
Remote Batch Invocation for Web Services
Document-Oriented Web Services with Object-Oriented Interfaces

Ali Ibrahim, William R. Cook
Dept. of Computer Science

University of Texas at Austin
{aibrahim,wcook}@cs.utexas.edu

Marc Fisher II, Eli Tilevich
Dept. of Computer Science

Virginia Tech
{fisherii,tilevich}@cs.vt.edu

Abstract—The Web Service Description Language defines
a service as a procedure whose inputs and outputs are
structured XML data values, sometimes called documents.
In this paper we argue that document-oriented interfaces
can be viewed as batches of calls to finer-grained procedural
interfaces. Turning this correspondence around, we show
that flexible documents can be specified by converting a
block of fine-grained invocations into a batch document.
Batch blocks can also include conditionals and loops. Our
system, Remote Batch Invocation for Web Services, translates
object-oriented interfaces into a WSDL describing batches
of calls. The WSDL can be used by standard web service
clients, but by providing a language extension to support
remote batches, our approach features a fully integrated
client environment. The result is a powerful infrastructure
for web services that directly connects to standard object-
oriented interfaces, with tool support to automatically create
and decode documents. We have used our infrastructure to
create a Web server wrapper for the Amazon Associates
Web service, which shows that remote batches can support
a clean object-oriented programming model over a stateless
web service.

I. INTRODUCTION

A web service is a remote invocation in which the
world wide web is used as the transport protocol. Although
some web services resemble traditional remote procedure
calls (RPC) [1], document-oriented services [2], [3] and
representation state transfer (REST) [4] are becoming
more prevalent. In this paper, we focus on document-
oriented web services that use the Simple Object Access
Protocol (SOAP) to send and receive structured XML
documents [5].

The document-oriented approach is flexible; documents
can represent complex objects (e.g., purchase orders, med-
ical information), complex actions (e.g., creation, multiple
updates, bulk removal, or specialized operations), queries,
or combinations of these forms. Despite this complexity,
there is no standard methodology for detailed design of
service documents or specification of their semantics.

Remote Batch Invocation for Web Services (RBI-WS)
is a new approach to document-oriented web services
supporting object-oriented interfaces. We show how fine-
grained object interfaces can be translated into a web ser-
vice interface (WSDL) whose instances describe batches
of fine-grained calls. The translation is bi-directional, the
web service interface can be translated back into fine-
grained object interfaces for use by the client.

RBI-WS is supported by several tools. At design time,
tools translate between WSDL interfaces and collections
of object interfaces. A runtime server library supports
automatic interpretation of batch web service documents,
by executing each of the primitive object calls specified in

the batch. A batch can contain conditionals and iterations,
in addition to sequences of basic calls. A client library
can be used to create batches. Finally, an extension of java
with a batch statement is compiled by a source-to-source
translator that replaces batch statements with appropriate
calls to the client library. Standard SOAP/WSDL tools,
for example Apache Axis [6], can also be used to access
batch services.

We evaluate RBI-WS by redefining an existing web ser-
vice, in this case part of the Amazon Wed Service (AWS)
suite. Our demonstration highlights the expressiveness and
flexibility of using RBI-WS to build web services, while
indicating that it could also provide performance and code
size reduction advantages.

RBI-WS is an extension of our previous work [7] on
batches for Java Remote Method Invocation (RMI). The
contributions of this paper are the design of a mapping
between batches and web service documents (WSDL), and
a demonstration that batches are a natural generalization
of an existing document-oriented service. This work is a
first step toward a more systematic approach to design of
web service documents.

II. DOCUMENTS AND INTERFACES

It is well known that code can be represented as a docu-
ment; code in most languages can be expressed as abstract
syntax trees. Conversely, one might wonder whether it is
reasonable for documents to be understood as batches of
operations? To address these questions, we first consider
what a “document” is and how it is used. The interface of a
web service defines a language of legal inputs. A sentence
in this language is a document. A document can be viewed
as having a mix of data and operations to perform on
the data. If the operations can be composed in different
ways such as batching, sequencing, and branching, then it
makes sense to think of the document as representing code.
We argue this is often the case in large services. Because
performance and flexibility are important, the web service
allows clients to compose multiple operations in a single
document.

We will think of each individual operation in a docu-
ment as a method in the server API. How to divide the
document into data and operations is subjective; it depends
on how the programmer would like to think about the
document.

A. Documents as Collections of Calls
To illustrate the correspondence between documents and

calls on an API, we will examine a couple of real-world
input documents. The code listing in Figure 1 shows a

<ItemLookup>
<AWSAccessKeyId>XYZ</AWSAccessKeyId>
<Request>

<ItemIds>
<ItemId>1</ItemId>
<ItemId>2</ItemId>

</ItemIds>
<IdType>ASIN</ItemIdType>
<ResponseGroup>SalesRank</ResponseGroup>
<ResponseGroup>Images</ResponseGroup>

</Request>
</ItemLookup>

Figure 1: Example request document for AWS

aws.login(”XYZ”);
Item a = aws.getItem(”1”);
Item b = aws.getItem(”2”);
return new Object[] {

a.getSalesRank(), a.getSmallImage(),
b.getSalesRank(), b.getSmallImage() }

Figure 2: Calls to represent Figure 1

sample input document a client could send to the Amazon
Associates Web Service (AWS). The document represents
a request to selects two Amazon items by their ASIN
ids and retrieve their Amazon sales ranks and images.
Although not shown here, there may be multiple lookup
requests as well as multiple operations in a single input
document.

One can imagine how this interface would look if it
were designed as a set of fine-grained local object-oriented
interfaces. A possible set of interfaces is presented in
Figure 11 and described in Section V.

