom-
putation, whereas the abstract exception object used by these two
algorithms cannot distinguish between exceptions of the same type
created by two different sites.

the cost of non-discriminatory context sensitivity, whichseems to
be impractical; they rely on techniques which preserve the practi-
cality of the underlying context-insensitive analysis while improv-
ing precision substantially. This is achieved by effectively selecting
parts of the program for which the analysis computes more pre-
cise information, either by using parameterization mechanisms as
in [27, 26], or partial constructor inlining as in our current algo-
rithm. Other context-sensitive points-to analyses that seem to be
substantially more costly than ours, are presented in [11, 16, 30, 7];
these analysis algorithms implement non-discriminatorily context
sensitivity.

Infeasible paths. Bodik et al. present an algorithm for static
detection of infeasible paths using branch correlation analysis, for
the purposes of refining the computation of def-use coveragere-
quirements in C programs [6]. Our data reachability analysis fo-
cuses on the detection of infeasible paths in Java which arise due
to object-oriented features and idioms such as polymorphism; this
is not addressed in [6]. Souter and Pollock present a methodol-
ogy (without empirical investigation) for demand-driven analysis
for the detection of type infeasible call chains [45, 46]. Similarly
to their work, our analysis is demand-driven as we analyze the pro-
gram starting from the original call. However, our data reachabil-
ity analysis propagates information in terms of objects instead of
classes which will result in more precise analysis results.In addi-
tion, our work proposes a technique for summarizing the effects of
callees; this problem is not addressed in [45] and [46]. Our simple
RTA-like technique for collecting potential receiver objects proves
suitable for the problem of eliminating infeasiblee-c links; the em-
pirical results demonstrate that it can eliminate substantial number
of infeasible links.

6. CONCLUSIONS
We have defined a fairly precise exception-catch link analysis

which has been shown useful on our benchmarks for testing the
robustness of Java web services. Our full analysis algorithm out-
performs other (less precise) versions of the analyses thatwe inves-
tigated on our benchmarks, and exhibits significant precision gains
in the set ofe-c linkscalculated. Our use of data unreachability to
infer control-flow unreachability shows promise in allowing us to
prune spuriouse-c links.

Our automatic compiler-directed fault injection methodology ap-
plied to our benchmarks leaves, on average, approximately 16% of
the links uncovered and therefore needing to be examined by ahu-
man tester. This is an upper bound on thefalse positive e-c links
that are reported for these benchmarks. Given that testing is by its
nature an interactive activity, the uncoverede-c linkscan be seen
as drawing a tester’s attention to recovery code that require human
reasoning as part of the normal testing process.

Our future plans include testing application uses of other Java
JDK libraries, such asjava.net, java.rmi, and expanding our analy-
sis to handle multi-node programs and middleware that use config-
uration files for dynamic loading of classes.

7. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers – Principles,

Techniques and Tools. Addison Wesley, 1988.
[2] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell. Fault

injection and dependability evaluation of fault-tolerantsystems.
IEEE Transactions on Computers, 42(8):913–923, Aug. 1993.

[3] K. Arnold and J. Gosling.The Java Programming Language, Second
Edition. Addison-Wesley, 1997.

[4] D. Bacon and P. Sweeney. Fast static analysis of c++ virtual
functions calls. InProceedings of ACM SIGPLAN Conference on

Object-oriented Programing Systems, Languages and Applications
(OOPSLA’96), pages 324–341, Oct. 1996.

[5] R. V. Binder.Testing Object-oriented Systems. Addison Wesley,
1999.

[6] R. Bodik, R. Gupta, and M. L. Soffa. Refining data flow information
using infeasible paths. In M. Jazayeri and H. Schauer, editors,
Proceedings of the Sixth European Software Engineering
Conference (ESEC/FSE 97), pages 361–377. Springer–Verlag, 1997.

