
A Semantics-Based Definition For
Interclass Test Dependence

Weilei Zhang, Barbara G Ryder
Department of Computer Science

Rutgers University
Piscataway, NJ 08854

{weileiz,ryder}@cs.rutgers.edu

ABSTRACT
The knowledge of interclass test dependence is important in de-
ciding class test order, facilitating the design of an efficient inte-
gration test plan. However to date, interclass test dependence is
defined based on a class diagram called the Object Relation Dia-
gram (ORD), which can only capture the syntactical relationships
between classes, and introduces spurious dependences not existing
in implementation. We explore a semantics-based definition for
interclass test dependence. A safe approximation algorithm is de-
signed and implemented to calculate interclass test dependence ac-
cording to the given definition. The algorithm propagates semantic
dependences at method-level granularity and is parameterized by
the precision of the corresponding program analysis. We experi-
ment with nine benchmarks and four different analysis configura-
tions. The empirical results show that the algorithm is practical
in terms of time cost. On average, the algorithm with the most
precise configuration recognizes 75.24% of the dependences from
the ORD-based approach as spurious. The algorithm is rather ac-
curate in that it discovers dependence cycles precisely in 6 out of
9 benchmarks (as evaluated by human inspection). The algorithm
uncovers additional opportunities for concurrent testing in each of
the benchmarks, with an on average gain of 52.5% over the ORD-
based definition.

Keywords
Interclass Test Dependence, Class Integration Test, Integration Test
Order

1. INTRODUCTION
Object-oriented (OO) programming introduces new challenges

for testing because of its language features of encapsulation and
polymorphism [4, 28]. Class is the kernel concept in both OO pro-
gramming and OO testing. A class usually requires other classes to
implement its functionalities (e.g., its parent class, a server class,
etc). As a result, the execution of a class does not solely depend on
its own implementation, but also on the implementations of its pre-
requisite classes. Intuitively speaking, if class B’s implementation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

affects class A’s test result, there is an interclass test dependence
from A to B. A and B are called the source and the target class of
the dependence respectively.1

Interclass test dependence is important in deciding class inte-
gration test order, facilitating the design of an efficient integration
test plan [18]. Such a plan must clarify the test focus for each in-
tegration step for the convenience of test coverage evaluation and
debugging [4]. Because the source class of a dependence requires
the target class to implement its functionalities, it is desirable to
integrate and test the source class after the target class has been
tested. If there is no dependence cycle and the dependence graph is
a directed acyclic graph (i.e., DAG), the reverse topological order
of the DAG can be used directly as the class integration order. The
existence of dependence cycles complicates the problem. There are
two approaches to address cycles: (i) to integrate all of the classes
in a cycle in one step and test them as a cluster that is usually more
costly to test and debug than a single class because of the enlarged
test scope and broadened test focus [4], or (ii) to break the cycle
by constructing test stubs. A test stub is a partial implementation
of the target class that simulates the needed functionalities, and is
usually difficult to construct [3]. Clearly, obtaining interclass test
dependences as accurately as possible may eliminate spurious de-
pendences that contribute to cycles. In the cases where dependence
cycles do exist, more precise dependences will keep cycle size as
small as possible.

A more precise dependence graph may help to parallelize inte-
gration test activities and speed up the test process. The existence
of interclass test dependences serializes test activities, since each
target class must be tested before its corresponding source class.
Classes may be tested concurrently (i.e., in parallel) if there is no
dependence between them. This may result in a shorter test pro-
cess time frame, a very desirable outcome because many software
projects are short-changed in terms of the time allowed for testing.

Since interclass test dependence as defined here corresponds to
a semantic dependence between classes, it is also useful in many
other areas of software engineering. For example in program un-
derstanding, knowledge of interclass test dependences can help to
prune out unrelated classes, in order to understand better one par-
ticular class’s behavior. Also, in software visualization, knowledge
of dependence may help to organize the class diagram that is espe-
cially useful for visualizing a large program.

The current notion of interclass test dependence is defined based
on a class model called the Object Relation Diagram(ORD). It was
initially defined as the transitive closure of the relationships of in-
heritance, aggregation and association [18]; later, dependences due

1In the paper, dependence refers to the term interclass test depen-
dence, if not specified otherwise.

to polymorphism were added [19]. As a design diagram, the ORD
cannot capture the detailed information about the source code. In
addition, the ORD-based definition only corresponds to the syntac-
tical relationships between classes, and thus may introduce spuri-
ous dependences not existing in the implementation. The goal of
the research in this paper is to explore a semantics-based definition
for interclass test dependence that improves upon the ORD-based
definition when source code (or Java bytecode) is available.

This paper makes the following contributions:
• A new semantics-based definition for interclass test depen-

dence.
• An algorithm to safely approximate the new definition, pa-

rameterized by the precision of the corresponding program
analysis. Thus the user can control the cost/precision trade-
offs by varying the choice of analysis.
• Experimentation with four versions of the algorithm (using

four different analysis configurations) on nine Java bench-
marks. The empirical results show that even the most precise
version of the algorithm is practical in time cost, and effi-
cient at reducing the number of spurious dependences, over
the ORD-based definition. The algorithm discovers the class
dependence cycles accurately in six out of the seven bench-
marks amenable to manual inspection. The algorithm uncov-
ers additional opportunities for concurrent testing in each of
the benchmarks, with an on average gain of 52.5% over the
ORD-based definition (see Section 5.2.)

2. ORD-BASED DEPENDENCE
This section introduces the ORD-based definition for interclass

test dependence. Then a motivating example shows a spurious de-
pendence present in the ORD-based definition. Starting from the
example, a further discussion of spurious dependences is presented.

2.1 ORD-Based Definition
Kung et al. were among the first researchers to address the

class integration test order problem [18]. They computed inter-
class test dependence based on the ORD, an edge-labeled digraph
where nodes represent classes, and edges represent the three binary
relationships between classes: inheritance, aggregation and associ-
ation. Figure 1 is a simple example to illustrate the ORD definition.
For any two classes X and Y:
• inheritance: an edge labeled I from X to Y indicates that X is

a child class of Y.
• aggregation: an edge labeled Ag from X to Y indicates that X

is an aggregate class of Y, or in other words, Y is a component
class of X (has-a relationship).
• association: an edge labeled As from X to Y indicates that X

associates with Y.2

Kung et al. define interclass test dependence as the transitive clo-
sure of the above three relations. It corresponds to the reachability
relation on the ORD (i.e., class X is test dependent on class Y iff
there is a directed path from X to Y in the ORD). In Figure 1, an
interclass test dependence exists from class D to A and B, but not
to C.

Labiche et al. extended Kung’s work by considering interclass
test dependence caused by polymorphism [19], because a reference
variable of a class A may refer to any instance of a subclass of A.
As shown in Figure 2, a dashed edge is added from B to C because
2The association in the ORD is not exactly the same as the associ-
ation in UML [40, 41], in which it is a more general concept. The
mapping from ORD to UML class diagrams can be found in [6].

 A B

 C D
I

As

Ag

Figure 1: A simple
ORD example

 A B

 C D
I

As

Ag

Figure 2: Dependence
because of polymor-
phism

B associates with A and A is the parent class of C. Dependence
corresponds to the reachability relation in the new graph. In rest of
this paper, the ORD-based definition refers to Labiche’s extension
unless specified otherwise.

