
Compiler-directed Program-fault Coverage
for Highly Available Java Internet Services

�

Chen Fu, Richard P. Martin, Kiran Nagaraja, David Wonnacott
�

Thu D. Nguyen, Barbara G. Ryder
�

Department of Computer Science
Department of Computer Science Haverford College
Rutgers University, Piscataway, NJ 08854 Haverford, PA 19041

Abstract: We present a new approach that uses compiler-
directed fault-injection for coverage testing of recovery
code in Internet services to evaluate their robustness to op-
erating system and I/O hardware faults. We define a set
of program-fault coverage metrics that enable quantifica-
tion of Java catch blocks exercised during fault-injection
experiments. We use compiler analyses to instrument appli-
cation code in two ways: to direct fault injection to occur
at appropriate points during execution, and to measure the
resulting coverage. As a proof of concept for these ideas,
we have applied our techniques manually to Muffin, a proxy
server; we obtained a high degree of coverage of catch
blocks, with, on average, 85% of the expected faults per
catch being experienced as caught exceptions.

1 Introduction
Many different approaches to fault injection have been

developed and studied [11, 12, 20, 23, 32], but in a software
engineering context all these efforts suffer from a funda-
mental limitation. Specifically, they have led to a proba-
bilistic analysis that describes the likelihood that a program
or software component can deliver correct service under
specific fault and work loads [4], treating the application as
a black box which only can be tested in terms of its observ-
able behavior in response to inputs. While this probabilistic
reasoning is necessary to produce dependable software, it
is not sufficient for software designers and testers to under-
stand how programming constructs, such as methods and
statements, are affected by faults, nor does it ensure exercise
of recovery code. For example, a tester may want to know
how many different operations in the code can be affected
by the same fault and if all these operations have been ex-
ercised through testing. When performing a fault-injection
experiment, the system should allow the tester to know if a
fault triggered an error and consequently the execution of
specific error detection and handling code. In particular, if

�
This work was supported in part by NSF grants EIA-0103722 and

EIA-9986046�
davew@cs.haverford.edu���

chenfu, knagaraj, rmartin, tdnguyen, ryder � @cs.rutgers.edu

the program reads the disk in many different places, how
can the tester identify all of these vulnerable operations and
test them against appropriate disk faults?

In this paper, we argue that compiler analysis of applica-
tion source or bytecode provides a powerful tool that can be
applied to the problem of increasing the availability of In-
ternet services. In particular, we explore a systematic tech-
nique for using compiler analyses to direct fault injection
and measure the resulting coverage of recovery code. Our
technique is designed to help testers identify faults to which
the software is vulnerable1, identify the location of the vul-
nerabilities in the code, and observe how the software han-
dles the faults when they are injected to test vulnerabili-
ties. Our approach is motivated, in part, by the observation
that infrequently executed code exhibits a higher failure rate
than frequently executed code [21].

We focus on analyzing the ability of software to handle
hardware and operating system faults; we leave the test-
ing of functionality vs. requirements to traditional test-
ing techniques. We concentrate on I/O hardware faults
since they are much more common than CPU or memory
faults [37, 22]. We also focus on resource exhaustion faults
and faults due to corruption of operating system data struc-
tures by bugs in the operating system. Our approach can be
applied to software components as well as entire programs.

We use compiler analyses to identify code blocks that
are vulnerable to faults, inserting instrumentation that di-
rects the fault-injection infrastructure to inject the appro-
priate faults at these vulnerable operations, and tabulating
coverage according to a metric that will be introduced in
Section 2. In essence, we propose the adoption of what the
software engineering community calls a white box testing
approach [9, 26, 28], where we use the compiler to look
inside of software components to help the tester use a fault-
injection infrastructure to maximal effect. This is similar to
a number of software engineering approaches that examine

1Software is vulnerable to a fault if it performs some operation that can
trigger the fault, leading to an error. For example, an application that uses
the network, but does not use the disk, is vulnerable to network faults, but
not disk faults.

1

the code to measure test coverage in terms of program con-
structs such as branches, statements and definitions-uses of
variables [29, 9, 26, 28]; these measures try to quantify how
many of these application constructs have been exercised
by the testing process. In our case, we will concentrate on
services (and/or components) developed in Java, and so the
program constructs of interest are try/catch blocks.

We aim our work at Java-based services for many rea-
sons. First, unlike C where programming convention of-
ten overloads the return mechanism to describe errors, Java
contains well-defined program-level constructs, exceptions,
that respond to error conditions [5]. This facilitates both the
construction and analysis of error recovery. Second, a Java
program which may experience fault-induced errors cannot
be written without inclusion of the appropriate code to han-
dle exceptional conditions. Third, Java is used increasingly
in building large-scale servers. Finally, the platform inde-
pendence of Java, its portable program representation, (i.e.,
bytecode), and its defined JDK [35] libraries all facilitate
software reuse via COTS components.

Contributions: In this paper, we define the problem of test-
ing Java-based Internet services to improve availability, us-
ing a white box technique. We present our advances over
the current state-of-the-art below.

	 We explore the connection between fault injection and
coverage of program-recovery code in a layered sys-
tem, defining the problems that must be addressed;	 We define a white box coverage metric for testing fault-
recovery code in Java applications;	 We describe compile-time techniques to automatically
instrument Java code to

– direct a fault-injection infrastructure to inject
faults at appropriate points in the execution of
the program to exercise specific pieces of fault-
recovery code, and

– measure the faults and corresponding recovery
code covered by a given test;

This work includes the definition of an API for com-
munication between the compiler-inserted instrumen-
tation and the Mendosus [24] fault-injection engine;	 We present a feasibility study in which we have man-
ually instrumented a sample benchmark to test for re-
covery from a set of faults. We achieve 100% coverage
of four of the seven catch blocks where faults were
injected, with an on average fraction per catch of ap-
proximately 85% of the expected faults actually being
experienced as caught exceptions.

