
Exception-chain Analysis: Revealing Exception Handling
Architecture in Java Server Applications

ABSTRACT
Widespread usage of independently developed COTS components
or frameworks facilitates construction of large software systems,
but complicates the task of ensuring their availability, because er-
ror recovery code often spans components. Existing exception-
flow analyses of varying precision, find only single links in any
exception propagation path. Therefore, although it is common in
large Java programs to rethrow exceptions, these analyses are un-
able to identify these multiple-link exception propagation paths.
This paper presents a new static analysis that computes chains of
semantically-related exception-flow links, and thus reports an en-
tire exception propagation path, instead of just discrete segments
of it. These chains can be used 1) to show the error handling ar-
chitecture of a system across components, and thereby to reveal
non-trivial exception-flow paths in real programs, 2) to assess the
vulnerability of a single component and the whole system, 3) to
support better testing of error recovery code, and 4) to facilitate the
tracing of the root cause of a problem, if recovery code fails. Em-
pirical findings and a case history for Tomcat show that a significant
portion of the chains found in our benchmarks span multiple com-
ponents, and thus are difficult, if not impossible, to find manually.

Categories and Subject Descriptors
D.1.5 [Object-oriented programming]: Exception Handling; D.2.5
[Testing and Debugging]: Error Handling and Recovery; D.4.5
[Reliability]: Fault-tolerance; F.3.2 [Semantics of Programing Lan-
guages]: Program Analysis

Keywords
Reliability, Def-Use Testing, Java, Exceptions, Root Cause

1. INTRODUCTION
Today a wide range of applications – such as on-line auctions,

instant messaging, grid-based weather prediction – are designed as
web services. These services have large numbers of users who de-
mand reliability from these commonly used codes. To be able to
survive in today’s highly competitive market, the service providers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

must meet two conflicting challenges simultaneously: how to con-
stantly provide new functionality while, more importantly, main-
taining high performance and availability.

Current developments in language design and software engineer-
ing make it easier to reuse existing pieces of software to build large
systems or to add functionality. However, the pervasive usage of
separately developed components complicates the task of achieving
high availability. – MTTF

MTTF+MTTR
– for the entire system.1 Avail-

ability can be enhanced by providing proper error recovery mech-
anisms in the program (i.e., increasing MTTF), and facilitating
quick problem diagnosis when automatic recovery is not possible
(i.e., decreasing MTTR). Unfortunately, most components are not
designed to meet specific error handling requirements for a given
system with its deployment environment. The system integrator
faces the difficult task of evaluating the robustness of the compo-
nents and their fitness in a specific system configuration. What’s
more, if a problem does occur, it is very hard to trace back to its
root cause, due to the limited knowledge about the components.

The Java programming language provides a program-level ex-
ception handling mechanism for response to error conditions that
occur during program execution. This mechanism helps separate
exception handling code from code that implements normal sys-
tem behavior. Exception handling code might seem to provide
a good starting point for code inspection to ensure system avail-
ability. However in our benchmarks, exception handling code that
deals with certain kinds of faults is widely scattered over the whole
program, and is mixed with other exception handling code, or even
irrelevant code, making it hard to understand the behavior of the
program under certain system fault conditions.

There are several compile-time program analyses of varying pre-
cision [7, 9, 17] that can be used to find the exception flow in a Java
program (i.e., program paths from a throw statement to its cor-
responding catch clause). With the results of these analyses, a
programmer can ask what are the kinds of exceptions and/or the set
of throw statements that can reach a given program point.

But in component-based systems, exception flow spanning dif-
ferent components often is manifest as chains of exception throws
and catchs, instead of a single exception-flow link. Although in-
dividual exception-flow links can be obtained with relatively high
precision, each link is only a discrete segment of the entire excep-
tion propagation path. Therefore, its utility in the discovery of the
exception handling structure of the whole system, or in tracing back
to the root cause of a logged problem of interest, is limited. In
this paper we propose a new compile-time analysis that computes
chains of exception-flow links.

The contributions of this paper are:

1Here MTTF means Mean Time To Failure and MTTR means Mean
Time To Recovery.

• Design of a new compile-time Exception-chain analysis to
construct chains of exception-flow links whose correspond-
ing exception objects are semantically-related. This analysis
relies on a new intraprocedural Handler-inspection analysis
that identifies catch clauses that either rethrow the same ex-
ception object and/or extract information from an incoming
exception object and store that information into a new ex-
ception object which is subsequently thrown. The results of
Handler-inspection can be used to identify related exception-
flow links and combine them into chains and also can be used
to rank the quality of catch clauses and to support better
testing of error handling code.

• Definition of a service dependence graph, a graphical de-
piction of exception flow between system components. This
graph is obtained from the exception-flow chains by abstrac-
tion; only inter-component edges of the chains are shown.
This graph can aid diagnosis of problems (e.g., to facilitate
tracing the root cause of a problem after a failed recovery)
by reporting information that is very difficult to obtain by
manual inspection.

• Empirical study of our methodology using several Java
server applications, including a case history for Tomcat,
demonstrating the potential uses of the analysis results: (i) to
reveal the high-level architecture of the error handling code,
(ii) to construct a non-trivial service dependence graph of
components, and (iii) to assess the vulnerability of certain
components as well as the whole system under different con-
ditions.

Overview. The rest of this paper is organized as follows. In Sec-
tion 2 we describe existing static and dynamic analyses for finding
exception-flow information, as well as other related work. Sec-
tion 3 reviews the analysis introduced in Fu et. al’s work [7], on
which our new analysis is based, and then motivates our new anal-
ysis. In Sections 4 and 5 respectively, we introduce our Handler-
inspection analysis, and then discuss findings from our experi-
ments. Finally, we present our conclusions.

2. RELATED WORK
There has been much previous research in static and dynamic

analyses to discover exception-flows in programs and to categorize
and evaluate exception handlers. Static analyses are performed at
compile time and thus do not have access to execution data about
the program. Static analyses are designed to be safe, which intu-
itively means that they correctly summarize program behavior over
all possible executions [12]. Because they are necessarily approx-
imate [12], static analyses may report spurious information, nor-
mally referred to as false positives. If a static analysis is unsafe,
then it may miss some program behaviors and their consequences,
resulting in false negatives (i.e., incomplete dataflow information).

