
Fragment Class Analysis for Testing of Polymorphism in Java Software

Atanas Rountev
Department of Computer and Information Science

The Ohio State University
rountev@cis.ohio-state.edu

Ana Milanova
Department of Computer Science

Rutgers University
milanova@cs.rutgers.edu

Barbara G. Ryder
Department of Computer Science

Rutgers University
ryder@cs.rutgers.edu

Abstract

Adequate testing of polymorphism in object-oriented
software requires coverage of all possible bindings of re-
ceiver classes and target methods at call sites. Tools that
measure this coverage need to use class analysis to compute
the coverage requirements. However, traditional whole-
program class analysis cannot be used when testing partial
programs. To solve this problem, we present a general ap-
proach for adapting whole-program class analyses to op-
erate on program fragments. Furthermore, since analysis
precision is critical for coverage tools, we provide precision
measurements for several analyses by determining which of
the computed coverage requirements are actually feasible.
Our work enables the use of whole-program class analyses
for testing of polymorphism in partial programs, and iden-
tifies analyses that compute precise coverage requirements
and therefore are good candidates for use in coverage tools.

1 Introduction

Testing of object-oriented software presents new chal-
lenges due to features such as inheritance, polymorphism,
dynamic binding, and object state [6]. Programs contain
complex interactions among sets of collaborating objects
from different classes. These interactions are greatly com-
plicated by object-oriented features such as polymorphism,
which allows the binding of an object reference to objects
of different classes. While this is a powerful mechanism for
producing compact and extensible code, it creates numerous
fault opportunities [6].

Polymorphism is common in object-oriented software—
for example, polymorphic bindings are often used instead
of case statements [15, 7]. However, code that uses poly-

morphism can be hard to understand and therefore fault-
prone—for example, understanding all possible interactions
between a message sender and a message receiver under all
possible bindings can be challenging for programmers. The
sender of a message may fail to meet all preconditions for
all possible bindings of the receiver [7]. A subclass in an
inheritance hierarchy may violate the contract of its super-
classes; clients that send polymorphic messages to this hier-
archy may experience inconsistent behavior. For example,
an inherited method may be incorrect in the context of the
subclass [27], or an overriding method may have precon-
ditions and postconditions different from the ones for the
overridden method [6]. In deep inheritance hierarchies, it
is easy to forget to override methods for lower-level sub-
classes [11]; clients of such hierarchies may experience
incorrect behavior for some receiver classes. Changes in
server classes may cause tested and unchanged client code
to fail [7].

1.1 Coverage Criteria for Polymorphism

Various techniques for testing of polymorphic interac-
tions have been proposed in previous work [37, 22, 21, 25,
10, 7, 3]. These approaches require testing that exercises
all possible polymorphic bindings for certain elements of
the tested software. Such requirements can be encoded as
coverage criteria for testing of polymorphism. In this pa-
per we focus on two such criteria. The receiver-classes cri-
terion (denoted by RC) requires exercising of all possible
classes of the receiver object at a call site [22, 21, 25, 10].
The target-methods criterion (denoted by TM) requires ex-
ercising of all possible bindings between a call site and the
methods that may be invoked by that site [37, 7]. (Both
criteria are discussed in more detail in Section 2.)

The testing requirements encoded by the RC and TM cri-

teria have been advocated by several authors [37, 22, 21,
25, 10, 7].1 For example, Binder points out that “just as we
would not have high confidence in code for which only a
small fraction of the statements or branches have been ex-
ercised, high confidence is not warranted for a client of a
polymorphic server unless all the message bindings gener-
ated by the client are exercised” [7]. There is existing evi-
dence that such criteria are better suited for detecting object-
oriented faults than the traditional statement and branch
coverage criteria [10].

1.2 Class Analysis for Coverage Tools

The use of coverage criteria is impossible without tools
that automatically measure the coverage achieved during
testing. To compute the RC and TM coverage require-
ments, a tool needs to determine the possible classes of
the receiver object and the possible target methods for each
call site. In the simplest case, this can be done by exam-
ining the class hierarchy—i.e., by considering all classes
in the subtree rooted at the declared type of the receiver.
While not explicitly stated, it appears that all previous work
[37, 22, 21, 25, 10, 7] uses this approach to determine the
coverage requirements.

Existing work on static analysis for object-oriented lan-
guages shows that using the class hierarchy to determine
possible receiver classes may be overly conservative—i.e.,
not all subclasses may be actually possible. Such impre-
cision has serious consequences for coverage tools. Be-
cause of infeasible coverage requirements, high coverage
can never be achieved regardless of the testing effort. In
this case the coverage metrics become hard to interpret: is
the low coverage due to inadequate testing, or is it due to
infeasible coverage requirements? This problem seriously
compromises the usefulness of the coverage metrics. In ad-
dition, the person who creates new test cases may spend sig-
nificant time and effort trying to determine the appropriate
test cases, before realizing that it is impossible to achieve
the required coverage. This situation is unacceptable be-
cause human time and attention are much more expensive
than computing time.

To address these problems, we propose to use class anal-
ysis to compute the coverage requirements. Class analysis
is a static analysis that determines the classes of all objects
to which a given reference variable may point. While ini-
tially developed in the context of optimizing compilers for
object-oriented languages, class analysis also has a variety
of applications in software engineering tools. In a coverage
tool for testing of polymorphism, class analysis can be used

1Other coverage criteria for polymorphism are also possible.
For example, in addition to RC, [22] proposes coverage of all pos-
sible classes for the senders and the parameters of a message. Our
work can be trivially extended to handle such criteria.

to determine what are the classes of the objects that variable
x may refer to at call site x.m(); from this it is trivial to
compute the RC and TM criteria for the call site. There is a
large body of work on various class analyses with different
tradeoffs between cost and precision [26, 1, 2, 28, 14, 5, 17,
13, 9, 29, 32, 34, 38, 35, 19, 31, 16, 23]. However, there
has been no previous work on using these analyses for the
purposes of testing of polymorphism.