Overview: In Section 2, we present our white box defini-
tion of fault coverage. In Section 3 we present our analyses
used to instrument Java applications to measure coverage

and direct fault injection. In Section 4, we give the results
of our initial test of our approach on a single benchmark,
Muffin, a proxy server. Finally, in Sections 5 and 6, we dis-
cuss related work and give our conclusions.

2 Defining Coverage for Fault-recovery Code
Before giving our definition of coverage for fault-

recovery code of Java programs, we first review prior uses
of the term coverage and discuss the relation between op-
erating system/hardware faults, Java exceptions, and excep-
tion handlers in the application. After this background, we
discuss possible coverage metric choices and give our rea-
sons for selecting the one we use in our experiments. We
conclude this section with a discussion of some issues re-
lated to the measurement of coverage.

2.1 Comparing Definitions of Coverage
Both the dependability and software engineering com-

munities have precise definitions for the term coverage;
however, they use this term in very different ways. In the
dependability context, coverage is defined as the conditional
probability that the system properly processes a fault, given
that the specific fault occurs [10]. Later work included the
assumption that the fault was activated in the probabilistic
definition [4]. A number of modeling and analysis strategies
naturally arise from this definition. First, coverage can be
mathematically represented as probability density and cu-
mulative density functions (PDF and CDFs). Second, these
functions can be transformed into probability density over
time and cumulative density over time, leading to a range of
analyses using stochastic process models (e.g., [14]). These
models can describe the impact that coverage has on the ex-
pected time to enter a failure state under a given fault load,
and the amount of redundancy necessary to achieve targeted
levels of availability and performance.

By contrast, the software engineering community uses a
fundamentally different definition of coverage. In this con-
text, coverage is defined as the fraction of the application
that has been exercised by a given test in terms of specific
programming constructs including statements and branches.
For example, all-branch coverage ensures that every branch
in a program (e.g., exits from an if statement) is traversed
at least once during testing. Similarly, all-statement cov-
erage guarantees that every statement in the program has
been executed at least once during testing. Another set of
constructs, based on dataflow, traces values from their def-
inition point to their subsequent usage, that is, def-use cov-
erage [29]. The all-defs coverage metric requires that tests
cover one path between each value-setting operation and a
use of that value [29]; this is to ensure that errors due to
incorrect flow of data values are handled properly. The all-
defs metric is the traditional dataflow metric most closely
related to the new metric we define for fault coverage in
Section 2.3. A hierarchy of def-use coverage metrics has

been defined; these vary in power, in the sense that one has
more confidence in the correctness of a program tested us-
ing a higher coverage metric than a lower one.

For the remainder of this paper, we call the definitions
based on conditional probability fault coverage and the soft-
ware engineering definitions, program coverage. One of our
primary goals in this work is to define a metric for program
coverage as it relates to faults and fault-recovery code. This
will be called a program-fault coverage metric because it
measures the fraction of the program run in response to a
fault load. Some of the program-fault metrics we define for
complete applications (see Section 2.3) are reminiscent of
the conditional probability definitions used in the depend-
ability community, but our metrics describe the coverage of
combinations of recovery-code blocks and fault types, not
the fraction of actual faults that were handled.

2.2 Relating Faults to Exceptions
The software engineering program-coverage metrics are

motivated by a desire to know what parts of the applica-
tion have been explored by the testing process. Since we
are measuring the response of a Java application to faults
that are returned by the operating system or I/O hardware
(e.g., disk or network errors), we focus our attention on Java
exception handling code. The challenge is to map lower-
level faults to program-level exceptions and find their cor-
responding program-level exception handlers. In the rest of
this paper we use the terms exception and exception handler
to refer to these program-level constructs.

In order to explore the relations between faults, excep-
tions and exception handlers, we present the following sim-
plified discussion of Java exception handling. For details,
see [5]. In Java, operations and method calls generally in-
dicate the presence of errors by throwing an exception in-
stead of returning a value. Code that can throw an exception
may be enclosed within a try block with one or more as-
sociated catch blocks, each of which identifies the type of
exception it can handle. If an operation in the try block
throws an exception, program control is transferred directly
to a catch block with matching exception type. Java’s sub-
typing rules can be used to write catch blocks that will be
triggered by multiple types of exceptions; a catch (Ex-

ception e) matches any type of thrown exception.
For example, a programmer may enclose a sequence of

operations that read from a file within a try block that has
an associated catch of IOException (or a more general
catch of Exception) containing code to recover from file
read errors. If any of the read operations encounters an error
and throws IOException, the program will go directly to
that catch block.

Exception handling code may be located either in the
method performing a vulnerable operation or in some
method that directly (or indirectly) calls this method. When
an exception is thrown, the JVM searches for an appropriate

catch, beginning in the method performing the throw, and,
if necessary, working “backwards” to a caller method con-
taining the handling code. All of the exceptions we discuss
are classified by Java as checked exceptions, meaning that
methods that contain vulnerable operations that may trigger
these exceptions, need either to handle them or to pass them
explicitly “backwards” to a caller to handle [5]2.

A Java operation may be vulnerable to a variety of faults,
and the exception generated may depend on both the fault
and the operation. For example, reads and writes ex-
posed to faults that produce the operating system error code
NET EAGAIN may cause different exceptions (namely,
IOException and SocketException). In contrast, the
error codes NET EPIPE and NET EFAULT can both re-
sult in SocketException. (See Section 4 for more details
on specific faults.) So the relation between faults and excep-
tions can be one-to-many or many-to-one. There is gener-
ally a unique Java exception for any specific fault-operation
pair, but our approach does not rely on this fact.

Our techniques make use of a table mapping fault-
operation pairs to (one or more) exceptions. Unfortunately,
the construction and use of this table are complicated by the
layers of software between the hardware and the application
being tested (such as device drivers, the operating system,
and the Java Virtual Machine (JVM)). These layers can have
a dramatic impact the way in which low-level faults trans-
late into exceptions at the program level.

In the simplest case, a fault can cause an immediate ex-
ception, and thus direct control to the appropriate catch

block for a vulnerable operation that was executed while
the fault was activated.