The document in Figure 1 can be viewed as a script that
specifies the sequence of calls in Figure 2. The ItemId tags
represent calls to getItem and the ResponseGroup tags
specify which accessors to invoke on each item that is
located. The input document is in effect a kind of query.

Documents which specify updates can also be naturally
supported by a set of fine-grained interfaces. The XML
document in Figure 3 shows a request to modify an

<CartModify>
<AWSAccessKeyId>ABC</AWSAccessKeyId>
<Request><CartId>0</CartId>

<HMAC>XYZ</HMAC>
<Items>

<Item>
<Action>MoveToCart</Action>
<CartItemId>0</CartItemId>
<Quantity>1</Quantity>

</Item>
<Item>

<Action>SaveForLater</Action>
<CartItemId>1</CartItemId>

</Item>
</Items>

</Request>
</CartModify>

Figure 3: Sample AWS update request document

aws.login(”ABC”);
Cart cart = aws.getCart(”0”,”XYZ”);
cart .moveToCart(cart.getCartItem(0), 1);
cart .saveForLater(cart.getCartItem(1));

Figure 4: Calls to represent Figure 3

Amazon shopping cart. This document can be viewed as
representing the sequence of calls in Figure 4.

We believe that many service documents can be un-
derstood as specifying a pattern of calls to fine-grained
server objects. As web service interfaces become more
sophisticated (e.g. Amazon Associates Web Service), the
documents begin to resemble scripts in a small specialized
programming language.

B. Blocks with Control Flow as Documents

If we can think of documents as representing programs
using specialized APIs, then it is natural to think about
the commonalities between these programs. The specific
operations in an API vary for each web service, but the
composition operators are common: batching, sequence,
branching, and looping. Given a set of object-oriented in-
terfaces, can we produce a XML schema which describes
documents that are specific to that API and incorporates
common composition operators? We would like the en-
coding to have the following properties:

1) The XML schema should allow the clients to specify
batches of API calls with support for conditionals,
loops, and exceptions. These constructs allow flexi-
ble composition of operations.

2) The XML schema should specify as much informa-
tion as possible about the set of interfaces including
type information. We should be able to recover the
original interfaces from the XML schema.

3) The XML schema corresponding to the language
should produce a reasonable set of data transfer
classes when given to standard code generator tools
such as Axis [6] and Microsoft Visual Studio [8].
This property is a practical consideration given we
would like programmers to use our XML schema
directly for code generation.

The latter point will be addressed in the next sub-
section. Figure 5 shows the structure of the family of
languages we chose to represent document-oriented web
services.

The language contains basic control structures for se-
quencing, naming, branching, and looping. The let*
construct behaves similar to the normal binding let
construct, but also tells the server to send this variable
binding to the client. The keyword root represents the
root service object. We decided to have booleans, integers,
doubles, and strings serve as the language’s primitive
types. The primitive types can be manipulated using
common unary and binary operators such as + and ∨. The
method calls m1 . . . mn represent a finite set of method
calls available on the server.

What is interesting about this family of DSL is that they
are limited compared to general purpose languages. Since
we see these languages as glue languages, we decided

n ∈ Name

l ∈ V ariable

c ∈ C : Boolean+ Number+ String

+ Collection[C]

binop ∈ {+,−, ∗, /,∨,∧, >,=}
unop ∈ {−, not}

E = root | l | E binop E | unop E | c
| E.m1(E1, . . . , Ej1) | . . . | E.mn(E1, . . . , Ejn)

S = E

| S1; S2

| let l = E

| let* l = E

| if S1 S2 S3

| for (v ∈ E) S

Figure 5: Domain Specific Language for Web Services

to omit support for procedural abstraction or modules.
There are a couple of other interesting design choices.
The language does not provide a natural way to perform
aggregation, although the programmer can workaround
this restriction with the help of the server (Section V-C
discusses this in more detail). Another interesting omission
is the lack of constructors. Instead the language relies on
the web service providing factory methods for constructing
objects.

One issue we are avoiding in this paper is security, since
we feel it is mostly orthogonal to the idea of web service
documents as batching. Our current implementation allows
a client to invoke a specific set of methods on any object
that is reachable from the root service object. An object
is reachable if it is the return value of a method defined
in the DSL on a reachable object. There are many ideas
for limiting accessibility further such as explicitly defining
which set of objects can be manipulated by clients. Our
language may also make it easier to execute denial of
service attacks on the web service because of the ability
to use loops. One simple approach may be to limit the
number of steps that a batch executes. A single step may
be defined as one reduction in the operational semantics
of the language.

C. Encoding Web DSL programs as XML

There are many possible encodings of a web service
DSL program into XML. Figure 6 shows an example of
a web DSL program. Our first attempt at encoding this
program in XML is in Figure 7. Each element represents
an AST object where the name of the element is the
object’s type. Fields of the AST objects are specified as
an ordered list of child elements. For example, the add
element represents a call to the Cart#add method and the
first child element represents the cart to invoke the add
method on.

Our stated goals for the schema encoding of web
DSL programs is to preserve type information about the
interface and to produce a schema that can be consumed

let a = root .getItem(”1111”);
let b = root .getCart(”222”, ”xxx”);
b.add(a, 1);

Figure 6: Example web DSL code.

<sequence>
<let var=”a”>
<getItem><string>1111</string></getItem>

</let>
<let var=”a”>
<getCart>
<string>1111</string><string>xxx</string>

</getCart>
</let>
<add>
<cart ref ref=”b”/><item ref ref=”a”/><num>1</num>

</add>
</sequence>

Figure 7: First try at representing code in Figure 6 as
XML.

by WSDL code generation tools. The XML schema which
describes documents such as in Figure 7 requires substi-
tution groups to enforce typing constraints. Unfortunately,
neither of our WSDL code generation tools (Axis 2
and Microsoft Visual Studio) could recognize sub-typing.
expressed in this fashion. Moreover, the differentiation of
sub-elements using position resulted in the code generators
not correctly naming fields in the generated classes.