In contrast, dynamic analyses are based on run-time data col-
lected from a set of observed program executions. Usually, dy-
namic analyses are exact (i.e., without false positives), but unsafe
in that we cannot model all possible program behaviors using only
a set of observed behaviors. In this section, we will discuss only
the most relevant research results in each of these areas.

2.1 Static Exception-Flow Analysis
There are several existing static exception-flow analyses for Java

that vary in their precision. Their basic idea is similar: An opera-
tion that can throw a particular exception is treated as a source of an
abstract object that is propagated along reverse control-flow paths
to possible handlers (i.e., catch blocks), and thus exception-flow
links are discovered. Due to the common interprocedural nature of

exception handling, much of this propagation happens along call
graph2 edges, in the reverse direction of execution flow. Thus, how
interprocedural control-flow is approximated determines the preci-
sion of these techniques.

Jo et. al [9] present an interprocedural set-based exception-flow
analysis; only checked exceptions are analyzed. Experiments show
that this is more accurate than an intraprocedural javac-style analy-
sis on a set of benchmarks five of which contain more than 1000
methods. Robillard et. al [17] describe a dataflow analysis that
propagates both checked and unchecked exception types interpro-
cedurally. Each of these techniques handles a large subset of the
Java language, but makes the choice to omit or approximate some
constructs (e.g., static initializers, finallys). These analyses use
class hierarchy analysis to construct call graphs that are therefore
very imprecise [6, 4].

Another analysis of programs containing exception handling
constructs [21] calculates control dependences in the presence of
implicitly checked exceptions in Java. This analysis focuses on
defining a new interprocedural program representation that exposes
exceptional control flow in user code. In a more recent technical
report [22], Sinha et. al present an interprocedural program repre-
sentation which more accurately embeds the possible intraproce-
dural control flow through exception constructs (i.e., trys,catchs
and finallys). Class hierarchy analysis is used to construct the
call edges in this representation. An exception-flow analysis is
defined by propagation of exception types on this representation
to calculate links between explicitly thrown checked exceptions in
user code and their possible handlers.

Fu et. al [7] build their exception-flow analysis parameterized
by the choice of call graph constructor: class hierarchy analysis
(CHA), rapid type analysis (RTA) [4], or field-sensitive context-
insensitive points-to analysis (PTA) [18, 10]. Experiments show
that more than 85% of the false positive exception-flow links found
in the relatively large benchmarks when CHA is used can be re-
moved by simply switching to the PTA call graph constructor. Fu
et. al also proposed a schema of filtering algorithms that use data
unreachability to prove the infeasibility of certain call chains. This
filtering further reduces the number of false positives by around
50% in their relatively large benchmarks. A framework for def-use
testing of exception handling is defined based on the above anal-
ysis, which uses analysis-guided fault injection to drive program
execution into the exception-flow links in order to observe the er-
ror recovery behavior of the system under various fault conditions.
The testing results provide an upper bound on the number of false
positives produced by the static analysis (i.e., exception-flow links
that are not actually covered by a test). Our analysis is built on
this approach [7] whose analysis algorithms are briefly reviewed in
Section 3.

Limitations. Unfortunately, although all of these static analysis
identify individual exception-flow links, none of them discover the
possible semantic relations between these links, induced by shared
exception objects or exception data. These semantic relations are
the focus of our analysis presented here.

2.2 Dynamic Exception-Flow Analysis
A dynamic analysis of exception-flow is presented by Candea

et. al in their work on Automatic Failure-Path Inference [5]. This
approach discovers exceptions propagated across the boundaries of
components (i.e., bean/servlet/JSP). For each method of a newly
loaded component, the analysis parses the throws clause in the
method declaration to obtain the set of all the exception types that

2A call graph depicts the method call structure of a program. Its
nodes are the methods and its edges, the possible calls [1].

may be thrown by that method, plus possible unchecked exception
types. Each time the method is invoked, a new exception type from
the set is picked and thrown. If that exception causes failure of
some other component, an edge from the exception throwing com-
ponent to the failed component is added to a graph known as a
failure map that tracks inter-component exception-flow. Although
in general dynamic analysis does not produce false positives, this
approach does, because the exception types listed in the throws
clause of a Java method are required to contain all the types that
the method really can throw. Often the types listed are actually
supertypes (or supersets) of what can be thrown (e.g., due to sub-
sumption). What’s more, a method declaring that it throws some
type of exception is very likely to be just a propagator of the excep-
tion, rather than the origin of the throw.

Limitations. Exception-flow links derived using this technique
may be incomplete because they start at arbitrary methods (e.g.,
missing the chain origin). The failure map shows only uncorrelated
inter-component exception-flow edges. Thus, a programmer trying
to locate an exception cause may have insufficient information to
succeed.

2.3 Catch Clause Categorization
Reimer and Srinivasan [15] present a list of actual exception us-

age issues observed in large J2EE applications that that have hin-
dered the maintainability and serviceability of these applications.
These issues include swallowed exceptions,3 using a single catch
for multiple exceptions, and placing a handler too far away from
the source of the exception. Unfortunately, the underlying analysis
is not discussed in the paper. Data tables show that they did not find
any handler with exception rethrows, a finding in conflict with our
empirical data (see Section 5).

Sinha et. al [23] proposed a tool that as one of its functions would
visualize exception anomalies, similar to those defined in [15], by
using the static exception-flow analysis mentioned above [21]. It is
not clear how exceptions thrown within the Java JDK libraries are
accounted for in their work; the empirical data reported for checked
exceptions shows their usage is very sparse and does not seem to
include exceptions thrown by the Java libraries and caught by the
application. These factors raise serious questions about the prac-
ticality and scalability of the analysis and thus, the utility of the
proposed tool.

3. BACKGROUND
Because our Handler-inspection analysis is built on the analysis

in [7], here we briefly review that analysis and give intuition about
its main concepts. Then, we discuss why this approach is not suffi-
cient to reveal the exception handling architecture of a component-
based system.