1.3 Fragment Class Analysis

The existing body of work on class analysis cannot be
used directly to compute the RC and TM coverage require-
ments in a coverage tool. The key problem is that the
vast majority of existing class analyses are designed as
whole-program analyses—i.e., analyses that process com-
plete programs. However, testing is rarely done only on
complete programs, and many testing activities are per-
formed on partial programs. Any realistic coverage tool
should be able to work on partial programs, and therefore
cannot incorporate a whole-program class analysis.

To solve this problem, we need to design class analy-
sis that can operate on fragments of programs rather than
on complete programs. We refer to such analysis as frag-
ment class analysis. The first contribution of this paper is
a general method for constructing fragment class analyses
for the purposes of testing of polymorphism in Java. Using
this method, fragment class analyses can be derived from a
wide variety of existing (and future) whole-program class
analyses [2, 5, 17, 13, 29, 34, 35, 38, 19, 31, 16, 23]. The
significance of this technique is that it allows tool design-
ers to adapt available technology for whole-program class
analysis to be used in coverage tools for testing of polymor-
phism in partial programs.

1.4 Absolute Analysis Precision

Analysis precision is a critical issue for the use of class
analysis in coverage tools. Less precise analyses compute
less precise coverage criteria—i.e., some of the coverage
requirements may be impossible to achieve. As discussed
earlier, infeasible coverage requirements present a serious
problem for coverage tools: the coverage metrics become
hard to interpret, and tools users may waste time and effort
trying to achieve higher coverage.

To justify the use of a particular class analysis, we
need to ensure that few (if any) spurious classes are re-
ported by that analysis. The key problem is that previous
work on class analysis only addresses the issue of rela-
tive analysis precision: how does the solution computed by
analysis Y compare to the solution computed by analysis
X? However, we need information about absolute analy-
sis precision: what part of the analysis solution is infeasi-

ble? The second contribution of this paper is an empirical
evaluation of the absolute precision of four fragment class
analyses. These analyses are based on four well-known
whole-program class analyses: Class Hierarchy Analysis
(CHA) [12], Rapid Type Analysis (RTA) [5], 0-CFA [33,
16], and Andersen-style points-to analysis [4, 34, 19, 31].
In our experiments we determined manually what parts of
the analysis solution were actually infeasible. This infor-
mation is essential for deciding which analysis to use in a
coverage tool; however, to the best of our knowledge, such
metrics of absolute precision are not available in any previ-
ous work on class analysis.

Our results show that simpler analyses such as CHA and
RTA do not provide sufficient precision for the purposes
of testing of polymorphism, while more advanced analy-
ses such as 0-CFA and Andersen-style points-to analysis
achieve very good precision. These findings lead to two
important conclusions. First, our evaluation of CHA and
RTA shows that analysis imprecision can be a serious prob-
lem, and it should be a primary concern when designing
coverage tools. Second, our results indicate that more ad-
vanced analyses such as 0-CFA and Andersen’s analysis can
achieve high absolute precision, which makes them good
candidates for inclusion in coverage tools.

1.5 Contributions

• We present a general approach for constructing frag-
ment class analyses from a wide variety of existing
whole-program class analyses. This method enables
the designers of coverage tools to use whole-program
class analyses for the purposes of testing of polymor-
phism in partial programs.

• We present an empirical evaluation of the absolute
precision of four fragment class analyses. These are
the first available results that measure absolute anal-
ysis precision, and they provide essential insights for
constructing high-quality coverage tools for testing of
polymorphism.

Outline. Section 2 describes our coverage tool for test-
ing of polymorphism in Java. Section 3 presents the method
for constructing fragment class analyses. The experimental
results are described in Section 4. Section 5 discusses re-
lated work, and Section 6 presents conclusions and future
work.

2 A Coverage Tool for Java

We have built a test coverage tool for Java that supports
the RC and TM coverage criteria. In the context of this tool
we have implemented and evaluated several fragment class

class A { public void m() {..} }
class B extends A { public void m() {..} }
class C extends A {..}
A a;
.....
ci: a.m(); // a may refer to instances of A, B, or C

// RC(ci) = {A,B,C} TM(ci) = {A.m,B.m}

Figure 1. RC and TM coverage criteria.

analyses. In the future we plan to use the tool as the basis
for investigations of other problems related to the testing of
polymorphism, and more generally, problems related to the
testing of object-oriented software.

To illustrate the two criteria, consider the Java classes
in Figure 1. For the purpose of this example, suppose that
reference variable a may refer to instances of classes A, B,
or C. The RC criterion requires testing of call site a.m()
with each of the three possible classes of the receiver ob-
ject. Similarly, the TM criterion requires testing that invokes
each of the two possible target methods (i.e., both A.m and
the overriding B.m). Clearly, RC subsumes TM.

The input of the tool contains a set Cls of classes that
will be tested, as well as a set Int of methods and fields
from classes in Cls . These methods and fields are listed by
the tool user and they define the interface to the particular
functionality that is currently being tested. In general, Int
could contain a small subset of all fields and methods from
Cls ; this corresponds to the case when the user is interested
in testing only a specific subset of the functionality provided
by the classes from Cls .

A test suite for Int is any arbitrary Java class that tests
Int (i.e., calls methods from Int and reads/writes fields
from Int) and does not access any methods/fields from Cls
that are not in Int . We denote by AllSuites(Int) the set
of all possible test suites for Int ; clearly, this set is infi-
nite. We assume that Cls is closed with respect to Int : for
any arbitrary suite S ∈ AllSuites(Int), any class that could
be referenced during the execution of S is included in Cls .
In other words, we consider test suites that only test inter-
actions among classes from the given set Cls . In general,
classes from Cls could potentially interact with unknown
classes from outside of Cls (e.g., with unknown future sub-
classes of C∈Cls). However, at the time the testing is per-
formed, these unknown classes are not available and inter-
actions with them cannot be exercised; therefore, we do not
consider test suites whose execution involves such unknown
classes.2

In addition to Cls and Int , the tool takes as input one
particular test suite T ∈ AllSuites(Int). As output, the
tool reports the coverage achieved by T with respect to the
RC and TM criteria.