In some cases, recovery strategies at a lower level of
the system can entirely prevent a higher-level layer from
observing a fault activation. For example, at the operat-
ing system level, the timeout and retry of a TCP socket
can easily mask transient hardware link errors, and thus no
application-level SocketException is ever thrown. Like-
wise, a mirrored file system can hide many types of SCSI
disk errors from the JVM. This effect must be considered in
the construction of our mapping of fault-operation pairs to
exceptions, and our coverage metric (defined in Section 2.3)
accounts for this kind of lower-level fault handling.

Additionally, layering may cause latent errors. For ex-
ample, input buffering can allow numerous disk reads to
succeed after a fault, until all buffered data have been con-
sumed; at that point, if the fault is still active, a later read
may throw an exception. Likewise, the JVM may not ob-
serve socket exceptions for minutes, even in the face of total
link failure, because TCP attempts numerous retries in the
face of lost packets. In this case, data that was written dur-

2Java also has unchecked exceptions such as NullPointerException
that do not need explicit handling. These generally do not correspond to
the class of faults we are studying.

ing the time of the fault may be lost, without causing any
exception (there may not be any more I/O operations by the
time TCP gives up). The potential for latent errors influ-
ences the interpretation of our run-time collection of cover-
age data, in that we cannot assume that exceptions caused
by a fault that occurs during the execution of a given try

block will necessarily appear in the expected catch of that
particular try.

2.3 Fault-Catch Coverage
Given the complex relationship between faults and ex-

ceptions, we envision that any given testing effort would
begin by defining an explicit universe of faults to be stud-
ied, which we call
 . Each catch block in the program can
potentially be triggered by some subset3 of
 that we call�

. On a given test run, some subset of
�

, which we call � ,
will actually trigger this catch.

The program-fault coverage metric we have chosen for
our work is somewhat analogous to the all-defs metric, but
with faults playing the role of potentially defining error
states, and catch blocks “using” the error states to perform
a recovery action.

Definition (Fault-catch Coverage Metric): Given a single
catch block that can potentially be triggered by a subset�

of the fault universe
 , and a set of test runs � in which
fault set ��� �

trigger exceptions that reach , the Fault-
catch Coverage of by � is � ���� ��� .We chose this definition over several other possibilities
for a variety of reasons – see [16] for details.

Our knowledge of which exceptions can possibly be han-
dled by which catch blocks is derived from a static rep-
resentation of the Java source or bytecodes, rather than
data from the executing program. Therefore, we are mak-
ing the usual assumption of compile-time program analysis,
namely, that every static path in the program representation
is actually executable. This may not be the case, so that if
we use a def-use type coverage metric from exception oc-
currence site to catch block, then we may include some in-
feasible def-use relations, which can never be covered. This
is a common problem in software testing as well; it is ad-
dressed by using as precise as possible program analysis to
eliminate infeasible paths where possible and by human ex-
amination.

There are several ways to produce aggregate information
about code that contains many catch blocks, such as an
entire application, a library, or a new unit of code that is
being added to a working application. Consider code with� catch blocks �������� �� , in which � can be triggered by

3This subset will exclude any faults that are not related to the opera-
tions in the associated try (i.e. the subset for a catch corresponding
to a try with no I/O operations would not include IOException).
Furthermore, we also exclude faults that will be handled by lower layers of
software (or hardware). The tester may also choose to exclude faults that
are not relevant due to program usage.

fault set
� � , and a test � in which faults in set �!� have each

produced an exception that reaches �� .
Definition (Average Fault-catch Coverage:): The average
of all the ratios � �#"$�� � " � .
Definition (Overall Fault-catch Coverage:): The ratio of

the total numbers of tested and possible faults,
%'&

"�(�) � � " �% &
"�(�) � �*"*�

Definition (Fraction of Covered Catches): The fraction of
the catches for which +��,�-+ ./+ � �0+ .

We leave as an open question under what circumstances
different aggregate measures are best, because we strongly
suspect that no single aggregate will capture all user needs.
We therefore envision the use of a language-aware soft-
ware tool (such as the Eclipse IDE [1]) that could maintain
the raw data about vulnerable operations, faults injected,
thrown exceptions and covered catches. This tool could
then present whatever metric is chosen by the tester, or even
help the tester identify inadequately tested catch blocks or
faults for which little testing has been done.

2.4 Measuring Fault-catch Coverage
The set of faults that may be associated with each catch

does not vary from test to test, and can thus be computed
statically. Unfortunately, an analysis based on the type
of exception declared in the catch could produce a dra-
matic overestimate of

� � for many catches, since the de-
clared type may be a supertype that subsumes many ex-
ceptions that cannot actually be thrown. This same effect
applies to the exception types declared by methods called
in the try block. Thus, to overestimate as little as possi-
ble, we perform an interprocedural analysis of the code in
the try block. Intuitively, using the calling structure of the
program, we find a primitive operation that actually throws
an exception and then propagate it backwards on the calling
structure to find its list of callers, stopping at the “nearest”
try block. Details of this analysis are left for Section 3.

Information about the faults that actually trigger each
catch must be collected separately for each run. We
do this by instrumenting each catch block to record its
identifier, the class of exception that reached it, and the
fault associated with the exception. We do not currently
record the source (e.g., throw) of the exception, but we
could in principle do so using the JDK method Throw-

able.printStackTrace().
Note that our current experimental system simply

records the fault that is currently being injected. This re-
quires communication with the fault-injection engine (see
Section 3.2), and is most easily accomplished if there is
never more than one (simultaneous) fault injected (as in the
experiment in Section 4). Furthermore, our current system
cannot actually guarantee that the injected fault caused the
exception. For example, if we inject a disk fault in one
block, but for some other reason an IOException occurs,

we will record that the injected fault reached the catch

block. We do not expect this effect to be significant (we
have never observed it in our tests), but if it proves to be a
problem, we will explore systems for tracking information
about injected faults across the program/system boundary.

3 Injecting Faults to Improve Coverage
We now consider how the compiler can instrument appli-

cation code to communicate with a fault-injection engine at
run-time, in order to direct the fault-injection process to ob-
tain high program-fault coverage as measured by our met-
ric. Specifically, we use Mendosus as our fault-injection in-
frastructure, but our approach could, in principle, be applied
using any fault-injection system that can inject the faults we
study.