[7] R. Chatterjee, B. G. Ryder, and W. A. Landi. Relevant context
inference. InProceedings of the ACM SIGACT/SIGPLAN Symposium
on Principles of Programming Languages, Jan. 1999.

[8] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar. Efficient andprecise
modeling of exceptions for analysis of java programs. In Proceedings
of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, pages 21–31, September1999.

[9] M. Cierniak, G.-Y. Lueh, and J. M. Stichnoth. Practicingjudo: Java
under dynamic optimzations. In Proceeedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 13–26, 2000.

[10] M. Cukier, R. Chandra, D. Henke, J. Pistole, and W. H. Sanders.
Fault injection based on a partial view of the global state ofa
distributed system. InSymposium on Reliable Distributed Systems,
pages 168–177, 1999.

[11] J. D. David Grove, Greg DeFouw and C. Chambers. Call graph
construction in object-oriented languages. InProceedings of ACM
SIGPLAN Conference on Object-oriented Programing Systems,
Languages and Applications (OOPSLA’97), pages 108–124, Oct.
1997.

[12] S. Dawson, F. Jahanian, and T. Mitton. ORCHESTRA: A Fault
Injection Environment for Distributed Systems. InProc. 26th Int.
Symp. on Fault Tolerant Computing(FTCS-26), pages 404–414,
Sendai, Japan, June 1996.

[13] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented
programs using static class hierarchy. InProceedings of 9th
European Conference on Object-oriented Programming
(ECOOP’95), pages 77–101, 1995.

[14] P. Frankl and E. Weyuker. An applicable family of data flow testing
criteria. 14(10):1483–1498, Oct. 1988.

[15] C. Fu, R. P. Martin, K. Nagaraja, T. D. Nguyen, B. G. Ryder, and
D. Wonnacott. Compiler-directed program-fault coverage for highly
available java internet services. InProceedings of the International
Conference on Dependable Systems and Networks (DSN 2003), June
2003.

[16] D. Grove and C. Chambers. A framework for call graph construction
algorithms.ACM Transactions on Programming Languages and
Systems (TOPLAS), 23(6), 2001.

[17] R. G. Hamlet. Testing programs with the aid of a compiler. IEEE
Transactions on Software Engineering, 3(4):279–290, July 1977.

[18] S. Han, K. Shin, and H. Rosenberg. DOCTOR: An Integrated
Software Fault Injection Environment for Distributed Real-Time
Systems. InInt. Computer Performance and Dependability Symp.
(IPDS’95), pages 204–213, Erlangen, Germany, Apr. 1995.

[19] N. Heintze. Set-based analysis of ml programs. InProceedings of the
ACM Conference on Lisp and Functional Programmig, pages
306–317, 1994.

[20] J.-W. Jo, B.-M. Chang, K. Yi, and K.-M. Cho. An uncaught exception
analysis for java.Journal of Systems and Software, 2004. in press.

[21] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham. FERRARI: A
Tool for the Validation of System Dependability Properties. In Proc.
22nd Int. Symp. on Fault Tolerant Computing(FTCS-22), pages
336–344, Boston, Massachusetts, 1992. IEEE Computer Society
Press.

[22] S. Lee, B.-S. Yang, S. Kim, S. Park, S.-M. Moon, K. Ebcioglu, and
E. Altman. Efficient java exception handling in just-in-time
compilation.

[23] O. Lhoták and L. Hendren. Scaling Java points-to analysis using
Spark. LNCS 2622, pages 153–169, 2003.

[24] X. Li, R. P. Martin, K. Nagaraja, T. D. Nguyen, and B. Zhang.
Mendosus: A SAN-Based Fault-Injection Test-Bed for the
Construction of Highly Available Network Services. InProceedings
of the 1st Workshop on Novel Uses of System Area Networks

(SAN-1), Cambridge, MA, Jan. 2002.
[25] T. J. Marlowe and B. G. Ryder. Properties of data flow frameworks:

A unified model. InActa Informatica, Vol. 28, pages 121–163, 1990.
[26] A. Milanova.Precise and Practical Flow Analsis of Object-oriented

Software. PhD thesis, Rutgers University, 2003. Also available as
DCS-TR-539.

