
Modular String-Sensitive Permission Analysis with Demand-Driven Precision

Emmanuel Geay
IBM T. J. Watson Research Center

Hawthorne, NY, USA
egeay@us.ibm.com

Marco Pistoia
IBM T. J. Watson Research Center

Hawthorne, NY, USA
pistoia@us.ibm.com

Takaaki Tateishi
IBM Tokyo Research Laboratory

Tokyo, Japan
tate@jp.ibm.com

Barbara G. Ryder
Virginia Tech

Blacksburg, VA, USA
ryder@cs.vt.edu

Julian Dolby
IBM T. J. Watson Research Center

Hawthorne, NY, USA
dolby@us.ibm.com

Abstract

In modern software systems, programs are obtained by
dynamically assembling components. This has made it nec-
essary to subject component providers to access-control re-
strictions. What permissions should be granted to each
component? Too few permissions may cause run-time au-
thorization failures, too many constitute a security hole. We
have designed and implemented a composite algorithm for
precise static permission analysis for Java and the CLR.
Unlike previous work, the analysis is modular and fully inte-
grated with a novel slicing-based string analysis that is used
to statically compute the string values defining a permis-
sion and disambiguate permission propagation paths. The
results of our research prototype on production-level Java
code support the effectiveness, practicality, and precision
of our techniques, and show outstanding improvement over
previous work.

1 Introduction

Operating-system access control allows restricting ac-
cess to resources based on the identity of the authenticated
user executing a program. In modern run-time environ-
ments, such as Java and the Common Language Runtime
(CLR), programs under execution are obtained by dynam-
ically assembling components. At run time, when differ-
ent components are dynamically combined to form a pro-
gram, a component provider could behave as an active at-
tacker [16] and violate the integrity of the system by inject-
ing into the program a component that performs operations
that the system administrator did not intend to authorize.
As a result, in such systems, there is the need for a code
provider to undergo authentication and authorization much

the same way as the user who executes the final program.
A component can authenticate itself based on its origin in
the network and the digital signature applied by the compo-
nent provider before distribution. The system administrator
assigns “permissions” to authenticated components. A per-
mission is the right to access a restricted resource. At run
time, when a component attempts, directly or indirectly, to
access a restricted resource, the underlying run-time envi-
ronment demands that the component prove possession of
the relevant permission.

A system administrator installing a program must con-
figure its access-control policy by granting or denying per-
missions to the program components. In the software life-
cycle, this challenge is faced also by component develop-
ers and providers who publish permission recommendations
for their components before distributing them.1 An overly
permissive policy constitutes a violation of the Principle of
Least Privilege (PLP) [22], which establishes that a user
or program should never be granted more permissions than
those it requires to function correctly. If the policy is too
restrictive, the program will not function properly due to
run-time authorization failures. Source code is not always
available, so manual code inspection, besides being compli-
cated, time consuming, and error prone, may not even be an
option.

Dynamic analysis is an alternative. With this technique,
a component is tested, initially with no permissions. Any
attempt by the component to directly or indirectly access
a restricted resource will result in a run-time authorization
failure. Each failure is logged, the access-control policy
is updated by granting the component the missing permis-
sions (assuming that it is safe to do so), and the program
is restarted. This process must be iterated until no more

1We are currently collaborating with the Eclipse community on the ef-
fort of enabling Java security on the Rich Client Platform (RCP) [3].

authorization failures are found. However, there is no guar-
antee that the access-control policy obtained at the end of
this process will be sufficient to execute the program with-
out failures. Absence of a complete suite of test cases can
leave some execution paths undiscovered until deployment,
thereby exposing the deployed program to unjustified au-
thorization failures. Furthermore, testing a potentially ma-
licious program can harm the underlying system.

Static analysis has the ability to model all the possible
paths of execution of a program without executing it. Thus,
a static permission analysis can detect all the permission re-
quirements. However, if the analysis is too conservative, it
will compute false positives—permissions that are not ac-
tually needed and that, if granted, will result in PLP viola-
tions. Hence, minimizing the number of false positives in
permission analysis is crucial. This work combines string
analysis [15] with a demand-driven permission-tracking al-
gorithm to reduce the number of false positives.

In summary, this paper makes three major contributions:
1. A Composite Static Analysis Algorithm: Key insights
used in the design of this technique include combining a
modular library analysis with a library-client permission
analysis. The latter is made more precise by the use of
string analysis and slicing to find security-sensitive program
regions and to disambiguate permission-propagation paths
in them for acceptable precision at practical cost. String
analysis is also used to resolve string values in permission
requirements.
2. A Research Prototype Implementation: Automated
Authorization Analysis (A3).
3. Experimental Findings: Using A3 on publicly avail-
able benchmarks shows outstanding precision, scalability,
and efficiency improvements over the best existing analy-
sis [26].

The remainder of this paper is organized as follows. Sec-
tion 2 presents a simple Java program demonstrating the
need for more precision in permission analysis. Section 3
explains the semantics of correct use of Java permissions,
and introduces the concept of stack inspection. Section 4
describes the composite static-analysis algorithm. Section
5 gives specifics of the algorithm pertaining to the A3 im-
plementation. Section 6 contains the empirical findings and
their interpretation. Finally, Section 7 presents related work
and Section 8, our conclusions.