3.1 Exception Analysis Framework
In a Java program, each fault-sensitive operation (e.g., a call to

a native method from the JDK to read from disk) may produce an
exception that reaches some subset of the program’s catch blocks.
An exception-catch (e-c) link is defined as follows:

Definition ((e-c link):): Given a set P of fault-sensitive operations
that may produce exceptions, and a set C of catch blocks in a
program, we say there is an e-c link(p, c)[7] between p ∈ P and
c ∈ C if p may trigger c; we say that a given e-c link is experienced
in a set of tests T , if p actually transfers control to c by throwing an
exception during a test in T .

3An exception is swallowed if no use is made of the exception ob-
ject in the catch clause.

The two pass static analysis algorithm in [7], comprised of
Exception-flow and DataReach analysis, finds the possible e-c links
in a Java program. Exception-flow is a dataflow analysis defined on
the program call graph. Each p ∈ P is propagated along the call
edges in the reverse direction until some try-catch block c is
met that encloses the call site and catches the exception thrown by
p; thus an e-c link (p, c) is recorded.

void readFile(FileInputStream f){
byte[] buffer = new byte[256];
try{

InputStream fsrc=new BufferedInputStream(f);
for (...)
c = fsrc.read(buffer);

}catch (IOException e){ ...}
}
void readNet(Socket s){

byte[] buffer = new byte[256];
try{

InputStream n =s.getInputStream();
InputStream ssrc=new BufferedInputStream(n);
for (...)
c = ssrc.read(buffer);

}catch (IOException e){ ...}
}

Figure 1: Code Example for Java I/O Usage

Call Graph Edges Feasible e−c link e−c linkInfeasible

readFile readNet

FilterInputStream.read(byte[])

BufferedInputStream.read(byte[],int,int)

BufferedInputStream.read1(byte[],int,int)

FileInputStream.read(...) SocketInputStream.read(...)

DSK_READ NET_READ

Figure 2: Call Graph for Java I/O Usage

It is obvious that the precision of Exception-flow analysis is af-
fected by the precision of the call graph. But in practice even use of
a very precise call graph constructor may introduce many infeasi-
ble e-c links. Figure 1 is an example of typical uses of the Java
I/O packages. Figure 2 illustrates the results of Exception-flow
analysis based on a fairly precise call graph of code in Figure 1:
both fault-sensitive operations DSK READ and NET READ can
be propagated to the try blocks in readFile and readNet, re-
sulting in 4 e-c links. But by reading the code we can see that two
of the reported e-c links (DSK READ, catch in readFile) and
(NET READ, catch in readNet) are infeasible.

A second pass filtering analysis, DataReach, reduces the number
of infeasible e-c links produced by Exception-flow analysis. The in-
tuition is to use data reachability, obtained using points-to analysis,
to confirm control-flow reachability. For example, continuing with
Figure 1, if the goal is to prove SocketInputStream.read()
is not reachable from the call site fsrc.read() in method
readFile, the following evidence is sufficient: during the lifetime
of the call fsrc.read(), no object of type SocketInputStream
may be either loaded from any static/instance field of some
class/object, nor may be created by a new statement. Thus, the
infeasibility of the e-c link from SocketInputStream.read() to
the catch block in readFile is proved. In general, DataReach
tries to prove the infeasibility of each e-c link output by Exception-
flow analysis, and only outputs those that it cannot prove to be in-

Tester Provided
Fault Set

Java Program

Instrumented ProgramFault Injector Experienced e−c links

Run Time

Possible e−c links

e−c link Analysis

Compile Time

Measured
Coverage

Figure 3: Exception def-use Testing Framework

feasible.
Figure 3 shows the organization of the automatic exception-flow

testing system in [7]. The two pass static analysis described above
calculates the possible e-c links for a program. The dynamic anal-
ysis monitors program execution, calls for the fault injector to trig-
ger an exception at an appropriate time, and records test coverage.
The compiler uses the set of e-c links to identify where to place in-
strumentation that will communicate with the fault injection engine
during execution. This communication will request the injection of
a particular fault when execution reaches the try-catch block of
an e-c link. The injected fault will cause an exception to be thrown
upon execution of the fault-sensitive operation of the e-c link. In
the current system, P is selected to contain all the native methods
in JDK library that do network or disk I/O because 1.) I/O excep-
tions are the most frequent and most important exceptions in web
services, and 2.) the current implementation of the fault injection
framework is limited.

The compiler also instruments the code to record the execution
of the corresponding catch block. The tester runs the program and
gathers the experienced e-c links from each run. The testing goal
is to drive the program into different parts of the code so that fault
injection can help exercise all the e-c links found in the program.
Finally, the test harness calculates the overall coverage information
for this test suite: experienced e-c links vs. possible e-c links.

3.2 Rethrow of a Caught Exception
The above analysis can be used to reveal the exception propaga-

tion paths in a Java program (i.e., throw, catch pairs with chains
of calls between them) with relatively high precision. Our first at-
tempt was to build a graph out of these paths to review the overall
exception handling structure of the whole system. But we found
that the previous analysis cannot capture the behavior of one of the
common practices in exception handling – rethrow of caught ex-
ceptions, usually in the catch clause.

Shenoy mentions the following as “some of the generally ac-
cepted principles of exception handling” in [20]:

1. If you can’t handle an exception, don’t catch it.
2. If you catch an exception, don’t swallow it.
3. Catch an exception as close as possible to its source.
4. Log an exception where you catch it, unless you plan to

rethrow it.

Reimer and Srinivasan [15] also point out that a “large distance
between throw and catch” may make debugging more difficult. But
point 1 is obviously in conflict with Point 3. So sometimes it is
better to catch an exception, add more contextual information (e.g.,
maybe by encapsulating the existing exception object within a new
exception object) and rethrow. Additionally, as stated in the Java
JDK Library API Specification [25], in multi-layered systems if
an operation on the upper layer fails due to a failure in the lower
layer, letting the exception from the lower layer propagate outward
could expose the implementation detail between layers. Doing so

breaks encapsulation as well as ties the API of the upper layer to
this implementation. So it is necessary to wrap the exception with
a new one (i.e., in an instance of a new exception type providing a
higher level of abstraction) and rethrow.

catch (Exception ex)
{

throw new java.sql.SQLException(
"Cannot connect to MySQL server: " +
ex.getClass().getName(), "08S01");

}

Figure 4: Caught Exception Rethrow Example

Figure 4 shows a catch clause that is slightly simplified from
a real one found in MySQL Connector/J 2.0.14[14] – a native
Java driver that converts JDBC (i.e., Java Database Connectivity)
calls into the network protocol used by the MySQL database. This
catch clause extracts some information from the caught exception
(i.e., the exception class name), constructs a new exception based
on that information and rethrows it.4

In Java, an exception object contains a snapshot of the execution
stack of its thread at the time it was created. In the handler in
Figure 4, the new exception object only contains the class name
of the old one. Thus part of the execution stack – from the method
where the old exception was created to the one before the enclosing
method of this handler – is lost. As an alternative, enclosing the old
exception object into a new object can preserve the opportunity to
reconstruct the whole stack if some problem occurs at runtime. But
as mentioned in [15], it is not always a good idea to keep all the
stack information. During a load surge, if we try to log the entire
stack in the final handler, it may do as much harm as good, because
with system resources already very low, they may not be sufficient
to allow the task to complete.