2If the tester has created stub classes to simulate unknown ex-
ternal classes during testing, the stubs should be included in Cls.

package station;
public abstract class Link {

public abstract void
transmit(String message); }

class NormalLink extends Link { ... }
class PriorityLink extends Link { ... }
class SecureLink extends Link { ... }
class LoggingLink extends Link { ... }

public class Station {
private Link link = new NormalLink();
private int msg id = 0;
public void sendMessage(String m) {

c1: link.transmit(msg id++ + " " + m);
if (msg id==10)

link = new PriorityLink(); }
public void report(Link l)

{ c2: l.transmit("id = " + msg id);} }

public class Factory {
private boolean secure = false;
public Link getLink() {

if (secure) return new SecureLink();
else return new NormalLink(); }

public void makeSecure()
{ secure = true; } }

Figure 2. Package stationwith two polymor-
phic call sites c1 and c2.

There are four tool components. The analysis component
processes the classes in Cls and computes the requirements
according the RC and TM criteria—i.e., for each call site
c, it produces sets RC(c) and TM(c). More precisely, the
analysis answers the following question: for each call site,
what may be the receiver classes and target methods with
respect to all possible S ∈ AllSuites(Int)? In other words,
if it is possible to write some test suite that tests Int and
exercises a call site c with some receiver class X or some
target method m, the analysis should include X in RC(c)
and m in TM(c). These computed coverage requirements
are supplied to the instrumentation component, which in-
serts instrumentation at call sites to record the classes of the
receiver objects at runtime (using the reflection mechanism
in Java). Instrumentation is only inserted at polymorphic
call sites—i.e., sites c for which RC(c) is not a singleton
set. The instrumented code is supplied to the test harness
which automatically runs the given test suite T . The results
of the execution are processed by the reporting component,
which determines the actual coverage achieved at call sites.

Example. Consider package station in Figure 2.
Class Station models a station that connects to the rest
of the system using a variety of links. Initially, messages
are transmitted using a normal-priority link. After certain

package harness;
public abstract class Suite

{ public abstract void run(); }

package stationtest;
import station.*;
public class StationTests
extends harness.Suite {
public void run() {

Station s = new Station();
Factory f = new Factory();
Link l;
for (int i = 0; i < 10; i++) {

s.sendMessage("message " + i);
l = f.getLink();
s.report(l); } } }

Figure 3. Simplified test suite.

number of messages have been processed, the station starts
using a high-priority link. In addition, the station may be re-
quired to report its current state on some link provided from
the outside. External code may use class Factory to gain
access to normal or secure links.

Suppose that we are interested in testing the func-
tionality that package station provides to non-
package client code. In this case Int contains meth-
ods Station.sendMessage, Station.report,
Factory.getLink, Factory.makeSecure, and
Link.transmit, plus the constructors of classes Sta-
tion and Factory. Given the package and Int , the
tool computes sets RC(ci) and TM(ci) for the call sites
in Station. For example, using one of the class anal-
yses presented later, the analysis component may produce
sets RC(c1) = {NormalLink,PriorityLink} and
RC(c2) = {NormalLink,SecureLink} with the cor-
responding sets TM(ci). Given this information, the instru-
mentation component inserts instrumentation at the two call
sites. At run time this instrumentation records the classes of
the receiver objects using method Object.getClass.

Suppose that the tool is used to evaluate the test suite
from package stationtest shown in Figure 3. The test
harness automatically loads and executes the test suite, and
then the reporting component provides the coverage results
to the tool user. In this particular case, the test suite achieves
50% RC coverage for call site c1 because the site is never
executed with receiver class PriorityLink. Similarly,
the RC coverage for c2 is 50% because receiver class Se-
cureLink is not exercised. Note that the suite achieves
100% statement and branch coverage for class Station,
but this is not enough to achieve the necessary coverage of
the polymorphic calls inside the class. To achieve 100%
coverage for c1 and c2, we need to add at least one more
iteration to the loop in StationTests, and we also need

to introduce a call f.makeSecure().

3 Fragment Class Analysis

As discussed in Section 1.3, whole-program class anal-
yses cannot be used directly in our coverage tool because
they cannot be applied to partial programs. In this context,
we need fragment class analysis—that is, analysis that can
be used to analyze fragments of programs rather than com-
plete programs.

In this section we describe a general method for con-
structing fragment class analyses for the purposes of testing
of polymorphism in Java. The method allows these frag-
ment analyses to be derived from whole-program class anal-
yses. Our approach can be applied to a large number of ex-
isting whole-program class analyses [2, 5, 17, 13, 29, 34,
35, 38, 19, 31, 16, 23]. The fragment analyses constructed
with this method can be used in coverage tools to compute
the requirements of the RC and TM coverage criteria.

Our approach is designed to be used with existing
(and future) whole-program flow-insensitive class analyses.
Flow-insensitive class analyses do not take into account the
flow of control within a method, which makes them less
costly than flow-sensitive analyses. The approach is ap-
plicable both to context-insensitive and to context-sensitive
analyses. Context-insensitive analyses do not attempt to
distinguish among the different invocation contexts of a
method. This category includes Rapid Type Analysis (RTA)
by Bacon and Sweeney [5], the XTA/MTA/FTA/CTA fam-
ily of analyses by Tip and Palsberg [38], Declared Type
Analysis and Variable Type Analysis by Sundaresan et
al. [35], the p-bounded and p-bounded-linear-edge fam-
ilies of class analyses due to DeFouw et al. [13, 16],
0-CFA [33, 16], 0-1-CFA [17], Steensgaard-style points-
to analyses [29, 19], and Andersen-style points-to analy-
ses [34, 19, 31]. Our approach can be applied to all of these
context-insensitive whole-program class analyses.