2.2 Motivating Example
As a design diagram, the ORD does not capture the detailed in-

formation of the source code; also, the ORD-based definition only
corresponds to the syntactical relationship between classes, and
may introduce spurious dependences that do not exist in the im-
plementation, as shown in the example in Figure 3.

class DeliveryHandler{
......
static private PrintStream outFile;
public DeliveryHandler(PrintStream ps)
{ synchronized(getClass()) {

outFile = ps;
}

}
public void handleDelivery

(DeliveryTransaction deliveryTransaction)
{ deliveryTransaction.process();

deliveryTransaction.display(outFile);
}

}

Figure 3: A motivating example to show a spurious dependence
present in the ORD-based definition of dependence

Figure 3 shows a fragment from the class DeliveryHandler in
specjbb benchmark. As shown, two methods of the class Deliv-
eryTransaction are called by handleDelivery of DeliveryHandler.
Some methods of DeliveryHandler are also called by Delivery-
Transaction, which is not shown here. Thus, there are bi-directional
association relationships between the two classes. As a result, there
is a dependence cycle according to the ORD-based definition; the
corresponding integration test plan must deal with this cycle, either
by stubbing one of the two classes to test the other first or by testing
them together as a cluster.

However, after reading the code in detail it can be seen that the
test dependence from DeliveryHandler to DeliveryTransaction ac-
tually does not exist. The behavior of method handleDelivery is to
call process() and then display(PrintStream). The actual parame-
ter passed to display(PrintStream) is a static field of DeliveryHan-
dler, which is never changed in either of the two callees, so the
behavior of method handleDelivery(DeliveryTransaction) will not
be changed due to the execution of the two methods in Delivery-
Transaction. Also, DeliveryTransaction is not used elsewhere in
DeliveryHandler, so a true test dependence from DeliveryHandler
to DeliveryTransaction does not exist, and DeliveryHandler can be
tested before DeliveryTransaction without any need for the extra
cost of dealing with this cycle.

2.3 Problems with the ORD-Based Definition
Several kinds of spurious dependences found using the ORD-

based definition are summarized here.
Case 1: Regarding association and polymorphism.
Suppose there is an association relation from the class A to B or one
of B’s predecessor classes, then A is considered to be test dependent
on B according to the ORD-based definition. But in the following
cases, a interclass test dependence actually does not exist:
Case 1.1: At runtime, the reference in A to B or B’s predecessor
never points to a B instance.
Case 1.2: A never calls any methods in B, although there might be
reference from A to a B instance.
One example for this case is the association from a Stack class to its
containee. Obviously, the implementation for the containee class is
totally transparent to the Stack class.
Case 1.3: A never calls any methods declared in B, although it
might call some methods declared in B’s predecessor class.
Consider the association from the class HashMap to its containee
class. HashMap calls the hashCode() and equals(Object) methods
of the containee class, but if the containee reuses the two methods
inherited from its predecessor class (e.g., Object class) instead of
overriding them, then HashMap is not test dependent on the con-
tainee class.
Case 1.4: A calls some methods declared in B, but those methods
have no impact on A’s behavior.
Consider the motivating example in Figure 3. The two methods
in DeliveryTransaction are called, but they neither return any val-
ues nor change the value of any variable visible to DeliveryHan-
dler. However, this does not mean that the callee methods must be
side-effect free. For example, the execution of process() in the mo-
tivating example might change a memory region read by method
display(PrintStream), without causing a dependence from Deliv-
eryHandler to DeliveryTransaction.

Case 2:Regarding Aggregation.

Client Wrapper

Adaptee

request

delegatee

The ORD-based definition says
that aggregation creates a test
dependence from the aggregate
class to the component class, but
this is not always true. Take
the scenario shown on the right
as an example; it illustrates a
Wrapper design pattern [1]. Sup-
pose the request from the Client is asynchronous and the Wrapper
is implemented as an aggregate class for the Adaptee for better en-
capsulation. What the Wrapper does is just to relay the request
to the Adaptee, therefore it is not test dependent on the Adaptee’s
implementation, although there is an aggregate relationship.

Actually, aggregation has been unified into the concept of asso-
ciation as a special case in UML [40, 41]. Compared to the regular
association, aggregation defines a transitive and asymmetric rela-
tionship among the instances of the classes, but it does not auto-
matically lead to interclass test dependence. Consequently, we do
not differentiate aggregation specifically in the new definition and
algorithm.

3. SEMANTICS-BASED DEFINITION
We define interclass test dependence based on semantics to im-

prove upon the ORD-based definition when the source code is avail-
able. Informally speaking, if the change of one class’s implementa-
tion may affect another class’s test result, there exists an interclass
test dependence. Section 3.1 describes how to safely model the
class test result, as the basis for the new definition for interclass

test dependence presented in Section 3.2.

3.1 A model of Class Test Result
The process of class test is described first, followed by how to

evaluate the class test result.
The Process of Class Test. In contrast to testing a single method
at a time, class test must exercise the cooperation between all meth-
ods in a class.3 In this respect, class test is like testing an abstract
data type with multiple entry points [4]. Figure 4 describes a typi-
cal class test process: a sequence of CUT (i.e., the class under test)
methods InwardSeq (the first of which is a constructor) are exer-
cised. The semantics of the CUT are solely manifest in the return
values of CUT methods and side effects on the memory regions
outside the CUT instance.

CUT Instance

Memory Region outside
CUT instance
(EnvValue)

}InwardSeq

instantiateCUT

�

OutwardSeq

Figure 4: Class Test Process

The following terms are used to describe a class test process:

• InwardSeq denotes the sequence of method calls exercised
on the CUT during class test.
• EnvValue denotes the values for the memory regions out-

side the CUT instance, and EnvValue0 denotes the initial
EnvValue before class test.
• WriteOut denotes a write from the CUT instance to EnvValue.

It can be any method call whose side effect changes EnvValue.

• ReturnValue denotes a value returned by a CUT method.
• OutStatement denotes a statement in the CUT producing a

WriteOut or ReturnValue.
• OutwardSeq denotes the sequence of ReturnValues and Write-

Outs triggered by the InwardSeq.

How to Evaluate Class Test Result. The class test result is eval-
uated in order to make sure the CUT is implemented with the ex-
pected semantics. As described earlier, the semantics of the CUT is
manifest in two ways during class test: ReturnValues and changes
to EnvValue. However, it is highly impractical to track EnvValue
extensively for evaluation. We make the following claim:

Claim 1: Given two implementations of a class, if the same Out-
wardSeq is generated for the same (EnvValue0, InwardSeq) pair,
then the two implementations have the same semantics.

Proof: The claim can be proved by contradiction.
Assume that the above claim is false, (i.e., there are two classes
3Without loss of generality, we assume that the access to any field
f is done via the corresponding methods setf(value) and getf().

with different semantics, but the same OutwardSeq is generated
given the same (EnvValue0, InwardSeq) pair). Because different se-
mantics means that there is difference in ReturnValues or EnvValue,
and the same OutwardSeq assures that the ReturnValues are the
same, thus there is a (EnvValue0, InwardSeq) pair for which dif-
ferent EnvValues will result. Suppose ins is the instruction which
causes the first difference in EnvValues. Since OutwardSeqs are the
same for the two classes, ins must be outside the CUT. Because
EnvValues before executing ins are the same, thus ins must be read-
ing from a field f with different values in the two class instances.
Now the method call getf() will return different values, which is
contrary to the assumption that ReturnValues are the same for the
same (EnvValue0, InwardSeq) pair, so the claim is proved.