An exception rethrow, although desirable for various reasons, di-
vides the exception flow from the original throw to the final han-
dler into multiple segments. Existing exception-flow analyses can-
not connect these closely related e-c links into a chain, which makes
it difficult to trace back to the root cause of the exception given
its final handler. Because reconstructing the whole stack in the fi-
nal handler is not always possible (or desirable), an programmer
trying to diagnose and repair a system degradation (or crash) may
have very limited information to aid in determining the source of
the problem. What’s more, if the actual exception flow is a chain
spanning many software layers in the system, the testing frame-
work in [7] is limited to exploring only individual segments of this
chain.

In the next section we will present an analysis that automati-
cally identifies cases of exception rethrow. With this analysis, we
can reconstruct the exception-flow segments into e-c chains, chains
starting from the original throw and ending in the final catch. In
our experiments we found that many of these e-c chains span mul-
tiple components. Thus, this analysis information can be used to
illustrate exception flow between components, giving an estimate
of the vulnerability of certain components and showing the service
dependence relations between components (see Section 5). These
can be helpful for programmers who need to understand the over-
all fault-handling behavior of component-based programs. During
system diagnosis, more detailed information, (e.g., e-c links, their
interconnections, the corresponding call chains) can be provided to

4In our remaining discussions, we will use the term rethrow to refer
to a throw within the catch clause (i) of the incoming exception
object or (ii) of a new exception object containing semantic infor-
mation from the incoming exception object.

the programmer to aid in problem localization. Since all this in-
formation is obtained using static analysis, no run-time overhead is
imposed on the system. In addition, using the fault-injection test-
ing approach in [7], the quality of the recovery code can be tested
in advance of installing the web-service application.

4. E-C CHAIN ANALYSIS
Handler-inspection analysis. We have argued that exception
rethrow is a desirable design for recovery code in modular systems.
Nevertheless it adds difficulty to problem diagnosis and to the auto-
matic inference of the exception handling structure. Because most
rethrows happen inside a catch clause, we can design a local (i.e.,
intraprocedural) program analysis that parses the code inside the
catch clause automatically, to determine whether or not the caught
exception is rethrown, or a new related exception is rethrown within
the catch clause. The basic idea is to determine how the caught
exception object is used.

1 r1 := @caughtexception;
2 r2 = new java.sql.SQLException;

3 r3 = new java.lang.StringBuffer;

4 r3.<init>();

5 r4 = r3.append("Cannot connect...");

6 r5 = r1.getClass();
7 r6 = r5.getName();
8 r7 = r3.append(r6);
9 r8 = r7.toString();
10 r2.<init>(r8, "08S01");
11 throw r2;

Figure 5: Exception Rethrow Bytecode Representation

When the Java code shown in Figure 4 is translated to bytecode,
each statement in the source code will be broken down into mul-
tiple simple bytecodes. A Java bytecode analysis tool can trans-
lated these bytecodes into the sequence of expression statements
shown in Figure 5 to facilitate further analysis and optimization.
We are using Soot [19] for this translation. In the translation,
@caughtexception represents the reference to the caught excep-
tion in the catch clause and <init> signals a call to a constructor.

Each arrow shown in Figure 5 goes from a statement that defines
a variable to a statement where that variable is used, that is a def-use
link. Intraprocedural reaching-definitions [1] is a classic dataflow
analysis that can produce def-use links for all the variables in a
given method. By following these def-use links we can see that the
statements 6 and 7 extract a string (r6) from the caught exception
(r1). Then another string (r8) is constructed from r6 and some
other text. Finally in statement 10, r8 is used as an argument of the
constructor of another exception (r2) that is rethrown in statement
11.

This process of variable usage tracing can be automated. Fig-
ure 6 shows the algorithm that traces the usage of caught excep-
tions intraprocedurally. The algorithm makes the following as-
sumptions: First, the first statement of a catch clause is consid-
ered to be a pseudo-definition statement that initializes the refer-
ence variable pointing to the caught exception. Second, a function
find all uses is implemented that takes two parameters: a vari-
able and a statement that defines the variable, and returns a set of
statements that use that variable.5 A variable is considered to be de-
fined only when it appears on the left-hand-side of an assignment
5The first assumption is satisfied by the way Java bytecode is de-
fined [11] and the way they are translated into Soot internal repre-

1 Initialize worklist to be empty;
2 add (ref to caught, pseudo def statement) to worklist;
3 mark(ref to caught, pseudo def statement) processed;
4 while worklist not empty
5 (ref, stmt) = worklist.remove first();
6 use statements = find all uses(ref, stmt);

7 for each statement in use statements

8 for each def ref in statement
9 if (def ref is local variable)
10 if ((def ref, statement) is not processed)
11 add statement into worklist;
12 mark (def ref, statement) processed;
13 end for
14 if statement includes call to other method
15 and ref is used as parameter or receiver
16 report “Call Other Method”;
17 switch kind of statement:
18 case assign statement:
19 if (assign destination is field or array reference)
20 report “Store into Field/Array”
21 case return statement:
22 report “Exception Object Returned”
23 case throw statement:
24 report “Rethrow”
25 end switch

26 end for
27 end while

Figure 6: Handler-inspection Analysis Algorithm

operator. As a consequence of choosing to do a local analysis, we
make conservative assumptions at method calls; that is, at a method
invocation, the receiver and all the actual parameters are considered
to be defined by the call statement.