Context-sensitive analyses attempt to distinguish among
different invocation contexts of a method. As a result,
such analyses are potentially more precise and more expen-
sive than context-insensitive analyses. In parameter-based
context-sensitive class analyses, calling context is modeled
by using some abstraction of the values of the actual pa-
rameters at a call site. Call-chain-based context-sensitive
class analyses represent calling context using a vector of k
enclosing call sites. Our approach can be applied both to
parameter-based analyses (e.g., the Cartesian Product algo-
rithm due to Agesen [2], the Simple Class Set algorithm by
Grove et al. [17], and the parameterized object-sensitive
analyses by Milanova et al. [23]) and to call-chain-based
analyses (e.g., the standard k-CFA analyses [33, 16], as well
as the k-1-CFA analyses by Grove et al. [17, 16]).

3.1 Structure of Fragment Class Analysis

Recall that the input to the tool contains a set of classes
Cls , as well as a set Int of methods and fields from Cls
that define the interface to the particular functionality that
is currently being tested. A test suite for Int is an arbitrary
Java class that calls methods from Int , reads/writes fields
from Int , and does not access any methods/fields from Cls
that are not in Int . AllSuites(Int) is the infinite set of all
possible test suites for Int .

The tool needs to compute the coverage requirements ac-
cording to the RC and TM criteria—that is, for each method
call site, to determine what may be the receiver classes
and target methods with respect to all S ∈ AllSuites(Int).
More precisely, if it is possible to write some test suite for
Int that exercises a call site c with some receiver class X or
some target method m, X should be included in RC(c) and
m should be included in TM(c).

To compute RC(c) and TM(c), the tool needs to use frag-
ment class analysis. We define an entire family of such anal-
yses in the following manner: first, we create placeholders
that serve as representatives for the unknown code from all
possible test suites S ∈ AllSuites(Int). During the anal-
ysis, the placeholders simulate the potential effects of this
unknown code. After creating the appropriate placehold-
ers, the fragment analysis adds them to the tested classes,
treats the results as a complete program, and analyzes it us-
ing some whole-program class analysis. It is important to
note that the created placeholders are not designed to be
executed as an actual test suite; they are only used for the
purposes of the fragment class analysis.

3.2 Placeholders

In our approach we create a placeholder main method
that contains a variety of placeholder statements, as shown
in Figure 4. For each class X ∈ Cls , there is a place-
holder variable ph X that serves as a representative for all
unknown external reference variables of type X (i.e., all
such variables that may occur in some test suite). Differ-
ent placeholder statements represent different kinds of state-
ments that could occur in the unknown code from some test
suite. For example, ph X = new X() represents the fact
that the unknown code may create instances of X and as-
sign them to reference variables of type X. There are also
placeholder statements that represent the effect of accessing
fields and methods from Int . Finally, the last two categories
of placeholder statements represent the possible effects of
assigning variables of one type to variables of another type
(including the effects of possible casting). Note that since
we are targeting flow-insensitive analyses, the ordering of
placeholder statements is irrelevant. For brevity, Figure 4
does not show the placeholder statements for non-default

main() {
// placeholder variable ph X for every class X ∈Cls
X ph X;
// for every class X whose constructor is in Int
ph X = new X();
// for every field f ∈ Int declared in class X with type Y
ph Y = ph X.f; ph X.f = ph Y;
// for every method m ∈ Int declared in class X
// with signature W m(Y,..,Z)
ph W = ph X.m(ph Y,..,ph Z);
// for every subclass Y of class X
ph X = ph Y; ph Y = (Y)ph X;

}

Figure 4. Placeholder main method and place-
holder statements.

constructors, static methods and fields, etc. The actual im-
plementation of fragment class analyses used in our experi-
ments handles the entire Java language.

Example. Consider again package station in
Figure 2. Suppose that we are interested in testing the
functionality that station provides to non-package
client code. In this case the interface Int contains meth-
ods Station.sendMessage, Station.report,
Factory.getLink, Factory.makeSecure, and
Link.transmit (plus the constructors of Station
and Factory). Given the package and Int , the fragment
analysis creates the placeholders shown in Figure 5. Place-
holder main is then added to station, and the result can
be analyzed using some whole-program class analysis. In
Section 3.4 we present examples of the solutions computed
by two such whole-program analyses.

3.3 Analysis Correctness

A fragment class analysis is correct if and only if the
following property holds: if there exists a test suite S ∈
AllSuites(Int) whose execution exercises a call site c with
some receiver class X , the analysis should report that X
is a possible receiver class for c. This implies correctness
both with respect to the RC criterion and the weaker TM
criterion. We have proven that this property holds for any
fragment analysis that is derived from one of the whole-
program flow-insensitive analyses listed in the beginning of
Section 3 [2, 5, 17, 13, 29, 34, 35, 38, 19, 31, 16, 23]. This
result enables the use of a large body of existing work on
whole-program class analysis for the purposes of testing of
polymorphism.

The proof of this claim is based on a general frame-
work for whole-program class analysis defined by Grove
et al. [17, 16]. We have proven the correctness property for
two particular precise context-sensitive instantiations of this
framework (one parameter-based and one call-chain-based).

import station;
main() {

Station ph Station;
Factory ph Factory;
Link ph Link;
String ph String;
ph Station = new Station();
ph Factory = new Factory();
ph String = new String();
ph Station.sendMessage(ph String);
ph Station.report(ph Link);
ph Link = ph Factory.getLink();
ph Factory.makeSecure();
ph Link.transmit(ph String);

}

Figure 5. Placeholders for package station.

This result implies correctness for any framework instance
that is less precise than one of these two specific precise in-
stances. In particular, this guarantees the correctness of any
fragment analysis that is based on one of the existing whole-
program analyses listed above. Furthermore, correctness is
also guaranteed with respect to a large class of future whole-
program analyses that may be developed by instantiating the
framework. For brevity, we omit further discussion of these
claims; more details are available in [30].