[27] A. Milanova, A. Rountev, and B. G. Ryder. Parameterizedobject
sensitivity for points-to and side-effect analysis. InProceedings of
the International Symposium on Software Testing and Analysis, pages
1–11, 2002.

[28] The Muffin world wide web filtering system. See
http://muffin.doit.org/.

[29] G. J. Myers.The Art of Software Testing. John Wiley and Sons, 1979.
[30] R. O’Callahan.The Generalized Aliasing as a Basis for Software

Tools. PhD thesis, Carnegie Mellon University, 2000.
[31] T. Ogasawara, H. Komatsu, and T. Nakatani. A study of exception

handling and its dynamic optimization in java. InProceedings of
ACM SIGPLAN Conference on Object-oriented Programing Systems,
Languages and Applications (OOPSLA’01), pages 83–95, 2001.

[32] M. J. Radwin. The java network file system. See
http://www.radwin.org/michael/projects/jnfs/.

[33] S. Rapps and E. Weyuker. Selecting software test data using data
flow information.IEEE Transactions on Software Engineering,
SE-11(4):367–375, Apr. 1985.

[34] M. P. Robillard and G. C. Murphy. Static analysis to support the
evolution of exception structure in object-oriented systems.ACM
Transactions on Software Engineering and Methodology (TOSEM),
12(2):191–221, 2003.

[35] A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis for java
using annotated constraints. InProceedings of the Conference on
Object-oriented Programming, Languages, Systems and
Applications, pages 43–55, 2001.

[36] B. G. Ryder. Dimensions of precision in reference analysis of
object-oriented programming languages. In Proceedings ofthe
Twelveth International Conference on Compiler Construction, pages
126–137, April 2003. invited paper.

[37] M. Sable. Soot: a java optimization framework. See
http://www.sable.mcgill.ca/soot/.

[38] M. L. Scott.Programming Language Pragmatics. Morgan
Kaufmann, 2000.

[39] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki,
J. Barton, D. Rancey, A. Robinson, and T. Lin. FIAT — Fault
Injection based Automated Testing environment. InProc. 18th Int.
Symp. on Fault-Tolerant Computing (FTCS-18), pages 102–107,
Tokyo, Japan, 1988. IEEE Computer Society Press.

[40] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow
analysis. In S. Muchnick and N. Jones, editors,Program Flow
Analysis: Theory and Applications, pages 189–234. 1981.

[41] O. Shivers.Control-Flow Analysis of Higher-Order Languages. PhD
thesis, Carnegie Mellon University, 1991.

[42] S. Sinha and M. J. Harrold. Criteria for testing exception-handling
constructs in java programs. In Proceedings of the International
Conference on Software Maintenance, 1999.

[43] S. Sinha and M. J. Harrold. Analysis and testing of programs with
exception-handling constructs.IEEE Transactions on Software
Engineering, 26(9):849–871, September 2000.

[44] S. Sinha, A. Orso, and M. J. Harrold. Automated support for
development, maintenance, and testing in the presence of implicit
control flow. Technical Report GIT-CC-03-48, College of
Computing, Georgia Institute of Technology, September 2003.

[45] A. L. Souter and L. L. Pollock. Type infeasible call chains. In
Proceedings of the IEEE International Workshop on Source Code
Analysis and Manipulation, 2001.

[46] A. L. Souter and L. L. Pollock. Characterization and automatic
identification of type infeasible call chains.Information and Software
Technology, 44(13):721–732, October 2002.

[47] Specbench.org. Java client/server benchmarks.
[48] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An architecture for

well-conditioned, scalable internet services. InSymposium on
Operating Systems Principles, pages 230–243, 2001.