In Figure 6, the loop from line 4 to 27 tries to find statements
where the reference to the caught exception is used. Lines 8 to
13 say if the reference variable is used in a statement that defines
another variable, keep tracing usage of the latter variable. This
makes sure that we keep tracing the usage of information extracted
or constructed from the caught exception, such as r5, r6, r7 and
r8 in Figure 5. Lines 10 to 12 ensure that a statement only will
be processed once, so that the main loop terminates. Lines 14 to
25 contain processing for different kinds of statement types refer-
ring to the reference variable. For example, it reports that this han-
dler rethrows the exception, if any of the processed statements is a
throw statement (Line 23). Note that to keep our analysis local,
the algorithm does not trace exception chains involving the refer-
ence variable being passed into another method (Line 14), or being
stored into some field or array (Line 19), or being returned to the
caller (Line 21). This algorithm design choice means that the anal-
ysis may miss some actual rethrows (i.e., allow false negatives).

E-c chain construction. Both Handler-inspection analysis and the
Exception-flow analysis in [7] are implemented in Soot, but they are
not dependent on each other. Exception-flow analysis produces a set
of e-c links (p, c). At the same time the Handler-inspection analysis
can parse all the catch clauses to find all the interconnecting points
(c, p) where p is a throw statement in catch clause c that rethrows
an exception. Recall that Soot includes an intraprocedural reaching

sentation. The second function relies on the def-use analysis pro-
vided by Soot [19].

definition analysis that provides local def-use links. We modified
it to fit our needs by assuming each reference parameter may be
modified in a method invocation.

After obtaining both e-c links and interconnecting points, it
is easy to construct e-c chains (p, c, p, c, p, c...) representing the
propagation path of a set of exceptions resulting from single error
condition. An e-c chains constructor is implemented that builds e-c
chains automatically by matching catch clauses and throw state-
ments from e-c links and interconnecting points.

5. EMPIRICAL RESULTS
In this section we report our empirical findings and discuss a case

history from our experiments, whose goal was to demonstrate the
effectiveness of our methodology. The case history about Tomcat
demonstrates the complexity and the inter-component nature of the
e-c chains determined by our analysis.

5.1 Experimental setup & benchmarks
We implemented the analysis in the Java analysis and transfor-

mation framework Soot [19] version 2.0.1, using a 2.8 GHz P-IV
PC with Linux 2.6.12 and the SUN JVM 1.3.1 08. We used five
Java applications as our benchmarks:

• Muffin, a web filtering proxy server [13].
• SpecJVM, a standard benchmark suite [24] that measures

performance of Java virtual machine, especially for running
client side Java programs.

• VMark, a Java server side performance benchmark. It is
based on VolanoChat [26] — a web based chat server. The
benchmark includes the chat server and simulated client.

• Tomcat, a Java servlet server from the Apache Software
Foundation, version 3.3.1 [3]. The servlets application run-
ning on top of Tomcat is an online auction service modeled
after EBay – part of the DynaServer project [16] at Rice
University. This application communicates with MySQL
database using MySQL Connector/J [14].

• HttpClient, an HTTP utility package from the Apache
Jakarta Project [2]. We collected its unit tests to form a
whole program to serve as a benchmark.

Table 1 shows the sizes of the benchmarks. Spark, a points-to
analysis based call graph constructor, was used to compute the call
graph of each benchmark so as to estimate the code that is reach-
able from the main function. Column 2 shows the number of user
(i.e., non-JDK library) classes, with those in parentheses compris-
ing the JDK library classes reachable from each application. The
data in column 3 shows the number of reachable user methods and
those in parenthesis are the JDK library methods reachable from
each application. Column 4 gives the number of catch clauses
in reachable user methods. The last column shows the size of the
.class files (in bytes) of each benchmark, excluding the Java JDK
library code.

Table 1: Benchmarks

Name Classes Methods Handlers .class Size
Muffin 278(1365) 2080(7677) 270 727,118
SpecJVM 484(2161) 2489(4592) 289 2,817,687
VMark 307(2266) 1565(5029) 502 2,902,947
Tomcat 470(1869) 2964(8197) 502 4,362,246
HttpClient 252(2210) 1334(4741) 536 1,049,784

According to the size of the .class files, Muffin is significantly
smaller than the other four benchmarks. It contains a smaller num-
ber of handlers than the other benchmarks. Besides, VMark, Tom-

cat and HttpClient are composed of many components, identified
by multiple jar files in the distribution.6

The reason we are including the relatively small and simple Muf-
fin as one of the benchmarks is that despite of its size, according to
data presented in [7], the number of e-c links involving I/O found in
Muffin is comparable to the other larger benchmarks. Moreover, it
takes a rather expensive analysis to remove a significant portion of
false positive e-c links in Muffin produced by the cheaper analysis,
which we believe shows that its structure is relatively complex.

We have Java source code for all the benchmarks except
SpecJVM and VMark. Only part of the source code for SpecJVM is
provided and there is no source code for VMark. Although we can
conduct our experiments using only bytecode, the unavailability of
source code hindered the process of interpreting our experimental
results.

On each benchmark, the Handler-inspection analysis finished in
under 2 minutes and e-c chain construction took even less time.
This total analysis cost is negligible comparing to the running time
of the Exception-flow analysis we are using – about 1 hour for most
benchmarks used in [7]. (Recall this analysis does not execute at
runtime.)

5.2 Empirical Data
As mentioned before, the Handler-inspection analysis automati-

cally examines all the catch clauses to find out how the caught ex-
ceptions and information derived from them are used. We can cat-
egorize each exception handler based on the information obtained,
partitioning them into the following categories: the caught excep-
tion (or information derived from it) is (i) rethrown, (ii) stored into
a field/array, (iii) returned to caller, (iv) ignored, or (v) the catch
clause is completely empty, or (vi) other cases.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Muffin SpecJVM Vmark Tomcat HttpClient