3.4 Analysis Precision

The approach presented above allows us to construct
fragment class analyses from a large number of existing
(and future) whole-program class analyses. The quality of
the information produced by the fragment analyses depends
on the underlying whole-program analysis.

Consider package station in Figure 2. If we sim-
ply examine the class hierarchy to determine the possible
receiver objects at call sites, we would have to conclude
that RC(ci) contains all four subclasses of Link, which is
too conservative and will result in infeasible testing require-
ments. In fact, the tool will never report that more than 50%
coverage has been achieved for each of the two call sites in
Station, even if in reality the achieved coverage is 100%.

Now suppose that we add the placeholders from Fig-
ure 5 and we run Rapid Type Analysis (RTA) [5]. RTA
is a popular whole-program class analysis that performs
class analysis and call graph construction in parallel. It
maintains a worklist of methods reachable from main,
and a set of classes instantiated in reachable methods. In
the final solution, the set of classes for a variable v is
the set of all instantiated subclasses of the declared type
of v. In this example, RTA determines that class Fac-
tory is instantiated in main. This implies that call site
ph Factory.getLink() may be executed with an in-

ph Station

❄
o1

❄ ❄
link link

o2 o3

ph Link

❄ ❄
o4 o5

✻ ✻
l

o1: new Station() in main

o2: new NormalLink()
in Station

o3: new PriorityLink()
in Station

o4: new SecureLink()
in Factory

o5: new NormalLink()
in Factory

Figure 6. Some points-to edges computed by
Andersen’s analysis.

stance of Factory, which means that method getLink
is reachable from main. While processing the body of
getLink, the analysis determines that NormalLink and
SecureLink are instantiated. Similarly, because Sta-
tion is instantiated in main, sendMessage is de-
termined to be reachable, which implies that Prior-
ityLink may also be instantiated. At the end, RTA de-
termines that the only instantiated subclasses of Link are
NormalLink, PriorityLink, and SecureLink, and
therefore RC(ci) contains only these three classes. Unlike
analysis of the class hierarchy, RTA is capable of filter-
ing out the infeasible receiver class LoggingLink. Still,
some imprecision remains because infeasible class Se-
cureLink is reported for c1 and infeasible class Prior-
ityLink is reported for c2.

As another example, suppose that the fragment analysis
uses Andersen’s whole-program points-to analysis for Java
[34, 19, 31]. This analysis constructs a points-to graph in
which the nodes represent reference variables and objects,
and the edges represent points-to relationships between the
nodes. Figure 6 shows some of the edges in the points-to
graph computed for our example. Each name o i represent
the run-time objects allocated by a particular new expres-
sion. (Full description of the analysis and the computed
points-to solution is beyond the scope of this paper.) The
points-to graph shows that field link may only refer to in-
stances of NormalLink and PriorityLink, and there-
fore these two classes are included in RC(c1). Similarly, the
points-to graph shows that RC(c2) contains NormalLink
and SecureLink. Table 1 summarizes the solutions com-
puted by the different analyses. The last row shows which
receiver classes are actually feasible—i.e., which classes
can be exercised by some test suite S ∈ AllSuites(Int).

Any class analysis could potentially compute infeasible
classes. In this particular case, every receiver class reported
by Andersen’s analysis is feasible, but in general this need

Normal Priority Secure Logging
c1 c2 c1 c2 c1 c2 c1 c2

Hierarchy • • • • • • • •
RTA • • • • • •
Andersen • • • •
Feasible • • • •

Table 1. Sets RC(c1) and RC(c2) computed by
the fragment class analyses.

not be true. As discussed in Section 1.4, only analyses that
report few (if any) infeasible classes should be used in cov-
erage tools. Otherwise, the coverage metrics become hard
to interpret, and tool users may waste time and effort try-
ing to satisfy infeasible testing requirements. Thus, in order
to construct high-quality coverage tools for testing of poly-
morphism, it is necessary to have information about the im-
precision of different analyses (i.e., how many infeasible
classes they report). However, such measurements of im-
precision are not available in previous work on class analy-
sis. One of the major goals of our work was to obtain these
measurements for several different class analyses. These
results are presented in the next section.

4 Empirical Results

For our experimental evaluation we used a set of Java
packages including the standard packages java.text
and java.util.zip, as well as package gnu.math
(from www.gnu.org/software/kawa) and package
com.lowagie.text from the iText library for creat-
ing PDF files (www.lowagie.com). We then defined and
performed several testing tasks. The goal of each task was
to write a test suite that exercised some particular function-
ality provided by these packages. For example, one task
exercised the functionality related to identifying boundaries
in text (i.e., word boundaries, line boundaries, etc.), as pro-
vided by a set of classes from java.text. As another
example, a task was designed to exercise the functionality
from java.util.zip related to ZIP files. The first three
columns in Table 2 briefly describe the testing tasks and the
functionality they exercise.

For each task, we determined the set Int of interface
methods and fields for the tested functionality, as well as
the set of classes containing the code which implements
the functionality. (This was straightforward to do by ex-
amining the documentation and the source code). In these
classes, we considered all call sites that had more than one
possible receiver class according to the class hierarchy. Let
PolySites denote the set of all such call sites. Table 2 shows
the number of implementing classes for each task and the
number of call sites in PolySites .

Task Package Functionality #Classes #PolySites
task1 java.text boundaries in text 12 12
task2 java.text formatting of numbers/dates 13 79
task3 java.text text collation 12 2
task4 java.util.zip ZIP files 8 5
task5 java.util.zip ZIP output streams 8 18
task6 gnu.math complex numbers 8 194
task7 com.lowagie.text paragraphs in PDF docs 24 199
task8 com.lowagie.text lists in PDF docs 24 169

Table 2. Description of testing tasks.