Instead, our XML schema encoding uses explicit type
polymorphism as shown in Figure 8. In this encoding, each
element represents an AST object and the type attribute
specifies the object’s class and the element name specifies
the field name in the enclosing object. This encoding
is more verbose because of the additional type attribute
definition, but our WSDL code generation tools were able
to interpret this form of polymorphism and were able to
generate meaningful field names in the generated classes.

D. Encoding Interfaces as XML Schema
We will now describe our algorithm for encoding a

set of interfaces into a XML schema which describes
XML documents such as the one in Figure 8. The schema
enforces a basic level of type safety, e.g. the condition

<batch type=”Sequence”>
<step type=”AmazonService getItem” binding=”a”>
<p1 type=”String” value=”1111” />

</step>
<step type=”AmazonService getCart” binding=”b”>
<p1 type=”String” value=”222” />
<p2 type=”String” value=”xxx” />

</step>
<step type=”Cart add”>
<this type=”Cart Ref” ref=”b” />
<p1 type=”Item Ref” ref=”a” />
<p2 type=”Number” value=”1” />

</step>
</batch>

Figure 8: XML enconding of program in Figure 6.

child element of an conditional element should produce
a boolean value. However, the language is not strongly
typed, the programmer asserts the type of references which
creates a hole in the type system. We were not able to plug
this hole without too much additional complexity.

The schema can be divided into a generic schema which
is the same for all sets of interfaces and an interface
schema which is unique for a set of interfaces. The
generic schema defines schema types for the composition
operations and primitive types. The Operation type is the
base type for all types (We will use XSCS [9] syntax to
express XML schema).

abstract complexType Operation {
attribute binding { string }
attribute neededLocally { boolean } }

Objects are identified by handles, which represent the
identity of an object or value that exists on the server
during execution of the batch. The XML attribute binding
in the operation element represents the name of the handle
for the result of that operation. The XML attribute needed-
Locally in the batch operation tag allows the programmer
to specify whether the value is needed by the client. The
Any type is the base type for all value types, i.e. all
types except for Void. The value types include numbers,
booleans, and strings. Control flow structures provided
are sequences, conditionals, and loops. For example, the
schema definition for if conditional statements is below.

complexType IfStmt extends Void { {(
cond { Boolean },
then { Operation },
else { Operation }) } }

The interface schema defines schema types for each
interface. Each interface I is translated into four types
in the schema.

abstract complexType I extends super(I)

complexType I__Ref extends I
{ attribute val { boolean } }

abstract complexType Coll__I {}

complexType C__I__Ref extends C__I
{ attribute val { boolean } }

complexType C__I__Val extends C__I
{ (item { I } [0,]) }

The super function finds the first ancestor of I that is
defined in the schema, because there is no restriction that
the set of interfaces contain their super-types as well. The
schema types ending in __Ref represent references to
a type and are used to reference the variables defined
in let statements. The schema types beginning with C__
represent the collections parameterised by that type. The
schema type beginning with C__ and ending with __Val
represents a literal collection of values of a type (such as a

literal array of integers). There is no support for sub-typing
relations between these collection types. Each method m
in I is translated into a schema type.

complexType I_m extends returnTyp(m) { (
this { name(I) } if isRoot(I) [0,1],
p1 { paramType(m, 1) }
, ..., pk { paramType(m, k) }

)}

The method schema type is a sub-type of the return type
of the method, because that is the value produced by the
method invocation. The this sub-element represents the
receiver of the call. It is optional if the interface is the root
interface. If omitted, the method call is invoked on the
root interface object. Subsequent sub-elements represent
the parameters of the method.

For example, the AmazonService getItem tag in Fig-
ure 8 represents a call to the getItem method. Its target
is the root object, so the this sub-element is omitted. It
has one parameter, an item id that specifies which item to
retrieve. The binding attribute defines the handle for the
method return value, in this case “a”. Return handles are
optional, but they are useful even if the method returns
void; the handle is later used to identify any exceptions
that might return from the call.

The return document schema consists of a return map
element. The return map element contains a list of pairs of
handle names and value elements. Value elements in the
return message can either be any value element defined
in the input document schema plus exception elements.
Exception elements contain a name string and a message
string.

III. BATCH SERVICE SERVERS

So far we have presented an algorithm for translating
a set of object-oriented interfaces to a XML schema
that describes a custom DSL for operating over those
interfaces. However, we would like for programmers not to
have to write a custom interpreter for each web service.
To that end, we have implemented a generic interpreter
which can be deployed as an Axis 2 web service. Axis 2
is a popular open source web service engine that supports
SOAP web services. The programmer supplies our generic
interpreter with two pieces of information: a web service
definition language (WSDL) XML document describing
the web service and the name of a class implementing the
root interface for the web service.

The programmer constructs the WSDL by running a
custom Java to WSDL tool which creates the XML schema
for the server interfaces. The programmer also specifies the
class that implements the root web service interface. This
class must have a default constructor which will be used
to create the root service object. The root service object
persists for the lifetime of a batch execution.

The generic interpreter web service can then be de-
ployed as a normal Axis 2 service that appropriately
interprets batch requests and delegates method calls to the
appropriate objects.