The contrapositive statement of Claim 1 says that if the CUT is
not implemented correctly, a different OutwardSeq will be gener-
ated for a (EnvValue0, InwardSeq) pair, so it is safe to evaluate the
class test result by observing the correctness of OutwardSeq only.

3.2 Semantics-based Formal Definition for In-
terclass Test Dependence

As shown in Section 3.1, the class test result can be safely evalu-
ated by observing OutwardSeq. Thus, we say that there is interclass
test dependence from class A to B if class B contains one statement
that can affect A’s OutwardSeq. The definition is formalized as
follows:
Definition 1: There is a test dependence from class A to B if the
following is true:

∃sa ∈ Stmt. ∃mb ∈ Method. ∃sb ∈ Stmt.

(CdeclM(B,mb) ∧ SinM(sb,mb) ∧ CreachS(A, sb) ∧
CoutS(A, sa) ∧ SdepS(sa, sb, A))

where

• Stmt represents the set of all statements;

• Method represents the set of all methods;

• Class represents the set of all classes;

• CdeclM(C:Class, m:Method) represents the predicate that m
is declared in class C;

• SinM(s:Stmt, m:Method) represents the predicate that m con-
tains statement s;

• CreachS(C:Class, s:Stmt) represents the predicate that s may
be reachable while testing class C;

• CoutS(C:Class, s:Stmt) represents the predicate that s is an
OutStatement in class C;

• SdepS(sa:Stmt, sb:Stmt, C:Class) represents the predicate that
statement sa is semantically dependent on sb while testing
class C.

4. APPROXIMATION ALGORITHM
Unfortunately, it is impossible to compute dependence accord-

ing to Definition 1. One obvious problem is that the semantic de-
pendence predicate (SdepS) is undecidable. Podgurski and Clarke
present the idea of weak syntactic dependence as a safe approxima-
tion for semantic dependence [29]; however, it is extremely costly
to compute weak syntactic dependence between statements. In or-
der to have a practical implementation, we approximate semantic
dependence at method-level granularity, and design the approxi-
mation algorithm accordingly.

4.1 Approximate Definition
A flow-insensitive approximation is used: inside a method, the

relative position of statements is ignored and each use is consid-
ered to be semantically dependent on any definitions in the same
method. If some statement inside method ma is semantically de-
pendent on some statement in method mb, we say that any state-
ment in ma is semantically dependent on any statement in mb.
Therefore, semantic dependence can be propagated at method-level
granularity on the call graph. Obviously, the precision of the call
graph influences the computation for interclass test dependence.

Conservatively assuming each method in the call graph may af-
fect the OutwardSeq of its class, interclass test dependence can be
safely approximated as follows:
Definition 2: Class A is considered to be test dependent on B ac-
cording to our approximation if the following is true:

∃ma ∈ Method . ∃mb ∈ Method.

(CdeclM(B,mb) ∧ CreachM(A,mb) ∧
CentryM(A,ma) ∧MdepM(ma,mb,A))

where

• CdeclM and Method are the same as in Definition 1;
• CentryM(C:Class, m:Method) represents the predicate that

m is a method exercisable on a C instance. m can be declared
in C or one of C’s predecessor classes;
• CreachM(C:Class, m:Method) represents the predicate that

method m is reachable from class C (i.e., m may be called
while testing C);
• MdepM(ma:Method, mb:Method, C:Class) represents the pred-

icate that while testing class C, method ma is considered to
be semantically dependent on method mb according to our
approximation. Although it is an approximation, we refer to
it as semantic dependence for brevity in later discussions.

Examining Definition 2, we can introduce the predicate CdepM:
• CdepM(A,mb) ≡ ∃ma ∈ Method.(CreachM(A,mb) ∧

CentryM(A,ma) ∧MdepM(ma,mb,A)).

Informally speaking, CdepM(C:Class, m:Method) means that class C
is dependent on method m (i.e., one method declared in C is seman-
tically dependent on m while testing C). Using CdepM, Definition
2 can be rewritten as follows:
Definition 3: Class A is considered to be test dependent on B ac-
cording to our approximation if ∃mb ∈ Method.(CdeclM(B,mb)∧
CdepM(A,mb)).

4.2 Calculating Interclass Test Dependence
As shown in Definition 3, the main step for the approximation al-

gorithm calculating interclass test dependence is to compute CdepM.
Figure 5 shows the constraints used to compute CdepM in Data-
log [17],
where
• CentryM, CreachM and CdepM are defined previously.
• call*(m:Method, i:Method) represents the predicate that method

m calls i directly or indirectly.
• MretM(m:Method, i:Method) represents the predicate that method i

calls m directly and reads the return value of m.
• Mread, Mwrite(m:Method,o:AbstractNode,f:Field) represent

the predicates that m may read from or write to the abstract
memory region o.f, respectively. The two predicates are used
to calculate inter-method semantic dependence due to side
effects (See below for more details).

CentryM(c:Class, m:Method) input
CreachM(c:Class, m:Method) input
call*(m:Method, i:Method) input
MretM(m:Method, i:Method) input
Mread(m:Method, o: AbstractNode, f:Field) input
Mwrite(m:Method, o: AbstractNode, f:Field) input
CdepseM(c:Class, m:Method)
CdepM(c:Class, m:Method) output

(0)CdepM(c,m):- CentryM(c,m).
(1)CdepM(c,m):- CentryM(c,i),CreachM(c,m),call*(m,i).
(2)CdepM(c,m):- CdepM(c,i),MretM(m,i).
(3.1)CdepseM(c,m):- CdepM(c,i),CreachM(c,m),

Mread(i,o,f),Mwrite(m,o,f).
(3.2)CdepM(c,m):- CdepseM(c,m).
(3.3)CdepM(c,m):- CdepseM(c,i),CreachM(c,m),call*(m,i).

Figure 5: A Datalog Program to Compute CdepM

• CdepseM(C:Class, m:Method) represents the predicate that
class C is dependent on method m due to side effects (See
below for more details).

A class is dependent on all the methods exercisable on its in-
stances, so CdepM is initially equal to CentryM, as shown in rule 0.
In rules 1-3, the dependences in CdepM propagate to other methods
because of the existence of inter-method semantic dependences.
There are three causes for inter-method semantic dependence, one
due to side effects and the other two due to call relations: from the
caller to the callee and from the callee to the caller.
Rule 1: From Callee To Caller. The callee is considered to be se-
mantically dependent on the caller, because it is control dependent
on the call site in the caller. Consequently, CdepM also contains
those methods which may call C’s entry method(s) and are reach-
able from C.
Rule 2: From Caller To Callee. Because Java is call by value,
ignoring the existence of side effects the caller is considered to be
semantically dependent on the callee only if it reads the value re-
turned by the callee (i.e., MretM(callee,caller)). If side effects ex-
ist, rules 3.1-3.3 are applied.
Rules 3.1-3.3: Side Effects. There are inter-method seman-
tic dependences due to side effects because different methods may
access the same memory region on the heap (i.e., the same object
fields, array items or global variables).4 In our approximation al-
gorithm, method ma is considered to be semantically dependent on
mb if ma reads from a memory region that mb may write to. This is
a flow-insensitive approximation because it disregards the order of
the reads and writes. As shown in rule 3.1, if method i is semanti-
cally dependent on m due to side effects, and class C can reach m,
then the dependence of C on i results in a dependence of C on m.