For each task we wrote a test suite that exercised the
tested functionality and covered all possible receiver classes
for each call site from PolySites . Substantial effort was
made to ensure that the test suites did in fact achieve the
highest possible coverage. For each task, two of the au-
thors (working independently of each other) thoroughly ex-
amined the code and wrote tests that exercised each possi-
ble receiver class. For each call site, the sets of exercised
receiver classes obtained by the two people were carefully
compared to ensure that there were no differences. As a
result of this effort, for each task we had a test suite that ex-
ercised all possible receiver classes and target methods for
each call site in PolySites .

Once we had test suites that achieved the highest possi-
ble coverage, we measured the coverage statistics reported
by the tool for these suites. These statistics were based on
the output of the fragment class analysis used by the tool:
the analysis computed a set of possible classes/methods for
each c ∈ PolySites , and the tool reported what percentage
of these classes/methods was actually exercised by the test
suite. In general, this reported coverage may be less than
100% because the analysis produces RC and TM require-
ments that are overestimates of the coverage that is actually
possible—that is, the analysis may report infeasible receiver
classes and infeasible target methods. Clearly, the goal of
tool designers should be to use a class analysis that pro-
duces few infeasible classes/methods. As a precision met-
ric we used the coverage that was reported by the tool for
our test suites; of course, these suites in reality exercised all
possible classes and methods. The better the precision of
the analysis, the higher the coverage that would be reported
by the tool for these suites. Ideally, the analysis would com-
pute only feasible classes and methods, and the tool would
report 100% coverage.

4.1 Fragment Class Analyses

For our experiments we evaluated three fragment class
analyses. All three analyses were designed using the gen-
eral approach presented in Section 3: we first created the
placeholders from Figure 4, and then we ran the solution

engine of a whole-program class analysis.
The first fragment class analysis (denoted by RTAf) was

derived from Rapid Type Analysis (RTA) [5]. As discussed
in Section 3.4, RTA is a whole-program class analysis that
computes an overestimate of the set of classes that are in-
stantiated in methods that are reachable from main. This
analysis belongs at the lower end of the cost/precision spec-
trum of class analysis.

The second fragment class analysis (denoted by ANDf)
was derived from a whole-program points-to analysis for
Java [31] which is based on Andersen’s points-to analysis
for C [4]. This whole-program analysis represents a point
at the high end of the cost/precision spectrum for flow- and
context-insensitive class analysis. (An example illustrating
this analysis is presented in Section 3.4.)

The third fragment class analysis (denoted by 0-CFAf)
is derived from a variation of the whole-program points-to
analysis from [31]. In this variation, the analysis creates a
single object name for all object allocation sites for a given
class—i.e., instead of having a separate object name o i for
each new expression as in [31], there is a single object name
oC for all expressions “new C”. This analysis is essentially
equivalent to the 0-CFA class analysis [33, 13, 16].3

4.2 Analysis Precision

Inside our coverage tool we used the above fragment
class analyses to compute the RC and TM coverage require-
ments. We then ran our test suites (which in reality exer-
cise all possible classes and methods at polymorphic call
sites), and we computed the achieved coverage with respect
to RC-RTAf , TM-RTAf , etc. More precisely, for each anal-
ysis, we computed the sum S1 of the number of possible
receiver classes over all sites in PolySites as determined
by the analysis, as well as the sum S2 of the number of
actually observed receiver classes at these sites. The tool
reported the ratio CRC = S2/S1 as a coverage metric for
the RC criterion. A similar ratio CTM was computed for the

3The only difference is that our analysis distinguishes among
occurrences of the same instance field in different subclasses that
inherit that field, while 0-CFA does not make this distinction.

Task Hierarchy RTAf 0-CFAf ANDf

CRC CTM CRC CTM CRC CTM CRC CTM

task1 100% 100% 100% 100% 100% 100% 100% 100%
task2 67% 63% 67% 63% 76% 72% 76% 72%
task3 50% 100% 50% 100% 100% 100% 100% 100%
task4 31% 63% 45% 71% 100% 100% 100% 100%
task5 18% 21% 88% 92% 100% 100% 100% 100%
task6 76% 85% 76% 85% 97% 98% 98% 98%
task7 10% 15% 32% 48% 82% 93% 87% 93%
task8 5% 9% 18% 29% 62% 62% 62% 62%

Table 3. Reported coverage. More precise analyses result in higher reported coverage.

TM criterion. The results from these experiments are shown
in Table 3. The column labeled “Hierarchy” represents the
coverage with respect to the RC and TM criteria that were
computed by just examining the class hierarchy. Class anal-
yses that are more precise result in higher reported cover-
age percentages. In the best case, the analyses introduce
no imprecision (i.e., they do not report infeasible receiver
classes), and the reported coverage is 100%.

There are two important conclusions from these results.
First, when using the class hierarchy or RTAf to compute
the coverage requirements, there is often a significant num-
ber of infeasible receiver classes and target methods. Thus,
even for test suites that in reality achieve high coverage, the
tool may report low coverage statistics. This situation is
clearly unacceptable, and there is a need to use more pre-
cise analyses. Second, 0-CFAf and ANDf perform very
well, and in fact in half of the cases they achieve prefect
precision. This indicates that these analyses are good can-
didates for inclusion in realistic coverage tools for testing
of polymorphism. To the best of our knowledge, these are
the first available empirical results that evaluate the absolute
precision of class analysis (i.e., what portion of the analysis
solution is infeasible). We believe that such measurements
provide essential insights for the designers of coverage tools
for testing of polymorphism.

4.3 Analysis Cost

As part of our experiments, we also measured the cost of
computing the coverage requirements. All measurements
were performed on a 360MHz Sun Ultra-60 machine with
512MB memory. The reported times are the median values
out of three runs. Using the class hierarchy or RTAf had
negligible cost (less than 5 seconds for each task). The cost
of performing 0-CFAf and ANDf is shown in Table 4. This
cost includes the time to analyze all methods that are di-
rectly or transitively reachable from the interface methods,
both in classes that implement the tested functionality and
in their server classes. The number of these analyzed meth-
ods is shown in the last column of Table 4. (The numbers

Task 0-CFAf (sec) ANDf (sec) #Methods
task1 4.7 8.6 325
task2 12.8 25.1 752
task3 2.9 5.3 282
task4 5.3 6.4 401
task5 3.6 4.3 280
task6 12.2 35.8 386
task7 13.8 18.1 833
task8 15.4 20.4 810

Table 4. Analysis running times.

are for ANDf ; for 0-CFAf , they are essentially the same).
Clearly, the two analyses have practical cost, which makes
them realistic candidates for use in coverage tools. These
results are consistent with similar experiments from [31].