Other

Empty Handler

Ignored

Returned to caller

Stored into a field/array

Rethrown

Figure 7: Usage of Caught Exceptions in catch Clauses

Figure 7 shows the percentage breakdown of reachable handlers
in each of the benchmarks according to the above categorization.
As we can see from the chart, in 4 out of 5 benchmarks, the per-
centage of handlers that rethrow exceptions ranges from 15% to
35%, something that we can not ignore. But such activity is not
very visible in Muffin: only about 2%. Empty catch clauses occur
significantly often in all of the benchmarks. There is also a sig-
nificant percentage of non-empty catch clauses in which caught
exception objects are ignored. It is very rare that exception objects
are stored into some field/array or returned to the caller.
6We recognize components by assuming one component per jar file
provided by each benchmark. Users of our analysis can override
this by providing the component membership of classes according
to a provided XML schema. There is no jar file defined in Muffin
or SpecJVM.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

Muffin SpecJVM Vmark Tomcat HttpClient

Total Method Invocation
Call to a print function
Call to an exception constructor
Call to a logging function
Unknown

Figure 8: Methods Calls Related to Caught Exception

Not surprisingly, all of the handlers in category (vi) contain in-
vocations to other methods with information from the original ex-
ception used as either the receiver or a parameter. The reason we
did not name the category method calls is that handlers in category
(i), (ii) and (iii) also may make such method calls. Figure 8 shows
the kinds of method calls that appear in all of these handlers. The
height of each bar represents the number of catch clauses in each
category, normalized by the total number of reachable handlers in
the benchmark. We can see that most of the time the Handler-
inspection analysis can automatically identify the call targets as ei-
ther a constructor of another exception, a printing function in the
Java library, or an application-specific logging function, (i.e., in or-
der to discover the last case, information for each benchmark must
be manually specified before the analysis). Only a relatively small
number of them are some other exception handling method in the
application. Handlers that directly call printing or logging func-
tions dominate in 4 out of 5 benchmarks (i.e., except for SpecJVM).

From the data presented above we can see that Handler-
inspection analysis can summarize the behavior of the catch
clauses. This information, when combined with e-c chains dis-
covered in the system, can help a programmer pay more attention
to the catch clauses that can be reached by many different excep-
tion sources. At the same time it shows undesirable properties, (e.g.
swallowing a caught exception), which may be much more harmful
than an empty catch clause that can not be reached by any checked
exception.

After Handler-inspection analysis, interconnecting points can be
identified among the catch clauses. We would like to know the
possible destinations of the rethrown exceptions in these handlers.
So we examine all the e-c links (p, c) that start from one of the
interconnecting points (c, p). Figure 9 shows numbers of these
e-c links in which the source and target of the e-c link belong to
different classes, packages or components. In all the benchmarks
(except Muffin), as expected the majority of these e-c links propa-
gate across components or package boundaries. This information is
of great value in discovering and understanding the interaction be-
tween components, and revealing the high-level recovery structure
of the system. In systems of this complexity, it is hard to determine
this just by manual inspection.

One interesting fact about HttpClient is that there are many more
e-c links across components than across packages. The reason is

0

100

200

300

400

500

600

700

800

Muffin SpecJVM Vmark Tomcat HttpClient

Total Edges
Inter-Class Edges
Inter-Package Edges
Inter-Component Edges

Figure 9: Number of e-c links Starting from a Rethrow

that we are using its unit tests to form a whole program (necessary
for our analysis). Unit tests are packed in a different component
from the main implementation, but both are included in the same
package; in all the other benchmarks, each component consists of
one or more packages not vice-versa. The large number of e-c links
between the implementation and the test components shows that
the methods under test often pass along exceptions back and rely
on their caller to handle them.

Table 2: Number of Chains of Difference Length
Length 1 2 3 4 5 6 Total
Muffin 6 6
SpecJVM 69 46 115
VMark 300 81 12 393
Tomcat 312 365 31 3 2 10 723
HttpClient 583 547 275 1405

Finally, the e-c chain constructor can connect the e-c links gath-
ered with their identified interconnecting points to form e-c chains.
Table 2 lists the distribution of e-c chains of different lengths in
each of the benchmarks. Note that since these e-c chains are con-
structed from e-c links that start from some interconnecting point,
each one shows an exception propagation path with the first seg-
ment missing. The reason we are showing the data this way is that
some of the interconnecting catch clauses are protective handlers
that usually can only be reached by unchecked exceptions (e.g.,
NullPointerException or ThreadDeath). These handlers are
used to prevent the malfunctioning of some component that may
bring down the system, but the e-c links reaching them are either
very hard to find or do not exist explicitly in the code. So we ignore
the first segment of each e-c chain in order to gather and report uni-
form data. Of course, the e-c chain constructor provides the whole
path for examination, when the first segment involves a checked
exception.

As can be seen from Table 2, 4 out of 5 benchmarks show a sig-
nificant portion of the e-c chains have length greater than 1. Since
these are e-c chains with the first segment missing, we can see that
in many cases, one exception can go as far as 2 “hops” before reach-
ing its final handler. There are surprisingly long e-c chains found in
Tomcat, which shows the complex exception handling of the sys-
tem. Clearly, this data is sensitive to the way in which we count e-c
chains that share intersecting points. Here, we count all possible

combinations of incoming e-c links with outgoing e-c links . For
example, suppose a single interconnecting point has two incoming
e-c links and two outgoing ones, forming an X shape; the number
of e-c chains will be 4.

From the data presented above we can see that in Muffin, al-
though the number of I/O related e-c links is not very small [7], the
e-c links are fairly independent from each other. But at the same
time, in all the other benchmarks, exception rethrow is common and
with the Handler-inspection analysis, we can automatically iden-
tify semantic relations between individual e-c links caused by this
phenomenon. Thus, we can reveal the whole exception propagation
path, instead of just discrete segments of it. As often these paths
go across different components, a programmer diagnosing the root
cause of a problem can better understand the interactions between
components caused by the application recovery code, with the help
of this information. Next, we will show how to use this information
to create a higher level view of exception-handling architecture in
the e-c chain graph.

5.3 E-C Chains in Tomcat
The data presented above, especially the long e-c chains found in

Table 2, drew our attention to Tomcat. So we manually inspected
its e-c chains and source code, hoping to find answers to the fol-
lowing questions: How precisely does the analysis identify inter-
connection points? Are the e-c chains mostly independent or tan-
gled together? What can these e-c chains tell us about the overall
exception-handling behavior of the system?