The dependence of class C on method m due to side effects is
stored in CdepseM first, and propagated to CdepM at rule 3.2. If C
is dependent on m due to side effects, C is also dependent on those
methods reachable from C that call m directly or indirectly. There-
fore, we use CdepseM to calculate these dependences, as shown in
rule 3.3.

Class C is also dependent on method m if m is reachable from C
and changes one of C’s static fields or a C object’s fields. This is
handled in the same way as side effects. The rule is not shown here
for brevity.
4There is also a semantic dependence from method ma to mb if ma
calls mb directly or indirectly and mb changes the program flow
viewable by ma (e.g. mb calls System.exit(int) or throws an excep-
tion viewable by ma). This semantic dependence is modelled and
dealt with in a similar way as that due to side effects.

Algorithm. The algorithm is parameterized by the program analy-
sis used to calculate the call graph and side effects. More details on
call graph precision are presented in Section 4.3. Points-to analysis
approximates the memory regions on the heap a method accesses
(Mread, Mwrite) in order to evaluate the inter-method semantic de-
pendences caused by side effects. A memory region is represented
as a (AbstractNode, Field) pair. AbstractNode is determined by
the results of points-to analysis; its representation can be, but is
not limited to, an allocation site, a class or an array. Field cor-
responds to the field of the class or the index of the array, which
can be ignored if field-insensitive analysis is used to propagate se-
mantic dependence. In our implementation, because of the lack of
an appropriate static analysis algorithm, the array index is always
ignored and all items of an array are regarded as a single unit.

The rules in Figure 5 define the problem by a set of recursive
equations. In Datalog, a fixed-point iteration is used to solve the
set of rules (e.g., a change to CdepM at rules 2, 3.2 or 3.3 causes a
re-evaluation of rules 2 and 3.1; similarly, a change to CdepseM at
rule 3.1 causes re-evaluation of rules 3.2 and 3.3). Rules are applied
until a fixed point is reached. The final result for CdepM is used to
calculate interclass test dependence according to Definition 3.

Note that inter-method semantic dependence is not simply a tran-
sitive closure of the relations expressed in these rules. In Figure 6,
methods ma and mb both call mc. ma reads the value returned by
mc and thus is considered to be semantically dependent on mc. mb
calls mc and thus mc is considered to be semantically dependent on
mb. Barring the existence of any other relations (i.e., call or side ef-

ma mb

mc

a is semantic dependent on b

a calls ba b

a b

Figure 6: An example

fects) among the three methods, obviously no semantic dependence
exists from ma to mb.

4.3 Precision Of Call Graph
The call graph determines the precision of many predicates used

in Figure 5 (e.g., CreachM, Call*). We implemented an object-
sensitive points-to analysis [25] to construct an object-sensitive call
graph. We further improved the precision of call graph by im-
plementing a data reachability analysis [9] to resolve library call-
backs.
Context-Insensitive vs. Object-Sensitive Call Graph. In previ-
ous work, 0-CFA [33, 30, 21] was the most precise points-to anal-
ysis we used to compute interclass test dependence [45]. 0-CFA
generates a context-insensitive call graph, in which there is at most
one node for each method. Use of 0-CFA results in many spurious
interclass test dependences, as illustrated in the example from the
specjbb benchmark shown in Figure 7.

AsciiMetrics is a subclass of Metrics and overrides method wrap
(String). Method output properly(String) is invoked both on Met-
rics and AsciiMetrics instances, so in a context-insensitive call graph
both AsciiMetrics:wrap (String) and Metrics:wrap (String) appears
as its callee, and the predicate CreachM(Metrics, AsciiMetrics: wrap
(String)) will be true, as shown in Figure 8. Also because out-
put properly(String) calls and reads the return value of wrap, there
will be interclass test dependence from Metrics to AsciiMetrics ac-
cording to the rules 0 and 2 in Figure 5.

Obviously, output properly(String) invoked on any Metrics in-

class Metrics{
public void output_properly(String s)
{buf.append(this.wrap(s)); }
public String wrap(String s)
{ return ("<h1>" + s + "</h1>"); }

}
public class AsciiMetrics extends Metrics{

public String wrap(String s)
{ return s + "\n";}

}

Figure 7: Imprecision of context-insensitive call graph

Metrics:
output_properly

Metrics:
wrap

AsciiMetrics:
wrap

Methods
reachable

from Metrics

Methods
reachable

from AsciiMetrics

Figure 8: Context-
Insensitive Call Graph

[m,Metrics:
output_properly]

[m,Metrics:wrap]

[am,Metrics:
output_properly]

[am,AsciiMetrics:
wrap]

Methods
reachable

from Metrics

Methods
reachable

from AsciiMetrics

Figure 9: Object-
Sensitive Call Graph

stance will call Metrics:wrap (String) instead of AsciiMetrics:wrap
(String), and in this case, the corresponding interclass test depen-
dence from Metrics to AsciiMetrics is spurious. We used object-
sensitive points-to analysis to eliminate this spurious dependence.

The key idea of object-sensitive points-to analysis is to analyze
a method separately for each of the object names that represent
different run-time objects on which this method may be invoked.
In our implementation, an object is named by its allocation site.
In the generated object-sensitive call graph, each method may be
represented by multiple nodes with different allocation sites as its
calling contexts (i.e., different receiver objects). Each node has the
form of [allocation site, method signature]. Back to the example in
Figure 7, suppose m and am are two allocation sites with type Met-
rics and AsciiMetrics respectively, and output properly (String) is
invoked on both of them. The corresponding object-sensitive call
graph is shown in Figure 9, from which we can see that the pred-
icate CreachM (Metrics,AsciiMetrics:wrap (String)) will be false,
and there will not be an interclass test dependence from Metrics to
AsciiMetrics.

The programming idiom here is very typical in OO applications.
In our experimental findings, after applying object-sensitive points-
to analysis, the class test dependence cycles can be determined ac-
curately in four more benchmarks than with the context-insensitive
analysis. There are other call-site-based context-sensitive points-
to analyses such as k-CFA and cloning-based method [10, 31, 43];
however, because of the existence of truly polymorphic call sites,
the inaccuracy encountered in this example cannot be fully resolved
by those analyses without using object sensitivity.

Data Reachability Analysis Resolve Library Call-backs Al-
though we are only interested in dependences between the appli-
cation classes, the effects of the Java library have to be consid-
ered: (i) two application methods calling related library methods
may be semantically dependent on each other due to side effects
in the library; (ii) one application method calling a library method
may reach and semantically depend on another application method

because of library call-backs. The library call-backs may intro-
duce inaccuracy because in both the context-insensitive and object-
sensitive call graphs, information from different call sites may be
merged in the Java library. For example in Figure 10, at runtime
method X:appendA() only reaches A:toString() through the library.
In a context-insensitive call graph, String:valueOf(Object) calls both
toString() methods; consequently, X:appendA() is seen to reach
B:toString() mistakenly. This inaccuracy also exists in object-sensitive
call graph because String: valueOf(Object) is a static method, and
it cannot be analyzed separately according to different objects as
calling contexts. 5

X: appendA(){
 A a;
 StringBuffer:append(Object)(a);
}

Y: appendB(){
 B b;
 StringBuffer:append(Object)(b);
}

StringBuffer:append(Object)

String:valueOf(Object)

A:toString() B:toString()

Java Library

Figure 10: Call Graph For StringBuffer:append(Object)

We solved this problem using data reachability analysis [9]. Data
reachability analysis calculates the methods reachable from a call
site. We designed and implemented a variation of V-DataReach
presented in [9]. In our implementation, data reachability analysis
has access to the result of a (global) points-to analysis. At each
call site from an application method calling a library method, a
call-site-specific points-to analysis is performed. In this analysis,
we calculate a set of local objects that are created during the call
and destroyed after the call returns. As with any data reachability
analysis, a sub-call graph reachable from the call site is constructed
on the fly. The local objects’ points-to information is computed by
a points-to analysis that uses the sub-call graph under construction;
(non-local) objects’ points-to information comes from the global
points-to analysis. Eventually, data reachability analysis calculates
the possible call-backs to application methods for each site calling
a library method.