For this work, we have extended Mendosus with an API
for dynamic external direction as to when specific faults
should be injected. Previously, Mendosus injected faults
according to a pre-determined script comprised of traces
and/or random distributions. Our basic approach currently
is to identify a statement inside a try block, where the soft-
ware has committed to the execution of some vulnerable
operation (such as a read from a file), but before the op-
eration itself is performed. At this program point, we in-
sert instrumentation to select an appropriate fault and to di-
rect Mendosus to inject this fault, using the API described
in Section 3.2. Once execution reaches the corresponding
catch block, or the end of the try block, we direct Men-
dosus to cancel the injected fault.

We currently inject only one fault per run of the program,
using multiple single-fault runs to obtain high coverage.
Our techniques could be used to inject multiple faults per
run, but we have no way of measuring the interactions be-
tween faults, and thus have not explored this approach. Our
choice of the “single-fault-per-run” approach could poten-
tially prevent us from covering a catch clause in code that
can only be reached after the recovery from a prior fault, but
we do not expect this to be a problem in practice.

We could, in principle, trigger a catch block by sim-
ply replacing a vulnerable operation with a throw of an
appropriate exception. However, this approach would pro-
duce results that differ from a true fault in several important
ways: it would only affect one thread on a multi-threaded
or multi-node application, subsequent accesses to the hard-
ware that is supposed to have failed would (inappropriately)
work, and the effects of lower-level recovery strategies (in
the operating system, libraries, etc.) would be lost.

In general, Mendosus may require advanced warning of
the fault to be injected, in case it impacts multiple nodes in a
distributed application. For this reason, we move the instru-
mentation backward in the code as far as we can, possibly
all the way to the beginning of the try block, although no
farther because we want to plant the fault only when it has a
chance of exercising the specific catch block of interest to

obtain coverage. In the future, we may investigate the use
of profiling techniques to provide an estimate, for specific
program points, of the amount of time until the vulnerable
operation will be triggered; it is not clear that accurate tim-
ing information will be needed.

3.1 Compiler Analyses
Two dataflow analyses allow us to accomplish both the

communication with Mendosus and the recording of the
fault-catch coverage achieved. Both are performed on Java
bytecodes, so we can apply them whether or not source code
is available. The first analysis, exception handler analysis,
essentially traces backwards from an excepting operation
(or call) in the Java code to its handler which will be on the
call stack when the exception occurs. The second analysis,
resource points-to analysis, finds all objects reachable from
the (fields of) actual arguments in a method call; this analy-
sis is necessary to give access to objects such as file descrip-
tors, which may result in excepting computations during the
lifetime of this method call.

Exception handler analysis uses a compile-time repre-
sentation of the program call tree [33] to guide the back-
wards search from an exception occurrence point to a han-
dler. The call tree records the sequence of method calls that
may occur during execution in a tree structure. Its nodes
are methods and its edges connect the calling method with
the called method (annotated by the call site). The call tree
can be approximated by compile-time class analysis [39, 7,
13, 18] or reference points-to analysis [31, 25, 27]. The
exception occurrence point may be either a Java library call
whose JNI routines generate the exception or a specific Java
method call which throws the exception (and does not han-
dle it). By searching backwards on the call tree, we can find
the closest exception handler for the exception, according to
Java exception semantics[5]. The backwards search on the
call tree requires us to examine each method call to ascer-
tain whether or not it is included in a try block that handles
the exception type whose handler we seek.

Once we find the handler, the associated method call in
the try block becomes the focus of our placement of com-
munication with Mendosus; the type of fault requested de-
pends on the operation(s) at the exception occurrence. In the
actual implementation of our prototype, we will use an ap-
proximation of the call tree, a potentially exponential-sized
structure; possible choices to be investigated include a call-
ing context tree [6] or a call graph with annotations about
call site locations within its nodes (i.e., methods). We plan
to experiment with these different program representations
in order to balance analysis cost with accuracy.

Resource points-to analysis allows us to find the spe-
cific object on which the excepting computation occurs;
this is necessary to determine the set of possible faults to
be injected. Points-to analysis enables approximation at
compile-time of the set of objects to which some reference

variable can point at run-time. When the solutions at dis-
tinct method call sites are differentiated by the analysis so
that different points-to information can be associated with
them, then the analysis is termed context-sensitive. We will
use a context-sensitive reference points-to analysis to ascer-
tain those objects necessary for the vulnerable operation,
even if references to them are stored in fields of other ob-
jects. We need the type of the object to select appropriate
faults to inject; however, it may not be possible to deter-
mine the appropriate set of faults to inject until run-time,
because they are determined by the run-time type of an ob-
ject. For example, an open InputStream may correspond
to a FileInputStream, in which case disk faults are ap-
propriate, or it may correspond to an input stream from a
socket, in which case network faults are appropriate. We
will use the reflection library in the JDK to determine these
types at run-time. This library allows run-time examination
of object properties such as type and value. We need values
for some of the object’s fields to provide to Mendosus (e.g.,
the file descriptor for an input stream).

These two analyses, described above, pinpoint the con-
structs in the application that we must instrument. The first
identifies both the try blocks into which we insert fault-
injection and cancellation code and the associated catch

blocks that we instrument to measure coverage. The second
analysis provides information about the objects involved,
which is needed to select appropriate fault types and pa-
rameters for communicating with Mendosus, as well as in-
formation that is needed to analyze method calls in order to
construct the call tree.

3.2 Instrumentation-Driven Fault Injection API
In the instrumented application code, we need to inform

Mendosus to inject a fault or to cancel a previously injected
fault. The kind of fault determines the appropriate parame-
ters needed. To facilitate the communication with Mendo-
sus, we implemented a user-level client Java library export-
ing the following methods:
public static boolean inject(int fault-

Type, int interval, SomeList parameters)

This method requests an injection of a fault of type fault-
Type, which will expire after interval number of
seconds. The faultType is determined using the run-time
type of the object (e.g., file descriptor or a communication
socket), as a key into a list of fault types provided by
Mendosus. The parameter list parameters contains
additional information to guide Mendosus in the injection
of the fault,4 such as the file descriptor. The boolean return
value specifies whether Mendosus successfully injected the
requested fault.

public static boolean cancel(int fault-

Type, int interval, SomeList parameters)

4The tuple (faultType, interval, parameters) serves as
unique identifier of an injected fault in Mendosus.