Precision. We are primarily interested the precision of recogniz-
ing interconnection points in all the catch clauses. As mentioned
in Section 2, the Handler-inspection analysis can report false posi-
tives because it is approximate. Also, the analysis does not examine
called methods in a catch clause, even if the exception is passed
into them. There may be cases where the callee takes some excep-
tion and throws it or constructs a new exception from it and throws
that exception. In such cases, the exception thrown in the callee is
directly or indirectly related to the caught exception in the caller.
The corresponding catch clause should be recognized as an inter-
connecting point, but the analysis does not do so; this case is a false
negative.

To check the number of false positive and false negative cases,
we manually inspected all the catch clauses in Tomcat to verify
the result of the automatic Handler-inspection analysis. Surpris-
ingly, we did not find any false positives; that is, all the intercon-
necting points found, actually throw some exception that is either
directly or indirectly related to the original caught exception! Un-
fortunately, we did identify 3 cases of false negatives. There are
2 catch clauses in the Apache Crimson package, which call the
same function that constructs a new exception out of the caught
one and then throws it. There is another catch clause in the Tom-
cat Facade package that throws the parameter directly. All of these
rethrows happen in the method directly called from the handler, not
in other methods that are reachable from the callee.

According to Java library API specification [25], “A throwable
contains a snapshot of the execution stack of its thread at the time
it was created.” In one of the above methods, a new exception was
created that wraps the original exception and then is thrown. Since
it is not created “on the spot” (i.e., within the catch clause, as
most exceptions are), this exception object contains a stack snap-
shot that takes a little “detour” from the original exception prop-
agation path. If this snapshot is logged by the final handler and
subsequently used for problem localization, the “detour” may be-
come a source of confusion. In the other method mentioned above,
since the original exception was rethrown, the original stack snap-

shot was preserved. But in both cases, the handling complicates the
program understanding task by keeping the throw site further away
from the problem path, which may present difficulties to system di-
agnosis, especially when the call stack is not completely logged in
the final handler due to error-handling-time system resources con-
cerns.

We may also introduce false positives as we form e-c chains from
the results of the Handler-inspection analysis. When we connect
multiple e-c links into a e-c chain, the call path associated with
the chain maybe infeasible, although the call paths associated with
each e-c link are feasible. This may occur, for example, if two ex-
ception objects are handled in one interconnecting point and the
rethrow target is determined by the object thrown. Thus, there
may appear to be two possible handler targets, but only one cor-
responds to each incoming exception object. We were unable to
verify that this problem did not occur in Tomcat, since to manually
figure out call chain feasibility in a large object-oriented system is
not straight-forward. However, the situation can be partially alle-
viated by applying the DataReach analysis from [7] to remove e-c
chains only associated with infeasible call paths.

The existence of some false negatives in our analysis is not unex-
pected. To avoid false negatives would require a much more precise
interprocedural analysis that would be very costly, and itself might
introduce additional false positives due to the interprocedural part
of the analysis. Thus, we chose to implement an analysis of prac-
tical cost, which identifies, we believe, the bulk of the e-c chains
of interest. Given the complexity of exception handling in Tomcat
and the results of our manual inspection, we feel this decision is
justified.

E-c chain Graph. The e-c chains can be depicted in a graph and
shown in differing granularity to help in different tasks. In sys-
tem diagnosis tasks, first the programmer can obtain the immediate
cause of the symptom from the system log. Displaying e-c chains
may help the programmer decide which of the components are in-
volved and what are the possible root causes. Then, detailed in-
formation such as the position of throws and catchs in the code
and call paths between them, can be shown to help with detailed
reasoning. In program understanding tasks, the component-level
exception-flow structure can help a system integrator better under-
stand the interaction between components of an application. This
structure also can increase confidence in the expected robustness of
the application when problems occur.

We manually inspected all the e-c chains with length greater
than 2 and display them in the chart in Figure 10, which shows
the exception-flow architecture of the system. This process can be
automated using graph drawing packages such as Graphviz [8].

By looking at the e-c chain graph in Figure 10, we can easily
make two observations. First, on the left-hand-side of the graph,
MySQL Connector/J relies on Java network library to communi-
cate with the MySQL database, and propagates exceptions first to
DynaServer, then to the Tomcat Facade component. So if the net-
work connection to the database goes down when the system is
running, it may cause problems in the servlet application, but other
non-Facade parts of Tomcat are very likely not to be affected. In
this sense, the Facade component serves as a good firewall between
the servlet application and other parts of Tomcat. Second, accord-
ing to the structure on the right-hand-side of the graph, the system
is a lot more vulnerable to I/O problems during start up, because if
operations such as starting a server socket or reading some config-
uration file fail, that may cause trouble in many major parts of the
system, including the core component.

The e-c chain graph can also be presented in a coarser granu-
larity to reveal dependences between components, and thus a ser-

Legend:

Inter−component

Component:

Exception handler:

e−c link:

Intra−component e−c link:

ClassName.MethodName−HandlerID

Component Name

EmbededTomcat.main−0

EmbededTomcat.initContextManager−0

E−Tomcat

XmlMapper.readXML−1

Parser2.parseInternal−1

PoolTcpEndpoint.startEndpoint−2
PoolTcpEndpoint.startEndpoint−0

ServerSocketFactory.getDefault−0PoolTcpEndpoint.startEndpoint−1

ContextManager.init−0
ContextManager.addInterCeptor−1

Context.setState−0

Ajp12.readNextRequest−2

ReloadInterceptor.ContextMap−1

ServerXmlReader.loadConfigFile−0

PolicyLoader.addInterceptor−0

Ajp13Interceptor.doShutDown−0

Crimson

PoolTcpEndpoint.enginStart−0

XmlMapper.endElement−0

XmlMapper.readXML−0

WebXmlReader.processWebXmlFile−3

WebXmlReader.processWebXmlFile−1

Tomcat Facade

ServletHandler.doService−1

ServletHandler.doInit−0

Driver.connect−1

Connection.connectionInit−6

Connection.connectionInit−4

RubisHttpServlet.init−3

Connection.execSQL−5
Connection.execSQL−6

MysqlIO.sendCommand−2

MysqlIO.sendCommand−0 MysqlIO.clearAllReceive−0

MysqlIO.sendCommand−3

DynaServer

Tomcat Modules

Tomcat Util

Tomcat Core

MySQL Connector/J

MysqlIO.sqlQueryDirect−0

Java JDK Library

Figure 10: E-c chain Graph of Tomcat

MySQL Connector/J Crimson

Tomcat Facade E−Tomcat Tomcat Core

Tomcat Util

Java JDK Library

Tomcat Modules

DynaServer

B is dependent on A: AB

Figure 11: Service Dependence Graph of Tomcat

vice dependent graph is formed: When an exception flows from
component A to component B, we can see that an operation fail-
ure in A may cause an operation failure in B. In another words,
some operation in B is dependent on the service in A to complete
its functionality. Figure 11 is the service dependent graph of Tom-
cat. For example, the graph tells us that the Tomcat Util component
provides a higher level of abstraction on top of the Java library for
other components of Tomcat, so they don’t need to interact with
Java library directly.