5. EXPERIMENTS
We implemented an object-sensitive points-to analysis, a data

reachability analysis and the algorithm to calculate interclass test
dependence. We experimented on nine benchmarks, including all
eight benchmarks from SPECjvm98 6 and SPECjbb2000.7 All ex-
periments were run on 2.8GHz Pentium-IV, 1.5GB-memory PC
with Linux 2.4.20-13.9 and SUN JVM 1.4.1 03-b02.

5.1 Experimental Setup
The implementation framework has two separate modules, as

shown in Figure 11. The first module uses the Java analysis and
transformation framework, Soot [32] version 2.2.1; the second uses
a BDD based solver, bddbddb [43, 16]. There is also some post-
processing for evaluation.

5A variation of the object-sensitive analysis can actually solve this
particular problem: a static method is analyzed separately accord-
ing to each of its caller’s calling context(s). But this variation will
slow down the object-sensitive analysis greatly, and cannot resolve
the inaccuracy as generally as data reachability analysis.
6http://www.spec.org/jvm98/
7http://www.spec.org/jbb2000/

The task of the first module is to generate constraints using the
results of some fundamental program analyses. The constraints are

Java
Program
(bytecode)

Bytecode Analysis &
Constraint Generation

(Soot)
constraints as
relations

Points-to Analysis &
Dependence Resolution

(bddbddb)

dependence

Post Processing
(SCC count,etc)

JAVA

1.4

Figure 11: Framework

represented as relations, and basically include the following infor-
mation:

• Static information for the class: its inheritance relations; the
fields and methods it declares, etc.
• Pointer assignment edges: assignment, store, load and allo-

cation edges.
• Side-effect information: the fields of reference variables and

the global variables each method reads from or writes to.
• The call relation between methods: the CHA (class hierarchy

analysis) call graph [8], and whether the caller ever reads and
uses the return value of callee.

Based on the constraints, the second module performs the anal-
yses (points-to analysis and data reachability analysis) to generate
the call graph and the concrete side-effect information: the memory
regions on the heap each method may access (read or write). Then,
interclass test dependence is calculated.

The framework is parameterized by the choice of analyses, and
different analyses can be applied to balance the trade-off between
efficiency and precision. In our experiments, we use the following
four analysis configurations, in order of increasing precision:

• VTA: variable type analysis. The target nodes in the pointer
assignment graph are class types, not allocation sites [35]. In
Soot, the call graph is not constructed on the fly for VTA;
• 0CFA: a field-sensitive, flow-insensitive and context-insensitive

points-to analysis (a form of 0-CFA) [33, 30, 21]. In Soot, the
call graph is constructed on the fly for 0CFA;
• OB: a field-sensitive, flow-insensitive and context-sensitive

points-to analysis. Each method is analyzed separately for
the object names on which this method is invoked [25], and
each object is named by its allocation site;
• OBR: object-sensitive points-to analysis is used to construct

the initial call graph and calculate side effects. Then, the data
reachability analysis [9] presented in Section 4.3 is applied
in order to resolve library call-backs. The points-to results of
the object-sensitive analysis are also used as a filter during
the call-site-specific points-to analysis.

5.2 Results
Three sets of questions need to be answered in order to evaluate

the results for the semantics-based definition computed:
• How many spurious dependences are eliminated according

to the given algorithm, and how do these results vary with
different analysis configurations?

• How do the results vary in terms of cycles in the dependence
graph? This question is important because it is dependence
cycles that complicate the issues of determining class test
order and designing an efficient integration test plan.
• How can we effectively evaluate the improvement in the in-

tegration test plan?

The experiments were designed to answer the above questions
and the corresponding findings are shown in this section.
Spurious Dependences Figure 12 shows the normalized data for
the number of computed interclass test dependences. The y-axis is
the percentage of the number of dependences computed according
to the given algorithm, divided by the number computed accord-
ing to the ORD-based definition. As expected, the VTA config-
uration results in the largest number of dependences (on average
56.70% of the dependences in the ORD-based definition), i.e., the
least number of spurious dependences eliminated. 0CFA, OB and
OBR amount to, on average, 32.17%, 25.09% and 24.46%, respec-
tively.
Dependence Cycles Table 1 shows the size of each cycle in the
test dependence graph. Each box contains a sequence of decreas-
ing numbers that correspond to the size of all cycles for each bench-
mark computed with a particular algorithm configuration. We also
computed dependence cycles according to the ORD-based defini-
tion and the results are shown in column ORD. If the computed
result is accurate according to manual inspection, the number is
shown in underlined bold font. The number of total application
classes is also shown in parentheses next to the benchmark name.
Taking the raytrace benchmark as an example, it has 41 application
classes. There are three dependence cycles according the ORD-
based definition, containing 18, 4 and 2 classes respectively. Ac-
cording to the given algorithm with the VTA configuration, the 4-
class and 2-class cycles do not exist, and the 18-class cycle shrinks
to the size of 16. According to the 0CFA configuration, the 16-class
cycle breaks into one 8-class cycle, one 4-class cycle and with the
four remaining classes not in any cycle. According to the OB and
OBR configurations, the 8-class cycle further shrinks to the size
of 7, and the 4-class cycle no longer exists, which is accurate by
manual inspection.

ORD VTA 0CFA OB OBR
compress(28) 6,4,4 5,3 3 3 3

jess(163) 147,4 139 96 94 90
raytrace(41) 18,4,2 16 8,4 7 7

db(20) 10 6 5 0 0
javac(184) 169 161 161 142 134

mpegaudio(60) 44 37 6,3,2 0 0
mtrt(41) 18,4,2 16 8,4 7 7
jack(69) 44 7,6,2,2 7,4,2,2 7 7
jbb(104) 79 49 3,3,2 2,2 2

Table 1: Size of Dependence cycles (bold means accurate result)

The source code for javac and jack is not available, so we could
not manually determine the accurate solutions. Out of the other
seven benchmarks, we found that the OBR configuration deter-
mines the classes in the cycle accurately in six benchmarks (i.e.,
all except jess).

As for the jess benchmark, a lot of inaccuracies were found to
result from the use of java.util.Hashtable. Hashtable elements are
internally stored in an array. In our implementation, an object is
named by its allocation site. Thus, different Hashtable instances

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

VTA
0CFA
OB
OBR

VTA 58.72% 37.58% 81.38% 49.17% 76.97% 75.49% 81.38% 17.66% 31.92% 56.70%

0CFA 35.47% 16.41% 36.76% 35.00% 76.97% 31.11% 36.76% 16.47% 4.62% 32.17%

OB 35.47% 15.27% 26.81% 20.00% 65.42% 23.02% 27.13% 9.45% 3.25% 25.09%

OBR 35.47% 14.89% 26.81% 20.00% 62.74% 20.49% 27.13% 9.45% 3.17% 24.46%

compress jess raytrace db javac mpegaudio mtrt jack jbb Average

Figure 12: Number of Interclass Test Dependences:y-axis is the percentage of #(dependences according to the given algorithm) divided by #(dependences
according to the ORD definition)

share the same allocation site for the array, and all the information
passing through it will be merged. The presented data reachability
analysis cannot solve the problem either, because the array is not
a local object for the call-site-specific points-to analysis, and its
points-to information comes from the global points-to analysis. A
more precise naming scheme for objects (e.g., a context-sensitive
naming scheme to distinguish the different objects created at the
same allocation site) may solve the problem.