This method asks Mendosus to cancel an on-going fault
of type faultType. The boolean return value specifies
whether Mendosus was able to locate and cancel the fault.

Instrumented application code and Mendosus currently
communicate synchronously: on successful return of the
inject method, the fault has been injected, and any sub-
sequent use of the affected resource (within interval sec-
onds) will produce an error. Similarly, on a successful re-
turn of cancel, the previously injected fault already has
been canceled. For our tests, described in Section 4, we
used an interval large enough to ensure that faults re-
mained in effect until explicitly canceled. Our preliminary
experiment suggests that this synchronous approach is suf-
ficient except in the presence of latent errors.

While our algorithms are not sufficient to handle the gen-
eral problem of latent errors, we can use several simple vari-
ations on our approach to improve fault-catch coverage in
the presence of latent errors. First, we can use the approach
described above, which we label fault-cancel mode, though
this may cause faults to be canceled before latent errors are
observed. Second, we can use fault-not-cancel mode, in
which we never cancel a fault once injected. This could in-
crease coverage if a fault that had no impact when it was ini-
tially injected causes an exception during a later execution
of the same try block. Finally, we can use fault-reinject
mode, in which faults are canceled, but then injected again
at a later execution of the try (in a separate run of the pro-
gram). This could increase coverage if a fault triggers an
exception only in some particular program state (such as
when a disk buffer is nearly empty).

3.3 Multi-Threaded and Distributed Applications
Internet services are generally built as multi-threaded or

distributed applications. Several additional issues must be
addressed when testing a multi-threaded application.

For a multi-threaded application running on a single
node, as is the case for our initial benchmark, the question
arises: What happens when the thread that requested a fault
injection is context-switched out before the fault has been
canceled? Three scenarios are possible:

1. the fault does not affect other threads that run before
the original thread is allowed to run again,

2. some other thread is affected by the fault and crashes
the application, or

3. one or more other threads are affected by the fault, but
they recover sufficiently to not crash the application,
eventually allowing the original thread to run again
with the fault still activated. If more than one thread
executes the same try block and experiences the error
caused by the injected fault, we will count the catch
block as covered, regardless of which thread actually
executed it.

The first case clearly does not raise any concern. The
second case is a successful test that requires bug fixing in
the application before this particular fault-catch pair can be
exercised. In the third case, our current instrumentation
will count the coverage of the fault-catch pair in the orig-
inal thread, as expected, but not any other catch block that
was exercised “incidentally”. This is not a problem, as a
failure to notice the incidental coverage will simply cause
our system to perform an unnecessary test.

Testing of distributed applications running on multiple
nodes raises at least two additional challenges. First, we
may wish to inject a fault that affects several nodes as soon
as one thread reaches a particular try. Our current system
can insert instrumentation to do this, but we have not yet
investigated how best to perform fault injection. For exam-
ple, we may or may not wish to allow the thread injecting
the fault to continue before the entire distributed fault injec-
tion is complete. If the thread is not blocked, we must make
sure that the fault is injected far enough in advance of the
vulnerable operation – we believe this goal will produce the
greatest challenge for our instrumentation algorithms.

Second, the question of how to inject faults at the time
when some system-wide condition has been achieved in a
distributed application raises even more interesting issues.
Simply blocking the thread that is communicating with
Mendosus is not sufficient; other threads on other nodes
may be progressing past the vulnerable point of interest.
This has been partially studied before [11] although not in
the context of compiler-directed fault injection. We leave
this as an important issue for future work.

4 Feasibility Case Study
To offer proof-of-concept for our methodology we per-

formed a small case study using a http proxy server called
Muffin [2]. In this experiment, we hand simulated our
compiler-directed analyses to determine where to inject
faults and inserted by hand instrumentation for communi-
cation with Mendosus and recording of coverage. We stud-
ied all faults using fault-cancel mode, and also used both
fault-not-cancel and fault-reinject mode for latent errors.

4.1 Muffin and its Fault Vulnerabilities
Muffin is a single-node, multi-threaded application

whose interactions with the operating system are mainly re-
ceiving and sending data over the network (i.e., relaying re-
quests and web pages). The disk access is essentially to
log fulfilled requests without ever trying to read them back
in; this data is easily stored in cache, so the footprint is too
small for meaningful experiments. Instead, we concentrated
on introducing faults related to network I/O.

Table 1 gives the faults used in our study (i.e., our uni-
verse of faults
 , as mentioned in Section 2.3). These faults
are divided into two classes. The first class is network hard-
ware failures such as NIC, link, and switch failures. For a

 New ServerSocket

 Accept client connection

 Fork Handler Thread

try block 6

Server Thread

try block 8

 Receive http header

 end

try block 1 Copy http content to client

 Connect to http server

try block 0 Read client request

Handler Thread

 Send http request

try block 7

try block 2

try block 3

Figure 1. Structure of Muffin
single-node application, these all have the same effect (i.e.,
the inability to read or write data), so we experiment with
only one entry from this class, namely NIC DOWN. In
addition, we do not consider transient packet loss because
Muffin depends only on TCP, which completely hides such
faults from the application unless its seriousness approaches
that of a NIC DOWN. The second class is made up of
faults resulting from the operating system such as exhaus-
tion of resources or a corruption of essential data structures.
The complete set of network operations used in Muffin is:
bind, connect, accept, read, write.