So e-c chains, when depicted in graphs in Figure 10 and 11, can
show the exception-handling architecture of Tomcat in a compact
form. By inspecting the graph, a programmer can understand the
exception-handling interaction between major components, at the
same time, estimate the vulnerability of certain components as well
as that of the whole system. A person trying to gain knowledge
about possible root causes of a particular problem can browse the
exception propagation path and participating components on these
graphs. All this knowledge can be obtained by examine the graphs
showed above without consulting the source code of the system.

6. CONCLUSION AND FUTURE WORKS
We have defined a static Handler-inspection analysis that ex-

amines reachable catch clauses to identify catch clauses that
rethrow exceptions. Our Exception-chain analysis combines this
information with e-c links found by an existing static analysis,
forming e-c chains at compile time without any runtime overhead.
A graph of these e-c chains depicts the architecture of system re-
covery code at several levels of granularity: component, package,
class. We believe that this graph and its related service depen-
dence graph that highlights exception flow between components,
are valuable for system problem diagnosis and program under-
standing tasks.

Our future plans include building a GUI to display the e-c chains
to allow interactive browsing on many levels of granularity. We
plan to extend the instrumentation algorithm of the testing frame-
work in [7] to accommodate both e-c links and e-c chains for better
error recovery code testing.

7. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers – Principles,

Techniques and Tools. Addison Wesley, 1988.
[2] Apache Software Foundation. Apache jarkarta project: Jakarta

commons. Available at http://jakarta.apache.org/commons/.
[3] Apache Software Foundation. Apache tomcat. Available at

http://tomcat.apache.org/.
[4] D. Bacon and P. Sweeney. Fast static analysis of C++ virtual

functions calls. In Proceedings of ACM SIGPLAN Conference on
Object-oriented Programing Systems, Languages and Applications
(OOPSLA’96), Oct. 1996.

[5] G. Candea, M. Delgado, M. Chen, and A. Fox. Automatic
failure-path inference: A generic introspection technique for internet
applications. In WIAPP ’03: Proceedings of the The Third IEEE
Workshop on Internet Applications, page 132, Washington, DC,
USA, 2003. IEEE Computer Society.

[6] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented
programs using static class hierarchy. In Proceedings of 9th
European Conference on Object-oriented Programming
(ECOOP’95), pages 77–101, 1995.

[7] C. Fu, A. Milanova, B. G. Ryder, and D. G. Wonnacott. Robustness
Testing of Java Server Applications. IEEE Transactions on Software
Engineering, 31(4):292–311, Apr. 2005.

[8] Graphviz - graph visualization software. Available at
http://www.graphviz.org/.

[9] J.-W. Jo, B.-M. Chang, K. Yi, and K.-M. Choe. An uncaught
exception analysis for java. Journal of Systems and Software,
72(1):59–69, 2004.

[10] O. Lhoták and L. Hendren. Scaling Java points-to analysis using
Spark. In International Conference on Compiler Construction, LNCS
2622, pages 153–169, 2003.

[11] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Second Edition. Addison Wesley, 1999.

[12] T. J. Marlowe and B. G. Ryder. Properties of data flow frameworks:
A unified model. In Acta Informatica, Vol. 28, pages 121–163, 1990.

[13] The Muffin world wide web filtering system. Available at
http://muffin.doit.org/.

[14] MySQL. Mysql connector/j, 2003. Available at
http://www.mysql.com/products/connector/j/.

[15] D. Reimer and H. Srinivasan. Analyzing exception usage in large
java applications. In EHOOS’03: ECOOP2003 - Workshop on
Exception Handling in Object Oriented Systems, July 2003.

[16] Rice University. Dynaserver: System support for dynamic content
web servers, 2003. Available at
http://www.cs.rice.edu/CS/Systems/DynaServer/.

[17] M. P. Robillard and G. C. Murphy. Static analysis to support the
evolution of exception structure in object-oriented systems. ACM
Transactions on Software Engineering and Methodology (TOSEM),
12(2):191–221, 2003.

[18] A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis for java
using annotated constraints. In OOPSLA ’01: Proceedings of the
16th ACM SIGPLAN conference on Object oriented programming,
systems, languages, and applications, pages 43–55, Tampa Bay, FL,
USA, 2001.

[19] Sable, McGill. Soot: a java optimization framework, 2003. Available
at http://www.sable.mcgill.ca/soot.

[20] S. Shenoy. Best practices in EJB exception handling. IBM
developerWorks Artical, May 2002. Available at
http://www-128.ibm.com/developerworks/library/j-ejbexcept.html.

[21] S. Sinha and M. J. Harrold. Analysis and testing of programs with
exception-handling constructs. IEEE Transactions on Software
Engineering, 26(9):849–871, September 2000.

[22] S. Sinha, A. Orso, and M. J. Harrold. Automated support for
development, maintenance, and testing in the presence of implicit
control flow. Technical Report GIT-CC-03-48, College of
Computing, Georgia Institute of Technology, September 2003.

[23] S. Sinha, A. Orso, and M. J. Harrold. Automated support for
development, maintenance, and testing in the presence of implicit
control flow. In Proc. Int’l Conf. Software Engineering (ICSE’04),
2004.

[24] Specbench.org. Spec jvm98 benchmarks. Available at
http://www.spec.org/jvm98/.

[25] Sun Microsystems. Java 2 platform, standard edition, v 1.4.2 api
specification. Available at http://java.sun.com/j2se/1.4.2/docs/api/.

[26] Volano LLC. Volanomark. Available at
http://www.volano.com/benchmarks.html.