Comparing Table 1 to Figure 12, the improvement from 0CFA
to OB is modest in the number of dependences, but it is interest-
ing to see that OB accurately can find cycles in five benchmarks,
while 0CFA does so in only one. This is mainly because a context-
insensitive call graph may cause spurious dependences between
closely related classes, and elimination of those spurious depen-
dences usually causes cycles to shrink. Recall the example in Fig-
ure 7, class AsciiMetrics is a subclass of Metrics and overrides a
method in Metrics, causing a spurious test dependence from the
parent class (e.g., Metrics) to the child class (e.g., AsciiMetrics).
The child is often found to be dependent on the parent, so deletion
of the spurious dependence from the parent to the child by using an
object-sensitive call graph usually breaks the cycle and improves
precision.
Maximum Path Weight By eliminating spurious dependences,
more classes may be tested in parallel to speed up the test process.
Testing is often done on a very tight timetable, so we estimated
the minimum time span needed for class integration test to evaluate
the possible improvement in the test plan. We used the following
considerations and assumptions:
• If a dependence cycle exists, the classes in the cycle are in-

tegrated together in one step and tested as a cluster. As men-
tioned in Section 1, there are two approaches to handle de-

pendence cycles, one is to test classes in a cycle as a cluster,
and the other is to break cycles by constructing test stubs.
We assume the former occurs because usually it is preferable
not to construct test stubs to simulate classes that are already
implemented.
• For simplification, we assume a uniform time cost for each

class, denoted as one unit of cost.
• Based on the consideration that the time cost to test all classes

in a cycle (i.e., cluster test) increases as the size of the cycle

�

�

�

�

�

�

�

Figure 13: Class De-
pendence Graph

�
	���
 ���

��
����

��
����

��
����

��
����

Figure 14: DAG with
Weighted Node

increases, we assume that the cost is a linear function of the
size8, i.e., it cost n units to test a n-class D cycle. Conse-

8Actually,the cost to test a cycle usually increases more quickly
than the size does because of the broadened test focus; however,
the linear assumption, albeit simple, is safe and good enough to
illustrate the improvement in the integration test plan.

quently, given a class dependence graph, by condensing each
strongly connected component into a single node, the time
cost for testing each class and cluster can be shown in a DAG
with weighted nodes. Take Figure 13 as an example. It is a 7-
class dependence graph, with each node labeled by the class
name. Figure 14 is the corresponding weighted DAG. Each
node corresponds to a class or a cycle and its weight is shown
in the parenthesis (e.g., node BCD corresponds to the cycle
containing classes B, C and D, and its weight is three).
• A class or cluster can be tested when all classes and clusters

it is dependent on have been tested.
• Different classes and clusters can be tested in parallel if there

is no dependence between them so that the time span for in-
tegration test can be reduced. Of course, it requires that there
are sufficient resources to do so. For example in Figure 14,
cycle BCD and class E can be tested in parallel after testing
A. According to our assumptions, testing E finishes earlier
than testing cycle BCD, then F will be tested in parallel with
the cycle.

ORD OBR
Max Path Unit Max Path Unit Gain

compress (6)+(4)+(4) 14 3+(3) 6 57.1%
jess (147)+(4) 151 4+(90) 94 37.7%

raytrace 1+(18)+(4) 23 6+(7) 13 43.5%
db 1+(10) 11 6 6 45.5%

javac 1+(169) 170 4+(134) 138 18.8%
mpegaudio 2+(44) 46 17 17 63.0%

mtrt 1+(18)+(4) 23 6+(7) 13 43.5%
jack 2+(44) 46 6+(7) 13 71.7%
jbb 3+(79) 82 7+(2) 9 89.0 %

average 52.2 %

Table 2: Maximum Weighted Path

Based on the above assumptions, the maximum path weight in
the DAG corresponds to the minimum time span needed for the
class integration test. We used this metric to illustrate the possible
improvement in the test plan. In Table 2, the maximum path weight
for interclass test dependence computed with the OBR configura-
tion is compared against that with the ORD-based definition. Col-
umn Max Path describes the maximum weighted path; the number
in the parentheses represents the size of cycle on the path. Column
Unit is the total weight for the path in units. For example, in Fig-
ure 14, the maximum weighted path is A-BCD-G, so it will be de-
scribed as 2+(3), meaning there are two single classes and a 3-class
cycle on the path, whose weight is 5 units. Column Gain illus-
trates the possible improvement in the class integration test plan in
terms of minimum time span needed, that is, the percentage of the
difference between the two path weights divided by the maximum
path weight in the ORD-based graph. The average improvement is
52.2%.

5.3 Time Costs
Table 3 shows the time costs for the analyses on all benchmarks.

Points-to analyses for VTA and 0CFA were based on Soot; all the
other analyses were implemented and run in bddbddb. We also
implemented a 0CFA in bddbddb, and its time cost was similar to
the Soot implementation.

Our analysis always finishes in less than 35 minutes. We believe
that the cost of automatic dependence analysis can be justified by
the resulting improvement in the integration test plan. For example,

there is a 44-class cycle in the mpegaudio benchmark according to
the ORD-based definition. After running our analysis with the OB
or OBR configuration in minutes, the whole cycle is found to be
spurious. Thus, there will be no extra cost to handle that cycle. In
the improved test plan, the reverse topological order in the depen-
dence graph generated by the OB or OBR configuration can be used
directly as the class test order. The analysis is efficient, in that the
average time our analysis takes to decrease the minimum time span
needed by one unit is less than 50 seconds in the worst case (javac).
More Details. In Java, java.lang.StringBuffer is used widely to
handle most String operations, and all information passing through
it will be merged in a context-insensitive analysis, as illustrated in
Figure 10. Consequently, we chose to group all StringBuffer al-
location sites as a single object in 0CFA, because it decreased the
computation time without decreasing the precision. This inaccu-
racy is resolved in OBR, so the grouping was not performed.

The points-to analysis in OB and OBR is the same object-sensitive
analysis. It constructs an object-sensitive call graph on the fly and
costs more than 0CFA. The order of magnitude higher cost for
object-sensitive points-to analysis is justified. because OB deter-
mines cycles accurately in four more benchmarks than 0CFA, Data
reachability analysis is relatively time consuming, too. Its time cost
is related to the number of calls to the Java library. For example, jbb
has the most calls to the library, 2513, while compress has the least,
822, and the corresponding time costs for the two benchmarks’ data
reachability analysis are the largest and the smallest, respectively.
In the current implementation, all calls to the library are analyzed.
As future work, we will try to improve efficiency by only analyzing
suspicious calls (e.g., the calls may cause library call-backs).

The computation to solve for interclass test dependence is rather
inexpensive. Basically, the more precise the points-to analyses, the
less time the dependence resolution process takes, because the call
graph is smaller and more precise.