5 Related Work

Various authors have recognized the need to test poly-
morphic relationships by exercising all possible polymor-
phic bindings [37, 22, 21, 25, 10, 7, 3]. An implicit as-
sumption in this previous work is that the bindings will be
determined by examining the class hierarchy—for example,
that RC coverage of x.m() will require covering all sub-
classes of the declared type of x. One key point of our work
is that this approach could be overly conservative, and as
a result coverage tools may introduce infeasible coverage
requirements. As our results indicate, it is essential to use
more precise methods for computing the possible bindings.
Fortunately, there exists a large body of work on class anal-
ysis that can be used to produce more precise coverage re-
quirements. Our work is the first investigation of the use of
class analysis for the purposes of testing of polymorphism.

One key problem is that class analyses are typically de-
signed as whole-program analyses, and therefore cannot be
used directly for testing of partial programs. Some whole-
program class analyses have been adapted to analyze pro-
gram fragments rather than whole programs. Chatterjee
and Ryder [8] present a flow- and context-sensitive points-

to analysis for library modules in object-oriented software.
The analysis is an adaptation of an earlier whole-program
analysis [9]. Sweeney and Tip [36] describe analyses and
optimizations for the removal of unused functionality in
Java modules. Their work presents a method for perform-
ing RTA on program fragments. The approaches from [8]
and [36] can be used to compute coverage requirements in
tools for testing of polymorphism in partial programs. How-
ever, our technique for constructing fragment class analy-
ses (presented in Section 3) is more general and can be ap-
plied to a large number of existing whole-program analyses
[2, 5, 17, 13, 29, 34, 35, 38, 19, 31, 16, 23]. Furthermore, we
present empirical results that evaluate the absolute precision
of our fragment analyses and confirm their effectiveness.

Harrold and Rothermel [18] present a method for per-
forming def-use analysis of a given class for the purposes
of dataflow-based unit testing in object-oriented languages.
Their approach constructs a placeholder driver that repre-
sents all possible sequences of method invocations initiated
by client code; however, the driver does not take into ac-
count the effects of aliasing, polymorphism, and dynamic
binding. The placeholder main method presented in Sec-
tion 3 is essentially a placeholder driver that models these
features. Thus, in addition to testing of polymorphism, our
approach can also be used in tools for dataflow-based test-
ing of individual classes and collections of classes.

We believe that analysis precision is a critical issue for
the use of class analysis (or any static analysis) in cover-
age tools. In previous work, analysis precision is typically
evaluated in three ways. One approach is to compare the so-
lutions computed by two or more analyses, in order to de-
termine the relative precision of these analyses—i.e., how
analysis X compares with analysis Y . Another approach
is to compare the analysis results with the behavior of the
program during one particular profile run (e.g., [24, 20]).
A third approach is to evaluate the effect of the analysis
on a particular client application—for example, the impact
on performance due to compiler optimizations. However,
in the context of software engineering tools, the key issue
is absolute precision: how close is the analysis solution to
the set of all run-time relationships that are actually possi-
ble? Imprecision may lead to significant waste of human
time and effort, which ultimately may result in tool rejec-
tion. This observation applies not only to coverage tools,
but also to other software engineering tools (e.g., for pro-
gram understanding and verification). Previous work does
not contain information about the absolute precision of class
analysis, which in our view is a major problem. The preci-
sion measurements in Section 4 provide valuable insights
for the designers of tools for testing of polymorphism, as
well as for other tools that use class analysis.

6 Conclusions and Future Work

In order to construct high-quality coverage tools for test-
ing of polymorphism, it is necessary to use class analysis to
compute the coverage requirements. We have developed a
general approach that allows tool designers to adapt a wide
variety of existing and future whole-program class analyses
to be used for testing of partial programs. We also present
the first empirical evaluation of the absolute precision of
several analyses. Our results lead to two conclusions. First,
analysis imprecision can be a serious problem for simpler
analyses, and it should be a primary concern for tool design-
ers. Second, more advanced analyses (such as 0-CFA and
Andersen’s analysis) are capable of achieving high absolute
precision, which makes them good candidates for inclusion
in coverage tools for testing of polymorphism.

In our future work we would like to evaluate the absolute
precision of analyses that are even more precise than 0-CFA
and Andersen’s analysis. To choose the appropriate analy-
ses, we plan to examine the sources of analysis imprecision.
This investigation may suggest the use of existing analyses,
or may guide the design of new analysis techniques that tar-
get these sources of imprecision. We also plan to obtain
additional datapoints for our current analyses, and to evalu-
ate more precise analyses using this extended dataset.

It would be interesting to generalize our approach to
flow-sensitive class analyses. We do not anticipate any con-
ceptual difficulties in addressing this problem. Intuitively,
it will be necessary to change the structure of our place-
holder main method to encode all possible sequences of
placeholder statements by placing the statements in a switch
statement surrounded by a loop.

We also plan to investigate other applications for which
fragment class analysis is needed: for example, program un-
derstanding and dataflow-based testing of partial Java pro-
grams. Such applications require high analysis precision,
and it will be necessary to obtain measurements of absolute
precision similar to the ones presented in this paper.

Acknowledgments. We would like to thank the ICSE re-
viewers for their valuable comments, and Matthew Arnold
for helping improve an earlier version of the paper. This
research was supported by NSF grant CCR-9900988.

References

[1] O. Agesen. Constraint-based type inference and parametric
polymorphism. In Static Analysis Symposium, LNCS 864,
pages 78–100, 1994.