...
BatchExecutorStub best =

new BatchExecutorStub(ENDPOINT);
Batch batch = new Batch();
StringValue id = new StringValue();
id .setVal(”1”);
StringValue name = new StringValue();
name.setVal(”John Smith”);
AWSE searchItem search = new AWSE searchItem();
search.setNeededLocally(true);
search.setBinding(”x”);
search.setP0(id);
search.setP1(name);
Item Ref ref = new Item Ref();
ref .setRef(”x”);
Item getName getName = new Item getName();
getName.set this(ref);
getName.setNeededLocally(true);
getName.setBinding(”y”);
Sequence seq = new Sequence();
seq.setStep(new Operation[] {search,getName});
batch.setOp(seq);

Output out = best.executeBatch(batch);
for (OutputBinding binding : out.getBinding()) {

// output the result
}

Figure 9: Code listing for batch client using Axis 2
WSDL2Java generated interface.

IV. BATCH SERVICE CLIENTS

In order for the programmer to gain practical benefits
from using RBI-WS, convenient client bindings must
be provided. What makes the creation of such bindings
nontrivial is that Web services are a language-independent
communication infrastructure, and the same service may
need to be invoked by multiple clients written in dif-
ferent languages. One advantage of RBI-WS is that its
WSDL can be processed by any standard WSDL client
binding generator, making our approach applicable for
any SOAP-enabled client. Although such default RBI-WS
client bindings can be used out-of-the-box, we have also
experimented with a different approach for streamlining
RBI-WS client programming. This approach extends Java
with a new keyword, batch. In the following discussion,
we first outline the default client bindings, and then we
explain how we have adapted the batch extension, detailed
in a prior publication [7], for the needs of RBI-WS.

A. Default Clients

The WSDL created by the interface translation can
be imported by standard web service clients, including
Apache Axis 2 and Microsoft Visual StudioTM.

The client code fragment in Figure 9 connects to the
Amazon web service, looks up a merchandise item by its
name and id, and returns the results back to the client.

Unfortunately, the code in Figure 9 obscures the pro-
grammer’s intentions. The reason for poor readability is
that this code creates abstract syntax objects, and as
such it is indirect and reflective. In fact, this code is
even somewhat more complex than the code for invoking
the standard Amazon Web service. One reason for the
extra complexity is that the code uses separate steps

BatchClient amazonService
= new BatchClient(SERVER);

batch (AmazonService service : amazonService) {
final Item x = service.searchItem(”1”, ”John Smith”);
final String y = x.getName();

// output result
}

Figure 10: Code listing for batch client using batch lan-
guage extension.

to construct the parameters and set their values, before
passing the parameters to service methods. To hide some
of this complexity, we next describe an approach that can
smooth away the rough edges of the default RBI-WS client
bindings.

B. The Batch Extension

We have extended the Java language with new syntax
that supports defining a batch with a mix of local and
remote operations [7]. The programmer generates the
interfaces to a web service by running a custom tool which
takes a WSDL and reverses the translation described
in Section II-D. Using those interfaces, the programmer
can invoke remote operations on remote objects inside
the batch block. An object is remote if it is the root
remote service object or if it is obtained from a remote
operation. The compiler separates the remote and local
operations producing a partitioned program that may have
been difficult for the programmer to write by hand because
of interactions between the remote control flow and the
remote-to-local dataflow. At runtime the remote operations
are executed as a single batch and the results are threaded
into the local operations as needed. Figure 10 shows how
to rewrite the example in Figure 9 using the batch syntax.
Using the batch syntax, the programmer intent is clearer
and the code is more succint.

Remote Batch Invocation uses the following syntax:

batch (Type Identifier : Expression) Block

The Identifier specifies the name of the root remote
object. The Expression specifies the service which will
provide the root remote object. The Block specifies
both remote and local operations. A remote operation is
an expression or statement executed on the server. All
remote operations inside the batch block are executed in
sequence followed by the local operations in sequence.
A single remote call is made which contains all of the
remote operations. This is the key property, as it provides
a strong performance model to the programmer albeit
lexically scoped [10]. Exceptions in a remote operation
are re-thrown in the local operation sequence at the
original location of the remote operation. If the remote
operations fail due to a network error, then an exception
is thrown before any of the local operations execute.
Operations inside the batch block are reordered and it
is possible that the block executes differently as a batch
than it normally would. The compiler does try to identify
some of these cases and warn the programmer; however,
it is up to the programmer to be aware of the different

Java semantics inside the batch block.
The compiler partitions operations inside the batch

block by marking them as local or remote. Remote ex-
pressions execute on the server, possibly with input from
static local expressions. Local expressions execute on the
client, possibly with output from remote expressions.

Remote Batch Invocation does not support remoting of
many Java constructs, including casts, while loops, for
loops, remote assignments, constructor calls, etc. Although
some of these constructs can be used inside the batch
block, they will be executed locally. If using these con-
structs would interfere with the remote batch execution,
the batch translator will raise an error. Future work may
relax some of these restrictions. If remote assignments
were allowed, then it would be possible to aggregate (e.g.
sum or average) over collections remotely (we currently
have an alternative solution to this problem). General loops
could also be supported without significant changes to the
model.

Exceptions are a special case. The remote batch cannot
catch exceptions remotely, but it does propagate them to
the client in the original location of the remote operation
that produced the exception. In this way, the client can
catch exceptions raised remotely and handle them locally.

In our previous work, the batch keyword was imple-
mented for Java Remote Method Invocation (RMI) which
is more powerful in many ways than SOAP web services.
For example, our implementation of batching for RMI
supported sending any Java object which implements the
Serializable interface to and from the server. On the other
hand, SOAP web services only allow defined record-like
types and certain primitive types to be transferred. We
did think of allowing the transfer of Java types which are
just data-holders (sometimes called beans, DTOs, or value
objects), but we decided against it, since the web service
can easily provide methods to construct the data-holder on
the server directly. For RBI-WS, we modified the compiler
to restrict input and output to the batch to primitive types
and strings.