Seven of Muffin’s nine catch blocks can catch IOEx-

ceptions due to the faults in Table 1. Figure 1 shows a
high-level view of the control flow in Muffin and the loca-
tion of the try blocks associated with these catches. Each
try block has only one associated catch; the numbers
shown in Figure 1 serve as identifiers of each try block or
the associated catch. We manually instrumented the try

and catch blocks as per the algorithms of Section 3.

try Operations Possible Faults
0 read NIC DOWN, NET EBADF, NET EFAULT,

NET EPIPE, NET EAGAIN
1 read/write NIC DOWN, NET EBADF, NET EFAULT,

NET EPIPE, NET EAGAIN
2 write NIC DOWN, NET EBADF, NET EFAULT,

NET EPIPE, NET EAGAIN
3 read NIC DOWN, NET EBADF, NET EFAULT,

NET EPIPE, NET EAGAIN
6 accept NIC DOWN, NET ENOMEM
7 connect NIC DOWN, NET EAGAIN,

NET ECONNREFUSED
8 bind NET EBADF, NET ENOMEM

Table 2. Vulnerable Operations in try Blocks

Table 2 lists the vulnerable operations in each try and

Fault Class Fault Type Operations Description
Hardware NIC DOWN All except bind Drop all the packets coming from or to a given

IP for a certain amount of time to simulate
some network hardware failure

OS error code NET EBADF bind,read,write Bad socket number
NET EFAULT read,write Buffer space unavailable
NET EPIPE read,write Socket with only one end open
NET EAGAIN connect,read,write Necessary resource temporarily unavailable
NET ENOMEM bind,accept Not enough system memory
NET ECONNREFUSED connect Connection refused (e.g., remote node crashed

and not yet recovered)

Table 1. Faults Used in the Experiment

the corresponding faults which can cause exceptions reach-
ing the associated catch; in the terms defined in Section
2.3, these comprise the relevant fault sets

� � for each catch1
. Note that try blocks 0-3 are all vulnerable to the same

set of faults, as they all send or receive data, but different
sets of faults may affect try blocks 6-8, which involve the
establishment of network connections.

4.2 Experiment Specifics

Catch Faults Exceptions
0 NET EBADF java.net.SocketException

NET EFAULT java.net.SocketException
NET EPIPE java.net.SocketException
NET EAGAIN java.net.SocketException

1 NIC DOWN java.io.InterruptedIOException
NET EBADF java.net.SocketException
NET EFAULT java.net.SocketException
NET EPIPE java.net.SocketException
NET EAGAIN java.net.SocketException

2 NET EBAD java.io.IOException
NET EFAULT java.io.IOException
NET EPIPE java.io.IOException
NET EAGAIN java.io.IOException

3 NET EBADF java.net.SocketException
NET EFAULT java.net.SocketException
NET EPIPE java.net.SocketException
NET EAGAIN java.net.SocketException

6 NET ENOMEM java.net.SocketException
7 NIC DOWN java.net.NoRouteToHostException

NET EAGAIN java.net.SocketException
NET CONNREFUSED java.net.ConnectException

8 NET EBADF java.net.SocketException
NET ENOMEM java.net.SocketException

Table 3. Faults and Exceptions Recorded

In our experiment, the proxy server (Muffin version
0.9.3a), the actual http server (Apache), and a synthetic
client that generates http requests are running separately,
each on one of three 800 MHz PIII PCs under Linux 2.2.14-
5.0. We used the IBM Java 2.13 Virtual Machine for Linux.

The client generates a stream of http requests according
to a Poisson process with a given arrival rate. Each request
is set to time out after 20 seconds if a connection cannot
be completed, and to time out after 600 seconds if, after
successful connection, the request cannot be completed.

For each test run of Muffin, we injected a single fault into
one instrumented try block in fault-cancel mode. One run
was performed for each valid fault-try combination (see
Table 2) and data recorded for all these test runs. Table 3
shows the results of our experiment. The Faults column
gives the �!� sets discussed in Section 2.3.

In all the tests, all faults except NIC DOWN are
recorded in all appropriate catch blocks, showing that
our methodology can drive the application through all of
its responses to these faults, obtaining good test coverage
for them. However, NIC DOWN often causes latent er-
rors, and its injection into the six vulnerable try blocks
yielded only two covered catches. We re-ran our tests for
NIC DOWN in fault-not-cancel mode and were able to also
cover catch 3 with this fault. We also tried fault-reinject
mode, but this did not affect our results for NIC DOWN.

4

5

4 4

1

3

2

0

1

2

3

4

5

6

0 1 2 3 6 7 8

Catch Blocks

#
F

a
u

lt
s

Fault Not Covered

Extra Fault Covered by fault-not-cancel mode

Fault Covered by fault-cancel mode

Figure 2. Coverage Data

Figure 2 summarizes the � �#"$�� �2"*� values for each catch

graphically, and Table 4 gives our aggregate coverage met-
rics for the tested code. Our (fraction of) covered catches

metric is the most stringent, drawing attention to the fact
that about half of the catches have not been fully tested.
The other two metrics take into account the amount of cov-
erage of the partially covered catches. In this experiment,
we obtained slightly higher values for overall fault-catch
coverage than average fault-catch coverage, as the former
effectively weighs the individual catch average ratios by the
number of associated faults and our lowest percentage cov-
erage occurred on a catch with only two faults.

Average Overall Covered
Mode Fault-catch Fault-catch Catches
fault-cancel 84.3% 85.2% 42.9%
fault-not-cancel 87.1% 88.9% 57.1%

Table 4. Aggregated Report of Coverage

Our data show that we can inject faults, instrument pro-
grams to measure fault-catch coverage, and achieve signifi-
cant levels of fault-catch coverage for Muffin. For faults that
do not produce latent errors, we produced 100% fault-catch
coverage, suggesting that our techniques are valuable. We
were less successful with faults that do produce latent er-
rors, covering four of the seven NIC DOWN/catch com-
binations in fault-not-cancel mode. While these coverage
results are valuable in that they guide the tester to those
fault-recovery codes that are not fully tested, as discussed
before it is very important to improve our coverage for these
faults resulting in latent errors.