[2] O. Agesen. The cartesian product algorithm. In European
Conference on Object-oriented Programming, LNCS 952,
pages 2–26, 1995.

[3] R. Alexander and J. Offutt. Criteria for testing polymorphic
relationships. In International Symposium on Software Re-
liability Engineering, pages 15–23, 2000.

[4] L. Andersen. Program Analysis and Specialization for the C
Programming Language. PhD thesis, DIKU, University of
Copenhagen, 1994.

[5] D. Bacon and P. Sweeney. Fast static analysis of C++ virtual
function calls. In Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages 324–
341, 1996.

[6] R. Binder. Testing object-oriented software: a survey. Jour-
nal of Software Testing, Verification and Reliability, 6:125–
252, Dec. 1996.

[7] R. Binder. Testing Object-Oriented Systems: Models, Pat-
terns, and Tools. Addison-Wesley, 1999.

[8] R. Chatterjee and B. G. Ryder. Data-flow-based testing of
object-oriented libraries. Technical Report DCS-TR-433,
Rutgers University, Apr. 2001.

[9] R. Chatterjee, B. G. Ryder, and W. Landi. Relevant con-
text inference. In Symposium on Principles of Programming
Languages, pages 133–146, 1999.

[10] M. H. Chen and M. H. Kao. Testing object-oriented
programs—an integrated approach. In International Sym-
posium on Software Reliability Engineering, pages 73–83,
1999.

[11] B. Cox. The need for specification and testing languages.
Journal of Object-Oriented Programming, 1(2):44–47, June
1988.

[12] J. Dean, D. Grove, and C. Chambers. Optimizations of
object-oriented programs using static class hierarchy anal-
ysis. In European Conference on Object-oriented Program-
ming, pages 77–101, 1995.

[13] G. DeFouw, D. Grove, and C. Chambers. Fast interprocedu-
ral class analysis. In Symposium on Principles of Program-
ming Languages, pages 222–236, 1998.

[14] A. Diwan, J. B. Moss, and K. McKinley. Simple and effec-
tive analysis of statically-typed object-oriented programs. In
Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, pages 292–305, 1996.

[15] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[16] D. Grove and C. Chambers. A framework for call graph con-
struction algorithms. ACM Transactions on Programming
Languages and Systems, 23(6):685–746, Nov. 2001.

[17] D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call graph
construction in object-oriented languages. In Conference
on Object-Oriented Programming Systems, Languages, and
Applications, pages 108–124, 1997.

[18] M. J. Harrold and G. Rothermel. Performing data flow test-
ing on classes. Symposium on the Foundations of Software
Engineering, pages 154–163, 1994.

[19] D. Liang, M. Pennings, and M. J. Harrold. Extending and
evaluating flow-insensitive and context-insensitive points-to
analyses for Java. In Workshop on Program Analysis for
Software Tools and Engineering, pages 73–79, 2001.

[20] D. Liang, M. Pennings, and M. J. Harrold. Evaluating the
precision of static reference analysis using profiling. In In-
ternational Symposium on Software Testing and Analysis,
pages 22–32, 2002.

[21] T. McCabe, L. Dreyer, A. Dunn, and A. Watson. Testing an
object-oriented application. Journal of the Quality Assur-
ance Institute, 8(4):21–27, Oct. 1994.

[22] R. McDaniel and J. McGregor. Testing the polymorphic in-
teractions between classes. Technical Report 94-103, Clem-
son University, Mar. 1994.

[23] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized
object sensitivity for points-to and side-effect analyses for
Java. In International Symposium on Software Testing and
Analysis, pages 1–11, 2002.

[24] M. Mock, M. Das, C. Chambers, and S. Eggers. Dynamic
points-to sets. In Workshop on Program Analysis for Soft-
ware Tools and Engineering, pages 66–72, 2001.

[25] J. Overbeck. Integration Testing for Object-Oriented Soft-
ware. PhD thesis, Vienna University of Technology, 1994.

[26] J. Palsberg and M. Schwartzbach. Object-oriented type
inference. In Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages 146–
161, 1991.

[27] D. Perry and G. Kaiser. Adequate testing and object-oriented
programming. Journal of Object-Oriented Programming,
2(5):13–19, Jan. 1990.

[28] J. Plevyak and A. Chien. Precise concrete type inference
for object-oriented languages. In Conference on Object-
Oriented Programming Systems, Languages, and Applica-
tions, pages 324–340, 1994.

[29] C. Razafimahefa. A study of side-effect analyses for Java.
Master’s thesis, McGill University, Dec. 1999.

[30] A. Rountev. Dataflow Analysis of Software Fragments. PhD
thesis, Rutgers University, Aug. 2002.

[31] A. Rountev, A. Milanova, and B. G. Ryder. Points-to anal-
ysis for Java using annotated constraints. In Conference
on Object-Oriented Programming Systems, Languages, and
Applications, pages 43–55, Oct. 2001.

[32] E. Ruf. Effective synchronization removal for Java. In Con-
ference on Programming Language Design and Implemen-
tation, pages 208–218, 2000.

[33] O. Shivers. Control-Flow Analysis of Higher-Order Lan-
guages. PhD thesis, Carnegie Mellon University, 1991.

[34] M. Streckenbach and G. Snelting. Points-to for Java: A gen-
eral framework and an empirical comparison. Technical re-
port, U. Passau, Sept. 2000.

[35] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallee-Rai,
P. Lam, E. Gagnon, and C. Godin. Practical virtual method
call resolution for Java. In Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages
264–280, 2000.

[36] P. Sweeney and F. Tip. Extracting library-based object-
oriented applications. In Symposium on the Foundations of
Software Engineering, pages 98–107, 2000.

[37] N. N. Thuy. Testability and unit tests in large object-oriented
software. In Proc. 5th International Software Quality Week.
Software Research Institute, 1992.

[38] F. Tip and J. Palsberg. Scalable propagation-based call graph
construction algorithms. In Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages
281–293, 2000.