V. CASE STUDY: AMAZON ASSOCIATES WEB SERVICE

To gain insight into how real-world web services are
actually implemented and used, we examined the Ama-
zon Associates Web Service (AWS).1 AWS is primarily
intended for individuals who want to earn product referral
fees by providing links to Amazon products on their
web sites. AWS includes operations for browsing the
Amazon catalog, searching for products sold by Amazon
and Amazon marketplace sellers, looking up product and
seller information, and managing a shopping cart.

The left side of Figure 12 shows a typical sequence
of calls to AWS. This sequence corresponds to two calls
to AWS. The first call (lines 7-13) performs a search for
books about dogs. Lines 14-21 output all of the offers for
the found books. The user is then assumed to select one
of these offers to purchase (lines 22-23). A new shopping
cart is then created containing one copy of the selected
item (lines 27-39), and the cart contents, total price, and
a link to complete the purchase are displayed to the user
(lines 42-50).

1http://aws.amazon.com/associates/

interface AmazonService {
void login(String awsAccessKey);
Cart createCart(Offer offer , int quantity);
Cart getCart(String cartId , String HMAC);
SearchCriteria createSearchCriteria();
Item[] search(SearchCriteria criteria);
Item getItem(String ASIN);
Offer getOffer(String ASIN, String offerListingId);

}
interface Cart {

String getCartId ();
String getHMAC();
CartItem[] getCartItems();
CartItem[] getSavedForLaterItems();
Price getSubTotal();
String getPurchaseURL();
void add(Offer offer , int quantity);
void clear ();
void remove(CartItem item);
void moveToCart(CartItem item, int quantity);
void saveForLater(CartItem item);

}
interface CartItem {

String getCartItemId();
Item getItem();
int getQuantity ();
Price getItemTotal ();
void setQuantity(int quantity);

}
interface Item {

String getASIN();
String getSalesRank();
Image getSmallImage();
Image getLargeImage();
Offer [] getOffers ();
String getTitle ();

}
interface Offer {

Item getItem();
String getOfferListingId ();
Price getPrice ();
String getAvailability ();

}

Figure 11: Amazon Fine-Grained Interfaces

A. A Batched Amazon Web Service

The first goal of our case study is to determine if we can
build an efficient batched web service that provides similar
functionality to AWS. Therefore we have prototyped a
batch web service based on AWS. To prototype the service
rapidly, we created a set of server object classes that access
the existing Amazon web service.

Our Batched Amazon Server consists of three main
components. The JAX-WS Amazon Client Library is a set
of classes generated using Sun’s wsimport tool. This tool
takes as input a WSDL file describing a web service and
produces a set of classes for accessing the web service.
We then build a set of Server Object Classes on top of
the library. This set of 12 Java classes provides an object-
oriented interface to the product search, browse node hier-
archy, seller information, and shopping cart functionality
of the Amazon Associates web service. This functionality
corresponds to 8 of the 22 operations defined by the
Amazon Associates web service. Figure 11 gives partial
interfaces for five of the classes central to the item search

Java using JAX-WS and standard Amazon Associates API Java using batched API and batch keyword
1 void shoppingSequence() {
2 AWSECommerceService service
3 = new AWSECommerceService();
4 AWSECommerceServicePortType port
5 = service.getAWSECommerceServicePort();
6

7 ItemSearchRequest search
8 = new ItemSearchRequest();
9 search.setSearchIndex(”Books”);

10 search.setKeywords(”Dogs”);
11 Holder<Items> items = new Holder<List<Items>>();
12

13 port . itemSearch(awsAccessKey, request, items);
14 for(Item item : items.value.getItem()) {
15 out. print (item.getASIN());
16 out. print (item. getTitle ());
17 for(Offer offer : item.getOffers (). getOffer ()) {
18 out. print (offer . getOfferListingId ());
19 out.pring(offer .getPrice (). getAmount());
20 }
21 }
22 String ASIN = // user selected product
23 String offerListingId = // user selected offer
24 String cartId = null ;
25 String HMAC = null;
26

27 CartCreateRequest cartRequest
28 = new CartCreateRequest();
29 CartCreateRequest.Items.Item cartItem
30 = new CartCreateRequest.Items.Item();
31 cartItem. setOfferListingId (offerListingId);
32 cartItem.setQuantity(1);
33 CartCreateRequest.Items cartItems
34 = new CartCreateRequest.Items();
35 cartItems.getItem().add(cartItem);
36 cartRequest.setItems(cartItems);
37 Holder<Cart> cart = new Holder<Cart>();
38

39 port .cartCreate(awsAccessKey, cartRequest, cart);
40 cartId = cart .getCartId ();
41 HMAC = cart.getHMAC();
42 for(CartItem item :
43 cart .getCartItems().getCartItem()) {
44 out. print (item.getItem().getASIN());
45 out. print (item.getItem(). getTitle ());
46 out. print (item.getPrice (). getAmount());
47 out. print (item.getQuantity ());
48 }
49 out. print (cart .getSubtotal (). getAmount());
50 out. print (cart .getPurchaseURL());
51 }

1 void shoppingSequence() {
2 BatchClient amazonService
3 = new BatchClient(SERVER);
4

5 batch(AmazonService service : amazonService) {
6 service. login (awsAccessKey);
7 final SearchCriteria crit =
8 service.createSearchCriteria();
9 crit .setSearchIndex(”Books”);