6. RELATED WORK

6.1 Class Integration Test & Interclass Test
Dependence

There have been many algorithms on computing optimal class
test order based on interclass test dependence in order for an effi-
cient integration test plan [18, 19, 36, 39, 7, 6, 5, 12]. The algo-
rithms were mainly designed to reduce the number of constructed
test stubs in order to resolve the complications introduced by de-
pendence cycles. They differ in how to choose dependences to
eliminate to break cycles.

Bottom-up integration is assumed by all the above papers and
also this paper: the target class/cluster of the dependence is always
tested before the source. Conversely, top-down integration occurs
when an early test on the source class/cluster is performed, but the
target has not yet been implemented [26]. Top-down integration
incurs a greater cost, to construct test stubs, so it is usually not pre-
ferred, especially when an implementation for the target is avail-
able. As for cluster test, Big Bang and Backbone integration [2]
can be used to test closely related components on dependence cy-
cles. It is beyond the scope of this paper to discuss in detail how to
construct test suites for clusters.

To date, all the approaches for class integration test used similar
ORD-based definitions for interclass test dependence. Our work
can greatly improve test plan design and test ordering algorithms
by pruning out spurious dependences, as shown in our experiments.

Our work is closely related to Milanova’s and Ryder’s [24], which
used points-to analysis to generate ExtORD, an extended ORD. The
ExtORD incorporates polymorphism into the ORD by adding class

VTA 0CFA OB OBR
points-to dependence points-to dependence points-to dependence points-to reachability dependence

compress 203.6 57.4 86.6 15.1 359.7 9.0 359.7 455.3 3.5
jess 242.5 107.9 88.8 25.4 1176.4 15.3 1176.4 536.5 14.9

raytrace 225.3 55.0 80.8 19.3 371.1 9.6 371.1 509.7 4.9
db 208.4 56.1 79.5 16.9 357.8 13.6 357.8 476.0 5.3

javac 267.4 40.0 97.6 49.9 696.1 25.5 696.1 836.4 29.3
mpegaudio 223.1 59.4 103.5 22.2 810.7 11.6 810.7 477.5 6.9

mtrt 210.4 53.9 94.8 19.1 366.4 14.1 366.4 497.5 5.5
jack 289.8 72.7 93.6 21.6 442.5 12.1 442.5 568.6 11.9
jbb 242.2 82.7 96.0 38.9 445.9 16.4 445.9 1512.6 25.7

Table 3: Time Costs (in seconds)

associations as calculated by points-to analysis. Using the ExtORD
rather than the ORD as a basis for a definition of dependence im-
proves precision due to the refined binary relationships calculated.
The main difference with our work is that an ExtORD-based def-
inition of class test dependence does not capture the same seman-
tic dependences as does our definition. As illustrated in Figure 3,
interclass test dependence is not necessarily implied by the binary
relationships in the ORD or ExtORD. An ExtORD-based definition
of class dependence cannot eliminate the spurious dependences in
Cases 1.2, 1.3, 1.4 and 2 summarized in Section 2.3. Reference [24]
used the reduction rate in average class firewall ([18]) size to mea-
sure improvement over the ORD. A class firewall for Class A is a
set that contains all classes on which A is test dependent. To com-
pare with the ExtORD results, we calculated the reduction rate for
the two common benchmarks, javac and mpegaudio. The reduc-
tion rates are 15.1% and 42.1% in [24], while our corresponding
rates are 23.0% and 67.0% for the 0CFA configuration and 37.3%
and 78.3% for the best configuration (OBR). We used the ORD-
based definition as the baseline for comparison, because it has been
widely used in class integration test. As future work, we will empir-
ically investigate our improvement over [24] on more benchmarks.

6.2 Program Dependence & Slicing
Podgurski and Clarke presented a formal, general model of pro-

gram dependence[29]. Two generalizations for control and data
flow dependence, called weak and strong syntactic dependence,
were introduced and related to the semantic dependence between
statements. Weak syntactic dependence was shown to be a neces-
sary condition for semantic dependence.
Program Slicing. A program slice consists of a set of program
statements that potentially affect the values computed at some point
of interest, referred to as a slicing criterion. Program slicing was
originally presented by Weiser in 1979 [42]. Several approaches
have been proposed to compute the slices statically [37, 44]. Ot-
tenstein and Ottenstein restated the problem in terms of a reach-
ability problem on a program dependence graph [27]. Horwitz,
Reps and Binkley introduced the SDG (system dependence graph)
for inter-procedural slicing [15], and designed a two-pass traver-
sal algorithm. SDG has been widely used in slicing and improved
in various aspects: to represent arbitrary inter-procedural control
flow [34]; to handle multi-threaded programs [14]; to improve the
precision on programs with pointers using equivalence analysis [23],
etc.
OO Slicing. Larsen and Harrold initially extended the SDG to
support object-oriented programs [20]; the representation was im-
proved by Liang and Harrold in terms of precision and efficiency [22].
Tonella et al. introduced the results of points-to analysis to help
dependence analysis handle pointers and polymorphic calls [38].

Hammer and Snelting implemented an improved slicer to handle
the case in which nested objects are used as actual parameters [11].
Issue of Practicality. One major difference between the above
static slicing algorithms and the semantic dependence computation
in our algorithm is the issue of practicality. They computed seman-
tic dependence at statement-level granularity, whereas, we com-
pute semantic dependence at method-level granularity. The cost
for the statement-level approaches is substantially higher in terms
of both time and space. In addition, since we analyze the Java li-
brary, method-level granularity seems more practical. Considering
the Java 1.4 library, even the smallest benchmark in our experi-
ments has more than 600 classes and 3000 methods in the 0-CFA
call graph. To the best of our knowledge, there has not been an
efficient slicing implementation for a whole Java program with the
Java 1.4 or newer library. Also, we used the object-sensitive call
graph to improve our analysis; there has not been an efficient slic-
ing implementation using a context-sensitive call graph.

Our approach to trade off precision for practicality appears to
be feasible from our empirical results. Also, because of the flow-
insensitive approximation, our approach can be directly applied to
multi-threaded programs, while many slicing algorithms cannot.

6.3 Points-to & Data Reachability Analysis
There is a wide variety of reference and points-to analyses which

differ in terms of cost and precision. An in-depth discussion on
the dimensions of reference and points-to analysis can be found
in [31, 13]. In our current experiment, we mainly used variable
type analysis [35], a form of 0-CFA [33, 30, 21] and an object-
sensitive points-to analysis [25].

Data reachability analysis calculates the methods or call chains
reachable from a call site. Reference [9] presented a detailed dis-
cussion on data reachability analysis for Java. We designed and
implemented a variation of V-DataReach. The improvement in our
approach is that we calculated the set of local objects for each call
site, whose points-to information comes from a call-site-specific
points-to analysis.

7. CONCLUSION
We have presented a new semantics-based definition for inter-

class test dependence. We have designed and implemented a safe
approximate algorithm to propagate semantic dependence at method-
level granularity. We have experimented with four analysis config-
urations and nine benchmarks. The empirical results show that the
algorithm is not only practical, but also rather accurate. In three
benchmarks, the algorithm with the most precise configuration im-
proves over the accuracy of the ORD-based dependence by an order
of magnitude, and determines the classes in cycles accurately in six
out of the seven benchmarks amenable for manual inspection. Also,

the algorithm uncovers opportunities for concurrent testing. Over-
all, by using our analysis a more efficient class integration test plan
can be achieved.