5 Related Work
Researchers in the dependability and software engineer-

ing communities have studied the problems of program cov-
erage and fault coverage extensively. Given the limited
space, we will focus here on a comparison of our work
with previous research on fault injection using program-
coverage metrics. An understanding of probabilistic fault
coverage [10], its relationship to system dependability [14],
and fault-injection [4] also is essential to understand the
context of our work. Our program-coverage metrics are
most similar to those used in dataflow testing [29]. These
references have been discussed in Section 2.1.

Our fault-injection experiments most closely resem-
ble those measuring responses to errors using traditional
program-coverage metrics. Tsai et. al [40] placed break-
points at key program points along known execution paths
and injected faults at each point, (e.g., by corrupting a value
in a register). Their work differs from ours in its goal, the
kinds of faults injected, and their definition of coverage.
The primary goal of their approach was to increase fault
activations and fault coverage, not to increase program cov-
erage. They injected a set of hardware-centric faults such as
corrupting registers and memory; these faults primarily af-
fected program state, not communication with the operating
system or I/O hardware. They used a basic-block definition

of program coverage, rather than measuring coverage of a
program-level construct such as a catch block. Bieman
et. al [8] explored an alternative approach where a fault is
injected by violating a set of pre- or post-conditions in the
code, which are required to be expressed explicitly in the
program by the programmer. This approach used branch
coverage, a program-coverage metric.

In the terminology of Hamlet’s summary paper recon-
ciling traditional program-coverage metrics and probabilis-
tic fault analysis [19], our work can be classified as a
probabilistic input sequence generator, exploring the low-
frequency inputs to a program. Using the terminology pre-
sented by Tang and Hecht [38], which surveyed the entire
software dependability process, our method can be classi-
fied as a stress-test, because it generates unlikely inputs to
the program.

6 Conclusions
We have posed what we believe to be a new challenge

in the field of techniques for development of highly avail-
able systems: to determine whether all of the fault-recovery
code in a Web services application has been exercised on an
appropriate set of faults. We have presented our fault-catch
coverage metric, which formalizes what it means to meet
this challenge successfully, and have shown that it is possi-
ble to instrument programs to collect coverage information
at run-time. Our metric combines ideas of testing software
in response to injected faults, developed by the dependabil-
ity community, with ideas of testing for coverage of specific
program constructs, developed by the software engineering
community.

We also have developed an API that allows the program
being tested to direct a fault-injection engine and have ex-
tended Mendosus to respond to this API. We have described
compiler analyses that can be applied to Java source or byte-
codes in order to instrument codes to direct fault injection
to produce high fault-catch coverage.

Our preliminary case study results with Muffin indi-
cate that our approach is highly effective for faults that do
not create latent errors (i.e., 100% coverage), and some-
what effective for faults that do (i.e., covering 4 of the 7
NIC DOWN/catch combinations). Next we plan to en-
hance our approach to achieve better coverage in the pres-
ence of latent errors and to study issues of testing of dis-
tributed applications.

References

[1] The Eclipse IDE. See
http://www.eclipse.org/.

[2] The Muffin world wide web filtering system. See
http://muffin.doit.org/.

[3] A., P. D., BROWN, A., BROADWELL, P., CAN-
DEA, G., CHEN, M., CUTLER, J., ENRIQUEZ,
P., FOX, A., KICIMAN, E., MERZBACHER, M.,
OPPENHEIMER, D., SASTRY, N., TETZLAFF, W.,
TRAUPMAN, J., AND TREUHAFT, N. Recovery-
Oriented Computing (ROC): Motivation, Definition,
Techniques, and Case Studies. Technical Report
UCB//CSD-02-1175, University of California, Berke-
ley, March 2002.

[4] ARLAT, J., COSTES, A., CROUZET, Y., LAPRIE, J.-
C., AND POWELL, D. Fault injection and dependabil-
ity evaluation of fault-tolerant systems. IEEE Trans-
actions on Computers 42, 8 (Aug. 1993), 913–923.

[5] ARNOLD, K., AND GOSLING, J. The Java Program-
ming Language, Second Edition. Addison-Wesley,
1997.

[6] ARNOLD, M., AND SWEENEY, P. F. Approximating
the calling context tree via sampling. Tech. Rep. RC
21789, IBM T.J. Watson Research Center, July 2000.

[7] BACON, D., AND SWEENEY, P. Fast static analysis
of c 343 virtual functions calls. In Proceedings of ACM
SIGPLAN Conference on Object-oriented Programing
Systems, Languages and Applications (OOPSLA’96)
(Oct. 1996), pp. 324–341.

[8] BIEMAN, J., DREILINGER, D., AND LIN, L. Using
fault injection to increase software test coverage. In
Proc. 7th Int. Symp. on Software Reliability Engineer-
ing (ISSRE’96) (1996), IEEE Computer Society Press,
pp. 166–74.

[9] BINDER, R. V. Testing Object-oriented Systems. Ad-
dison Wesley, 1999.

[10] BOURICIUS, W. G., CARTER, W. C., AND SCHNEI-
DER, P. Reliability modeling techniques for self re-
pairing computer systems. In In Proceedings of the
24th National Conference of the ACM (March 1969),
pp. 295–309.

[11] CUKIER, M., CHANDRA, R., HENKE, D., PISTOLE,
J., AND SANDERS, W. H. Fault injection based on a
partial view of the global state of a distributed system.
In Symposium on Reliable Distributed Systems (1999),
pp. 168–177.

[12] DAWSON, S., JAHANIAN, F., AND MITTON, T. OR-
CHESTRA: A Fault Injection Environment for Dis-
tributed Systems. In Proc. 26th Int. Symp. on Fault
Tolerant Computing(FTCS-26) (Sendai, Japan, June
1996), pp. 404–414.

[13] DEAN, J., GROVE, D., AND CHAMBERS, C. Opti-
mization of object-oriented programs using static class
hierarchy. In Proceedings of 9th European Confer-
ence on Object-oriented Programming (ECOOP’95)
(1995), pp. 77–101.

[14] DUGAN, J. B., AND TRIVEDI, K. S. Coverage mod-
eling for dependability analysis of fault-tolerant sys-
tems. IEEE Transactions on Computers 38, 6 (June
1989), 775–787.