10 crit .setKeywords(”Dogs”);
11

12 for(final Item item : service.search(crit)) {
13 out. print (item.getASIN());
14 out. print (item. getTitle ());
15 for(final Offer offer : item.getOffers ()) {
16 out. print (offer . getOfferListingId ());
17 out.pring(offer .getPrice (). getAmount());
18 }
19 }
20 }
21 String ASIN = // user selected product
22 String offerListingId = // user selected offer
23 String cartId = null ;
24 String HMAC = null;
25

26 batch(AmazonService service : amazonService) {
27 service. login (awsAccessKey);
28 final Offer offer =
29 service.getOffer(ASIN, offerListingId);
30

31 final Cart cart = service.createCart(offer , 1);
32 cartId = cart .getCartId ();
33 HMAC = cart.getHMAC();
34 for(final CartItem item : cart .getCartItems()) {
35 out. print (item.getItem().getASIN());
36 out. print (item.getItem(). getTitle ());
37 out. print (item.getPrice (). getAmount());
38 out. print (item.getQuantity ());
39 }
40 out. print (cart .getSubtotal (). getAmount());
41 out. print (cart .getPurchaseURL());
42 }
43 }

Figure 12: Example clients in Java

and shopping cart functionality provided by our service.

The right side of Figure 12 shows the same shopping
sequence as the left side, but implemented for the Batched
Amazon Server using the batch keyword. Of particular
interest is the portion of the code responsible for adding
the item to the cart (lines 27-31). For the batched version
of the API, only three statements are required as compared
to the Amazon version of the API which requires nine
statements. These savings come from removing the need
to create a document describing the cart operation, and
shows the type of advantage that can be gained from using
our batched API even for simple cases.

B. Batching Mechanisms

Examining the AWS API and its accompanying doc-
umentation indicates that Amazon is concerned about
the ability of their service to handle large numbers of
small requests. Specifically, Amazon limits access to AWS
to at most one request per second per IP address. To
prevent this constraint from impeding the use of AWS,
the API includes three different methods for submitting
multiple requests in a single transaction. The first method
is batch requests, which allow up to two separate requests
involving the same operation to be combined into a sin-
gle transaction. The second method is the MultiOperation
operation, allowing up to two different basic operations to

be included in one transaction, with up to two different
requests for one of those operations. This method effec-
tively allows up to three requests, one for one operation
and two for another operation, to be combined into a single
transaction to the web service. The final mechanism for
batching is unique to the ItemLookup operation; up to ten
item ids can be included in a single ItemLookup request.

While allowing some performance gain, the ad-hoc
batching mechanisms provided by Amazon severely con-
strain the types of interactions that can be represented
in a single transaction. A batching mechanism such as
RBI-WS allows for a much wider range of interactions
to be represented within a transaction. However, there
are potential disadvantages to adopting a more general
batching mechanism. As mentioned earlier, the uncon-
strained nature of our batches could allow for denial of
service attacks in which a batch uses excessive resources.
Since AWS’s batching mechanisms all have specific, small
upper-bounds on the number of batched operations, com-
bined with various other bounds in the system, one can
infer that Amazon is concerned about the resource uti-
lization of individual transactions. Therefore, as suggested
earlier, some mechanism for limiting the resource usage
of a batch may be necessary.

C. Server-side Aggregation
In the current batch model, a remote variable can

only be assigned once and only at its declaration point.
This model limits the ability to express aggregation over
collections of objects on the server. The absence of aggre-
gation makes it difficult to express certain types of remote
operations naturally. For example, consider an application
for the Amazon service that attempts to add the cheapest
offer for a particular product to a shopping cart. Such an
application would naturally be expressed as follows:

batch(AmazonService service : amazonService) {
final Item item = service.getItem(ASIN);
Offer minOffer = null ;
for(final Offer offer : item.getOffers ()) {

if (minOffer == null ||
offer .getPrice() < minOffer.getPrice()) {

minOffer = offer ;
}

}
service.getCart(cartId , HMAC).add(minOffer, 1);

}

For this batch to execute successfully, the variable
minOffer must be a remote variable. However, this requires
minOffer to be declared as final, and therefore the assign-
ment inside of the if -statement would raise a compiler
error. One approach to address this limitation is to add
dedicated aggregator classes. In this case, we can define
a class with the following interface and an appropriate
factory method on the AmazonService class:

interface OfferHolder {
void setOffer(Offer offer);
Offer getOffer ();
boolean hasOffer();

}

Now we can change the batch above to the following:

batch(AmazonService service : amazonService) {
final Item item = service.getItem(ASIN);

final OfferHolder minOffer = service
.createOfferHolder();

for(final Offer offer : item.getOffers ()) {
if (! minOffer.hasOffer() || offer .getPrice()

< minOffer.getOffer().getPrice ()) {
minOffer.setOffer(offer);

}
}
service.getCart(cartId , HMAC)

.add(minOffer.getOffer(), 1);
}

Similar classes can be defined for any of the service
interfaces for which aggregation might be desired as well
as for the basic data-types. Unfortunately, this requires that
the web service programmer have the foresight to provide
these aggregator classes.

VI. RELATED WORK

Addressing the challenges of distributed computing
through intuitive programming abstractions has been the
target of numerous prior research efforts. Since the re-
search literature on the topic covers a wide and diverse
spectrum of ideas and approaches, we only compare RBI-
WS with closely related state of the art.

Although Remote Procedure Call (RPC) [11] has been
one of the most prevalent communication abstractions
for constructing distributed systems, its shortcoming and
limitations have been continuously highlighted by different
researchers [12], [13], [14], [15]. The document-oriented
interfaces of Web services have been promoted as an
alternative to RPC. Despite the criticisms of RPC and
its object-oriented counterparts, accessing distributed func-
tionality through a familiar method call paradigm provides
unquestionable convenience advantages. RBI-WS enables
the programmer to leverage the performance advantages
of document-oriented interfaces by using easy-to-compose
object-oriented interfaces.