Acknowledgments. We would like to thank Chen Fu to offer in-
sightful comments on the work, and suggest using data reachability
analysis to improve the precision. We are also thankful for Bruno
Dufour and other Prolangs members’ valuable feedback, and for
John Whaley’s timely help on using bddbddb.

8. REFERENCES
[1] F. A. Arciniegas. Design patterns in xml applications.

http://www.xml.com/pub/a/2000/01/19/feature/index.html.
[2] B. Beizer. Software System Testing and Quality Assurance. Van

Nostrand Reinhold, 1984.
[3] B. Beizer. Software Testing Techniques, 2nd Ed. Van Nostrand

Reinhold, 1990.
[4] R. Binder. Testing Object-Oriented Systems–Models, Patterns, and

Tools. Addison-Wesley, 1999.
[5] L. Briand, J. Feng, and Y. Labiche. Using genetic algorithms and

coupling measures to devise optiomal integration test order.
Proceedings of the 14th international conference on Software
engineering and knowledge engineering, pages 43–55, 2002.

[6] L. Briand, Y. Labiche, and Y. Wang. Revisiting strategies for ordering
class integration testing in the presence of dependency cycles. 12th
International Symposium on Software Reliability Engineering, 2001.

[7] L. Briand, Y. Labiche, and Y. Wang. An investigation of graph-based
class integration test order strategie. IEEE Transactions on Software
Engineering, 29(7), 2003.

[8] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented
programs using static class hierarchy. In Proceedings of 9th
European Conference on Object-oriented Programming
(ECOOP’95), pages 77–101, 1995.

[9] C. Fu, A. Milanova, B. G. Ryder, and D. Wonnacott. Robustness
Testing of Java Server Applications. IEEE Transactions on Software
Engineering, 31(4):292–311, Apr. 2005.

[10] D. Grove and C. Chambers. A framework for call graph construction
algorithms. ACM Transactions on Programming Languages and
Systems (TOPLAS), 23(6), 2001.

[11] C. Hammer and G. Snelting. An improved slicer for java. In PASTE,
pages 17–22, 2004.

[12] V. L. Hanh, K. Akif, Y. L. Traon, and J.-M. Jzquel. Selecting an
efficient object-oriented integration testing strategy: An experimental
comparison of actual strategies. Proceedings of the 15th European
Conference on Object-Oriented Programming, 2001.

[13] M. Hind. Pointer analysis: haven’t we solved this problem yet? In
PASTE, pages 54–61, 2001.

[14] D. Hisley, M. J. Bridges, and L. L. Pollock. Static interprocedural
slicing of shared memory parallel programs. In PDPTA, pages
658–664, 2002.

[15] S. Horwitz, T. Reps, and D. Binkley. Interprocedual slicing using
dependence graphs. ACM Transactions on Programming Languages
and Systems (TOPLAS), 12(1):26–61, 1990.

[16] http://bddbddb.sourceforge.net/. bddbddb:bdd-based deductive
database.

[17] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query
languages. In Symposium on Principles of Database Systems, pages
299–313, 1990.

[18] D. Kung, J. Gao, P. Hsia, J. Lin, and Y. Toyoshima. class firewall, test
order, and regression testing of object-oriented programs. Journal of
Object-Oriented Programming, 8(2):51–65, 1995.

[19] Y. Labiche, P. Thevenod-Fosse, H. Waeselynck, and M.-H. Durand.
Testing levels for object-oriented software. Proceedings of the 22nd
international conference on Software engineering (ICSE-22), pages
136–145, 2000.

[20] L. Larsen and M. Harrold. Slicing object-oriented software, 1996.
[21] O. Lhotak and L. Hendren. Scaling java points-to analysis using

spark. International Conference on Compiler Construction, 2003.
[22] D. Liang and M. J. Harrold. Slicing objects using system dependence

graphs. In Proceedings of the International Conference on Software
Maintenance, 1998.

[23] D. Liang and M. J. Harrold. Equivalence analysis and its application
in improving the efficiency of program slicing. ACM Trans. Softw.
Eng. Methodol., 11(3):347–383, 2002.

[24] A. Milanova, A. Rountev, and B. G. Ryder. Constructing precise
object relation diagrams. In ICSM, pages 586–595, 2002.

[25] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object
sensitivity for points-to analysis for java. ACM Trans. Softw. Eng.
Methodol., 14(1):1–41, 2005.

[26] G. J. Myers, C. Sandler, T. Badgett, and T. M. Thomas. The Art of
Software Testing, 2nd Edition. John Wiley and Sons, 2004.

[27] K. Ottenstein and L. Ottenstein. The program dependence graph in a
software development environment. Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, pages 177–184, 1984.

[28] D. Perry and G. Kaiser. Adequate testing and object- oriented
programming. J. Object-Oriented Programming, 2(5):13–19, 1990.

[29] A. Podgurski and L. A. Clarke. A formal model of program
dependences and its implications for software testing, debugging,
and maintenance. IEEE Transactions on Software Engineering,
16(9):965–979, Sept 1990.

[30] A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis for java
using annotated constraints. In Proceedings of the Conference on
Object-oriented Programming, Languages, Systems and
Applications, pages 43–55, 2001.

[31] B. G. Ryder. Dimensions of precision in reference analysis of
object-oriented programming languages. In Proceedings of the
Twelveth International Conference on Compiler Construction, pages
126–137, April 2003. invited paper.

[32] M. Sable. Soot: a java optimization framework. See
http://www.sable.mcgill.ca/soot/.

[33] O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD
thesis, Carnegie Mellon University, 1991.

[34] S. Sinha, M. J. Harrold, and G. Rothermel.
System-dependence-graph-based slicing of programs with arbitrary
interprocedural control flow. In ICSE ’99: Proceedings of the 21st
international conference on Software engineering, pages 432–441,
Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.

[35] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallee-Rai, P. Lam,
E. Gagnon, and C. Godin. Practical virtual method call resolution for
java. In Proceedings of the Conference on Object-oriented
Programming, Languages, Systems and Applications, pages
254–280, Oct. 2000.

[36] K. Tai and F. Daniels. Interclass test order for object- oriented
software. J. Object-Oriented Programming, 12(4):18–25, 1999.

[37] F. Tip. A survey of program slicing techniques. Journal of
programming languages, 3:121–189, 1995.

[38] P. Tonella, G. Antonio, R. Fiutem, and E. Merlo. Flow insensitive
c++ pointers and polymorphism and its application to slicing. Proc.
18th IEEE Int’l Conf. Software Eng. (ICSE), 1997.

[39] Y. L. Traon, T. Jeron, J.-M. Jezequel, and P. Morel. Efficient
object-oriented integration and regression testing. IEEE Trans.
Reliability, 49(1):12–25, 2000.

[40] UML.org. Omg unified modeling language specification version 1.5,
March 2003.

[41] UML.org. Uml 2.0 infrastructure specification version 2.0, final
adopted version, Sept 2003.

[42] M. Weiser. Program Slices: Formal, Psychological, and Practical
Investigations of an Automatic Program Abstraction Method. PhD
thesis, University of Michigan, Ann Arbor, 1979.

[43] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. In In Proceedings of
the 2004 ACM Conference on Programming Language Design and
Implementation (PLDI), June 2004.

[44] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief survey of
program slicing. SIGSOFT Softw. Eng. Notes, 30(2):1–36, 2005.

[45] W. Zhang and B. Ryder. A Practical Algorithm for Interclass Testing
Dependence. Technical Report DCS-TR-574, Dept. of Comp. Sci.,
Rutgers Univ., Apr 2005.