[15] ELECTRONIC NEWS. Ebay Outages Cast Clouds
on Sun. http://www.electronicnews.com/enews/Issue/
1999/06211999/25ebayah.asp, June 1999.

[16] FU, C., MARTIN, R. P., NAGARAJA, K., NGUYEN,
T. D., RYDER, B. G., AND WONNACOTT, D.
Compiler-directed program-fault coverage for highly
available java internet services. Tech. Rep. DCS-TR-
518, Department of Computer Science, Rutgers Uni-
versity, Jan. 2003.

[17] GRAY, J. Dependability in the Internet Era. Keynote
presentation at the Second HDCC Workshop.

[18] GROVE, D., AND CHAMBERS, C. A framework for
call graph construction algorithms. ACM Transactions
on Programming Languages and Systems (TOPLAS)
23, 6 (2001).

[19] HAMLET, D. Foundations of software testing: de-
pendability theory. In Proceedings of the 2nd ACM
SIGSOFT Symposium on Foundations of software en-
gineering (1994), ACM Press, pp. 128–139.

[20] HAN, S., SHIN, K., AND ROSENBERG, H. DOC-
TOR: An Integrated Software Fault Injection En-
vironment for Distributed Real-Time Systems. In
Int. Computer Performance and Dependability Symp.
(IPDS’95) (Erlangen, Germany, Apr. 1995), pp. 204–
213.

[21] HECHT, H., AND CRANE, P. Rare conditions and
their effect on software failures. In In Proceedings of
the Annual Reliability and Maintainability Symposium
(Anaheim, CA, Jan. 1994), pp. 334–337.

[22] KALYANAKRISHNAM, M., KALBARCZYK, Z., AND

IYER, R. Failure Data Analysis of a LAN of Win-
dows NT Based Computers. In Proceedings of the
18th Symposium on Reliable and Distributed Systems
(SRDS ’99) (1999).

[23] KANAWATI, G. A., KANAWATI, N. A., AND ABRA-
HAM, J. A. FERRARI: A Tool for the Validation
of System Dependability Properties. In Proc. 22nd
Int. Symp. on Fault Tolerant Computing(FTCS-22)

(Boston, Massachusetts, 1992), IEEE Computer So-
ciety Press, pp. 336–344.

[24] LI, X., MARTIN, R. P., NAGARAJA, K., NGUYEN,
T. D., AND ZHANG, B. Mendosus: A SAN-
Based Fault-Injection Test-Bed for the Construction of
Highly Available Network Services. In Proceedings of
the 1st Workshop on Novel Uses of System Area Net-
works (SAN-1) (Cambridge, MA, Jan. 2002).

[25] LIANG, D., PENNINGS, M., AND HARROLD, M. Ex-
tending and evaluating flow-insensitive and context-
insensitive points-to analyses for java. In Proceedings
of the 2001 ACM SIGPLAN - SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering
(June 2001), pp. 73–79.

[26] MARICK, B. The Craft of Software Testing, Subsystem
Testing Including Object-based and Object-oriented
Testing. Prentice-Hall, 1995.

[27] MILANOVA, A., ROUNTEV, A., AND RYDER, B. G.
Parameterized object sensitivity for points-to and side-
effect analysis. In Proceedings of the International
Symposium on Software Testing and Analysis (2002),
pp. 1–11.

[28] MYERS, G. J. The Art of Software Testing. John Wi-
ley and Sons, 1979.

[29] RAPPS, S., AND WEYUKER, E. Selecting software
test data using data flow information. IEEE Transac-
tions on Software Engineering SE-11, 4 (Apr. 1985),
367–375.

[30] REUTERS. Britannica Competitors Study Net
Strategy. http://news.cnet.com/news/0-1005-200-
1435449.html, Nov. 1999.

[31] ROUNTEV, A., MILANOVA, A., AND RYDER, B. G.
Points-to analysis for java using annotated constraints.
In Proceedings of the Conference on Object-oriented
Programming, Languages, Systems and Applications
(2001), pp. 43–55.

[32] SEGALL, Z., VRSALOVIC, D., SIEWIOREK, D.,
YASKIN, D., KOWNACKI, J., BARTON, J., RANCEY,
D., ROBINSON, A., AND LIN, T. FIAT — Fault
Injection based Automated Testing environment. In
Proc. 18th Int. Symp. on Fault-Tolerant Computing
(FTCS-18) (Tokyo, Japan, 1988), IEEE Computer So-
ciety Press, pp. 102–107.

[33] SETHI, R. Programming Languages, Concepts and
Constructs, 2nd Edition. Addison Wesley, 1996.

[34] SILICONVALLEY.INTERNET.COM.
Ebay Outage Twice This Week.
http://siliconvalley.internet.com/news/article/
0,,3531 435741,00.html, Aug. 2000.

[35] SUN-MICROSYSTEMS. Java development kit
1.2. See http://java.sun.com/products/-
jdk/1.2/docs/api/.

[36] SWEENEY, T. No time for downtime – it managers
feel the heat to prevent outages that can cost millions
of dollars. InternetWeek, 807 (Apr. 2000).

[37] TALAGALA, N., AND PATTERSON, D. An Analy-
sis of Error Behaviour in a Large Storage System. In
Proceedings of the Annual IEEE Workshop on Fault
Tolerance in Parallel and Distributed Systems (April
1999).

[38] TANG, D., AND HECHT, H. An approach to measur-
ing and assessing dependability for critical software
systems. In In Proceedings of the Eighth International
Symposium on Software Reliability Engineering (Al-
buquerque, NM, Nov. 1997), pp. 192–202.

[39] TIP, F., AND PALSBERG, J. Scalable propagation-
based call graph construction algorithms. In Proceed-
ings of the Conference on Object-oriented Program-
ming, Languages, Systems and Applications (Oct.
2000), pp. 281–293.

[40] TSAI, T., HSUEH, M., ZHAO, H., KALBARCZYK,
Z., AND IYER, R. Stress-based and path-based fault
injection. IEEE Transactions on Computers 48, 11
(Nov. 1999), 1183–1201.