The design of document-oriented web services is a
complex area that involves many factors, including tech-
nology, interoperability, and transactions [3], [16], [17],
[18]. A primary concern is the granularity of service re-
quests. Sun’s Java Blueprints [16] advises to “consolidate
related fine-grained operations into more coarse-grained
ones to minimize expensive remote method calls”, warns
that “too much consolidation leads to inefficiencies”, and
concludes that designers should “ensure that the Web
service operations are sufficiently coarse grained”. The
contradiction between these recommendations stems from
the impossibility of creating a single level of granularity
that will work for all clients. Explicit batches solve this
problem by allowing clients to perform operations at the
required level of granularity.

The SOAP Bundling Framework [19] is a web service
proxy that allows sequential batches of multiple calls to
an underlying web service. The calls are independent and
do not support loops or conditionals.

Representational State Transfer (REST) is an archi-
tectural model that is an alternative to SOAP web ser-
vices [4]. A REST request is an URL with a path and
form parameters, which are frequently interpreted as an
object address and method parameters. As such REST
resembles a very abstract fine-grained RPC, or a shell

command. The output can be any valid hypertext media
such as HTML or images. REST has a simpler request
model than SOAP, and this ease of use contributes to its
popularity. Although contracts are often promoted as one
of the benefits of service-orientation, REST does not cur-
rently support formal interface specifications, analogous to
WSDL. The main problem is that REST, like RPC, is not
latency compositional. URLs do not naturally combine to
form compound requests. While defining composite URLs
is certainly possible, we find it easier to define composition
in SOAP services, since XML is naturally compositional.

Software design patterns [20] for Remote Façade and
Data Transfer Object (also called Value Objects [21]) can
be used to optimize remote communication. A Remote
Façade allows a service to support specific client call
patterns using a single remote invocation. Different Re-
mote Façades may be needed for different clients. RBI-
WS enables the creation of a custom Remote Façade for
each client as long as the client call pattern is supported
as a single batch. A Data Transfer Object is a class
that provides block transfer of data between client and
server. As with the Remote Façade, different kinds of
Data Transfer Objects may be needed by different clients.
RBI-WS constructs a data transfer object on the fly,
automatically, exactly as needed in a particular situation.

Cook and Barfield [22] first pointed out that documents
can be viewed as batches of primitive operations. They
showed how a set of hand-written wrappers can provide
a mapping between object interfaces and batched calls
expressed as a web service document. RBI-WS automates
the process of creating the wrappers and generalizes the
technique to support remote conditionals and operations on
collections. In essence, RBI-WS program can scale as well
as hand-optimized web services [23]. Web services chore-
ography [24] defines how Web services interact with each
other at the message level. Researchers [25] have looked at
batching in BPEL, a web services choreography langauge.
Their work batches web service invocations according to
a static analysis of a BPEL program. RBI-WS can be seen
as a programming abstraction for choreographing efficient
access to remote object-oriented services.

ActiveXML [26] is a framework that uses web services
for distributed data management. ActiveXML allows web
service invocations to be placed within XML documents.
The focus of ActiveXML is different from RBI-WS.
ActiveXML is focused on data management; there is no
native support for branching or loops. On the other hand,
RBI-WS is focused of process management similar to
BPEL. Another difference is that RBI-WS produces XML
schema that are compatible with existing WSDL to Java
translators while ActiveXML describes documents using
an extension of XML schema.

VII. FUTURE WORK

In the future, we plan to continue this work in the
following directions. First, while designing and developing
RBI-WS, we have made several choices that may have
impacted the usability and expressiveness of our method-
ology. For instance, we chose to use a single type to repre-
sent all numbers in a given interface. While this decision
has simplified the interfaces, it can also complicate their

use, as the type no longer provides any hint about the range
or precision of the expected value. Similarly, the current
model allows the construction of relatively unconstrained
batches of operations, which can lead to security problems.
Therefore we intend to investigate how these decisions
have impacted various properties of RBI-WS and improve
on them if necessary.

Since not all client environments lend themselves for
extending their host language, we plan to experiment with
integrating a library-based approach, similar to our pre-
vious work on Batch Remote Method Invocation (BRMI)
[27]. This extension would have the potential to extend
the range of applicability of RBI-WS.

Additionally, our exploration of the Amazon Associates
Web Service revealed various shortcomings of our design
and suggested new features that could be beneficial. As
mentioned in Section V-C, for many types of use-cases,
the ability to perform aggregation on the server over a
set of objects is necessary. Currently, we have provided
an ad-hoc solution that requires the service developer to
create aggregation objects. A more automatic approach is
possible and should be explored.

Also, AWS includes several different search operations,
many of which include a large number of searching,
sorting, and paging parameters. Currently, we use search
criteria objects to specify these search parameters. The
use of these objects incurs the disadvantage of separating
the act of specifying search criteria from the act of
searching. To address this issue, we are considering several
approaches to specifying search criteria in a more natural
manner.

VIII. CONCLUSION

This paper has argued that document-oriented interfaces
can be effectively represented as batches of method calls to
fine-grained object-oriented interfaces. An input document
can contain information expressing object instantiation,
selection, access, and update. An output document can
encapsulate multiple results. In the opposite direction,
a document can be specified by combining a block of
fine-grained object-oriented invocations into a batch. Our
approach enables the programmer to express how the
statements in a block operate directly on virtual service
objects, without the need to explicitly construct invocation
objects and correlate them to the response. In addition,
batch blocks can include conditional expressions, loops,
and exception handling. Our reference implementation,
Remote Batch Invocation for Web Services, represents
object-oriented interfaces as a WSDL that describes a
batch of invocations. Although the WSDL is accessible by
standard web service clients, we also provide an approach
that streamlines such access in the form of a batch Java
language extension. Our powerful web services infrastruc-
ture directly connects to object-oriented interfaces, provid-
ing tool support for automatically creating and processing
documents that embody sequences of invocations.

