
HI-C: Diagnosing Object Churn in
Framework-Based Applications

Marc Fisher II
University of Memphis

Memphis, TN, USA
marc.fisher@cs.vt.edu

Luke Marrs
Virginia Tech

Blacksburg, VA, USA
lmarrs@vt.edu

Barbara G. Ryder
Virginia Tech

Blacksburg, VA, USA
ryder@cs.vt.edu

ABSTRACT
In prior work we have developed an escape analysis to help devel-
opers identify sources of object churn (i.e., excessive use of tempo-
raries) in large framework-based applications. We have developed
HI-C, an Eclipse plug-in that allows users to visualize, filter, and
explore analysis results to aid them in diagnosis of object churn and
in program comprehension in general.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Diag-
nostics

General Terms
Measurement, Performance

1. INTRODUCTION
In prior work, we developed ELUDE, a tool that performs a blended

escape analysis [4]. For a particular analysis run, ELUDE produces
hundreds of megabytes of complex XML data. This data represents
information at two levels of granularity – calling relationships be-
tween methods during the execution and reference relationships be-
tween objects within these methods; each level refers to the other
in complex ways. For example, each object1 includes information
about the method(s) in which it was allocated or captured or from
which it escaped. This information is intended to guide the user in
the process of identifying locations of object churn (i.e., excessive
creation and initialization of temporary objects) so that the perfor-
mance of the corresponding code can be improved.

Due to their size and complexity, manually sifting through these
results is infeasible. Therefore, we used a combination of special-
ized scripts and manual inspection to explore the analysis results.
These scripts produce static views of the data such as ranked lists of
potentially interesting methods and objects, graphs and basic statis-
tics. Identifying interesting objects or understanding how objects
flow through an execution using such reports required manually
jumping between them and mentally managing links between the
different summaries, something we found to be difficult.

In order to ease this burden of exploring and understanding anal-
ysis results, we built HI-C, an Eclipse plugin that provides interac-
tive, dynamic visualizations. HI-C presents two views: (i) a call-
ing context tree (CCT) representing calling relationships between

1 We use the term object to refer to the static representation of a
run-time object in the dataflow formulation and instance to refer to
a run-time object. For our analysis, an object is an allocation site
within a particular method.

Copyright is held by the author/owner(s).
FSE-18, November 7–11, 2010, Santa Fe, New Mexico, USA.
ACM 978-1-60558-791-2/10/11.

methods [1] and (ii) a connection graph (CG) representing refer-
ence relationships between objects within a particular method [4].
Unlike previous reports, these views provide mechanisms for quickly
identifying how the objects represented in the CG flow through the
execution represented in the CCT. Thus, HI-C provides an exam-
ple of how to help a developer understand and explore complex
dataflow information.

2. TOOL DESCRIPTION
HI-C is the last stage in a workflow that uses a variety of anal-

ysis tools to identify areas of high churn within an application.
This workflow begins when the user identifies a transaction that
is performing poorly. The user then uses JINSIGHT [3] to collect a
dynamic trace of the execution, ELUDE [4] to perform the escape
analysis, and CHURNI to merge the output of ELUDE with alloca-
tion information from JINSIGHT to produce a CCT and CGs.

HI-C, implemented as an Eclipse plug-in, allows exploration of
the output produced by CHURNI. When started, HI-C displays the
CCT produced by CHURNI as shown in Figure 1(a). Each node in
the CCT represents a set of calls to a method (a context) and each
edge indicates calling relationships between these contexts. Within
the CCT, each node is color-coded to indicate the relative number of
instances captured within its corresponding context, with red indi-
cating the capture of many instances, orange or yellow, an interme-
diate number of captured instances, and green, few or no captured
instances.

As can be seen in Figure 1(a), the CCT generally includes too
many nodes to effectively navigate and identify the contexts of in-
terest. Therefore, the user can press a button to limit the display
to only those contexts that capture large numbers of instances as
shown in Figure 1(b). Prior research has shown that, in most cases,
relatively few contexts are responsible for explaining the majority
of captured instances [4]. Tooltips over the nodes in the CCT indi-
cate the method corresponding to each node.

When the user selects a node in the CCT, the corresponding CG
is displayed in another pane as shown in Figure 1(c). Each node
in the CG corresponds to an object used in the escape analysis and
each edge indicates a reference relationship between these objects.
Within the CG, the nodes are color-coded to indicate the escape sta-
tus of the corresponding object. Specifically, the square within the
node indicates the local escape status (i.e., is the object captured
in or does it escape from the current context), with red indicating
captured within this context (e.g., node 1046), blue indicating argu-
ment escaping (e.g., node 191) and green indicating globally escap-
ing. Similarly, the color of the rest of the node body indicates the
final escape status (i.e., is there any context where the object glob-
ally escapes), either red for captured (e.g., node 1021) or green for
escaping (e.g., node 191). The tooltips for the nodes in the CG in-



(a) Full CCT 

(b) High Concentration Nodes 

(c) Connection Graph 

(d) CCT for Data Structure 

Figure 1: Example Use of HI-C

clude additional information about the objects, including type, the
number of instances, and the maximum capture depth of the object.

When the user selects a node in the CG, the CCT pane changes
to show the contexts where the corresponding object is visible as
shown in Figure 1(d). In this reduced CCT, the context that allo-
cated the selected object is black (e.g., node 11227), the contexts
that capture the object are red (e.g., node 11583), and any contexts
where the object globally escapes are colored green.

More details about HI-C are available in reference [6].

3. RELATED WORK
While many people have visualized data structures or algorithms

for pedagogical purposes (e.g., [5]) or created visualizations to iden-
tify specific types of problems in programs (e.g., [7]), there has
been relatively little work on providing visualizations of complex
static or dynamic analyses targetted toward application developers.

Pheng and Verbrugge’s work on dynamic data structure analysis
visualizes the changes to the heap during execution as a series of
snapshots [8]. The graphs displayed within the snapshots are simi-
lar to the connection graphs that HI-C shows, while the sequences
of the snapshots themselves provide temporal data similar to that
provided by the CCT.

Bohnet and Döllner have created visualizations for exploring the
dynamic call graph corresponding to the implementation of a par-
ticular feature [2]. The dynamic call graphs being visualized are
similar to our CCTs, and in both cases, due to the size of the
graphs, it was important to provide mechanisms to identify inter-
esting nodes in the graphs. However, the criteria used to identify
these methods or functions were not the same due to the different
goals of the visualization.

Acknowledgements.
The authors would like to thank Gary Sevitsky and Bruno Dufour who

were involved in the development of blended escape analysis and of many
of the tools used in this work. This work was supported in part by NSF
Grants CCF-0811518 and CCF-0964870 and by an IBM Open Collabora-
tion Award.

4. REFERENCES
[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware

performance counters with flow and context sensitive profiling. In
Conf. on Programming Language Design and Implementation, pages
85–96, 1997.

[2] J. Bohnet and J. Döllner. Visual exploration of function call graphs for
feature location in complex software systems. In Symp. on Software
Visualisation, pages 95–104, September 2006.

[3] W. DePauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, and
J. Yang. Visualizing the execution of Java programs. In Software
Visualization, volume 2269 of LNCS, pages 151–162. 2002.

[4] B. Dufour, B. G. Ryder, and G. Sevitsky. A scalable technique for
characterizing the usage of temporaries in framework-intensive Java
applications. In Inter. Symp. on the Foundations of Software
Engineering, 2008.

[5] A. S. Erkan, T. J. VanSlyke, and T. M. Scaffidi. Data structure
visualization with LATEX and prefuse. ACM SIGCSE Bulletin,
39(3):301–305, 2007.

[6] M. Fisher II, L. Marrs, and B. G. Ryder. Visualizing the results of a
complex hybrid dynamic-static analysis. Technical Report TR-10-07,
Virginia Tech, April 2010.

[7] C. Parnin, C. Görg, and O. Nnadi. A catalogue of lightweight
visualizations to support code smell inspection. In Symp. on Software
Visualisation, pages 77–86, September 2008.

[8] S. Pheng and C. Verbrugge. Dynamic data structure analysis for Java
programs. In Inter. Conf. on Program Comprehension, 2006.


	1 Introduction
	2 Tool Description
	3 Related Work
	4 References