As experimental validation, we have created a Web
service wrapper for the Amazon Associates Web ser-
vice, showing how remote batches enable a clean object-
oriented style for programming a stateless web service,
without needing remote object proxies.

All in all, this work explores the following novel ideas.
It discusses the relationship between document-oriented
and object-oriented programming interfaces. It shows how
a set of object-oriented interfaces can be effectively trans-
lated into a web service DSL defined by a XML schema.
Finally, this work demonstrates the utility of RBI-WS by
applying it to a real-world web service.

REFERENCES

[1] D. Winer, XML-RPC Specification, 1999.

[2] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana, “Web services description language (WSDL) 1.1,”
http://www.w3.org/TR/wsdl, 2001.

[3] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-oriented computing: State of the art and research
challenges,” IEEE Computer, vol. 40, no. 11, pp. 38–45,
2007.

[4] R. T. Fielding and R. N. Taylor, “Principled design of
the modern web architecture,” in Proceedings of the 22nd
International Conference on Software Engineering (ICSE),
2000, pp. 407–416.

[5] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,
N. Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer,
“Simple object access protocol (soap) version 1.1,” 2002.

[6] Apache Axis, 2001. [Online]. Available: http://xml.apache.
org/axis

[7] A. Ibrahim, Y. Jiao, E. Tilevich, and W. R. Cook,
“Remote batch invocation for compositional object
services,” in The 23rd European Conference on
Object-Oriented Programming (ECOOP), July 2009.
[Online]. Available: http://www.cs.utexas.edu/∼aibrahim/
publications/batches.pdf

[8] A. Ferrara and M. MacDonald, Programming .Net Web
Services. O’Reilly & Associates, 2002.

[9] E. Wilde and K. Stillhard, “Making XML Schema easier to
read and write,” in World Wide Web Conference (WWW),
2003.

[10] R. Gabriel, “Is worse really better?” Journal of Object-
Oriented Programming (JOOP), vol. 5, no. 4, pp. 501–538,
1992.

[11] B. Tay and A. Ananda, “A survey of remote procedure
calls,” Operating Systems Review, vol. 24, no. 3, pp. 68–
79, 1990.

[12] A. S. Tanenbaum and R. v. Renesse, “A critique of the
remote procedure call paradigm,” in European Teleinfor-
matics Conference (EUTECO), 1988, pp. 775–783.

[13] J. Waldo, A. Wollrath, G. Wyant, and S. Kendall, “A note
on distributed computing,” Sun Microsystems, Tech. Rep.,
1994.

[14] U. Saif and D. Greaves, “Communication primitives for
ubiquitous systems or RPC considered harmful,” in Dis-
tributed Computing Systems Workshop, 2001 International
Conference on, 2001, pp. 240–245.

[15] S. Vinoski, “RPC under fire,” IEEE Internet Computing,
pp. 93–95, 2005.

[16] I. Singh, S. Brydon, G. Murray, V. Ramachandran, T. Vi-
olleau, and B. Stearns, Designing Web Services with the
J2EE 1.4 Platform: JAX-RPC, XML Services, and Clients.
Pearson Education, 2004.

[17] R. Dijkman, D. Quartel, L. F. Pires, and M. van Sinderen,
“The state-of-the-art in service-oriented computing and
design,” University of Twente, Tech. Rep. ArCo Project
Deliverable ArCo/WP1/T1/D1/V1.00, 2003.

[18] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-
Lee, “UML profile for enterprise distributed object com-
puting,” Object Management Group, Tech. Rep. OMG
Document ptc/2002-02-05, 2002.

[19] T. Takase and K. Tajima, “Efficient web services message
exchange by SOAP bundling framework,” in EDOC ’07:
Proceedings of the 11th IEEE International Enterprise
Distributed Object Computing Conference (EDOC), 2007,
p. 63.

[20] M. Fowler, Patterns of Enterprise Application Architecture.
Addison-Wesley Longman, 2002.

[21] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns: Best
Practices and Design Strategies. Prentice Hall, 2003.

[22] W. Cook and J. Barfield, “Web services versus distributed
objects: A case study of performance and interface design,”
in IEEE International Conference on Web Services (ICWS),
2006, pp. 419–426.

[23] C. Demarey, G. Harbonnier, R. Rouvoy, and P. Merle,
“Benchmarking the round-trip latency of various Java-
based middleware platforms,” Studia Informatica Univer-
salis Regular Issue, vol. 4, no. 1, pp. 7–24, 2005.

[24] C. Peltz, “Web services orchestration and choreography,”
IEEE Computer, vol. 36, no. 10, pp. 46–52, 2003.

[25] L. Bao, P. Chen, X. Zhang, S. Chen, S. Hu, and Y. Yang,
“Batch invocation of web services in BPEL process,”
in Proceedings of the 6th International Conference on
Service-Oriented Computing (ICSOC), 2008, pp. 511–516.

[26] S. Abiteboul, O. Benjelloun, and T. Milo, “The Active
XML project: an overview,” The VLDB Journal, vol. 17,
no. 5, pp. 1019–1040, 2008.

[27] E. Tilevich, W. Cook, and Y. Jiao, “Explicit batching for
distributed objects,” in Proceedings of the International
Conference on Distributed Computing Systems (ICDCS),
June 2009. [Online]. Available: http://www.cs.utexas.edu/
∼wcook/Drafts/2008/brmi.pdf