2 Motivating Example

In Java and the CLR, access control is based on stack
inspection [6]: when a security-sensitive operation is per-
formed, all the methods currently on the stack are checked
to see if their classes have been granted the relevant permis-
sion. The Application Programming Interface (API) per-
forming the stack walk is checkPermission in Java

and Demand in the CLR, taking a Permission and
IPermission parameter, respectively. Stack inspection
is intended to prevent confused-deputy attacks [9], which
arise when a component C1 that was not granted access to
a resource r obtains access to r indirectly, by calling into a
component C2 that was granted access to r.

public class Lib {
private static final String dir = "C:";
private static final String logFileName = "/log.txt";
private static final int port = 80;
public static Socket createSocket(final String host)

throws Exception {
Socket socket = new Socket(host, port);
Priv op = new Priv(dir, logFileName);
FileOutputStream fos = (FileOutputStream)

AccessController.doPrivileged(op);
OutputStream bos = new BufferedOutputStream(fos);
PrintStream ps = new PrintStream(bos, true);
ps.print("Socket: " + host + ":" + port);
return socket;

} }
class Priv implements PrivilegedExceptionAction {
private final String dir;
private final String name;
Priv(final String dir, final String name) {
this.dir = dir;
this.name = name;

}
public Object run() throws IOException {
String fn = dir + File.separator + name.substring(1);
return new FileOutputStream(fn);

} }
public class Enterprise {
private final String enterprise = "IBM";
private final String domain = ".com";
public void connectToEnt() throws Exception {
String host = enterprise.toLowerCase() + domain;
Socket s = Lib.createSocket(host);

} }
public class School {
private final String school = "VT";
private final String domain = ".edu";
public void connectToSchool() throws Exception {
String host = school.toLowerCase() + domain;
Socket s = Lib.createSocket(host);

} }

Figure 1. Sample Code

Figure 1 shows the Java code of two library classes,
Lib and Priv, and two client classes, Enterprise and
School. Lib exposes a public API, createSocket,
which constructs Socket objects on behalf of its
clients. At run time, the two clients will require
SocketPermissions to resolve the names and connect
to ports 80 of hosts ibm.com and vt.edu, respectively.

Upon constructing a Socket, Lib logs the operation
to a file. To prevent its clients (now on the stack) from
requiring the relevant FilePermission—which a ma-
liciously crafted client could misuse to erase the contents

2

Classes
Permissions Enterprise School Lib Priv

java.net.SocketPermission "ibm.com", "resolve" X X
java.net.SocketPermission "ibm.com:80", "connect" X X
java.net.SocketPermission "vt.edu", "resolve" X X
java.net.SocketPermission "vt.edu:80", "connect" X X
java.io.FilePermission "C:/log.txt", "write" X X

Table 1. Security Policy for Sample Program

of the file or log false information in it—Lib creates
an instance of Priv and passes it to doPrivileged,
the Java privilege-asserting API [6], which modifies the
stack-inspection mechanism as follows: at run time,
doPrivileged invokes the run method of that Priv
object, and when the stack inspection is performed to verify
that each caller on the stack has been granted the necessary
FilePermission, the stack walk recognizes the pres-
ence of doPrivileged and stops at createSocket,
without demanding the FilePermission of the clients
of Lib. In the CLR, the privilege-asserting API is Assert.

Table 1 shows a minimal security policy that prevents au-
thorization failures. Although this program is simple, con-
figuring its policy requires computing non-trivial string op-
erations, accounting for privilege-asserting code, and distin-
guishing the SocketPermission needed by School
from the one needed by Enterprise. Complications
arise with multithreaded programs that involve thousands
of classes, partitioned in numerous security domains, and
forming long sequences of method invocations. The solu-
tion presented in this paper addresses these concerns.

3 Concrete Semantics of Stack Inspection

For performance and scalability, Java and the CLR have
adopted a lazy semantics for stack inspection; security in-
formation is not passed across method calls, but retrieved on
demand at authorization checkpoints [6]. It has been proved
that this lazy semantics is equivalent to an eager seman-
tics in which security information is passed across method
calls, ready to be used when needed at authorization check-
points [28]. This section presents an eager semantics for
stack inspection that, unlike previous work [19], models all
the variants—including multithreaded code—and accounts
for the differences between Java and the CLR. Section 4
describes our abstract semantics for stack inspection.

In Java and the CLR, a permission can guard multiple
resources. Therefore, permissions are complex structures
and carry an implication ordering. For example, the re-
source set guarded by java.io.SocketPermission
"*:80", "connect, resolve" is a superset of
the one guarded by java.io.SocketPermission
"ibm.com", "connect". In this paper, we use a sim-
ple concrete representation: we consider the universe P of

atomic permissions, each guarding an individual resource.
Given a program p with sets of classes C and methods

M, an access-control policy for p is a function π : M →
2P . A policy π grants every method m a set of permissions,
π(m); if π(m) = ∅, then m is totally untrusted. Typically,
in Java and the CLR, permissions are not granted directly
to methods, but, with more coarse-grained granularity, to
classes; a class induces its permissions on its methods.

Figure 2 defines an instrumented concrete eager seman-
tics of a program assuming stack-inspection-based access
control. We consider a standard concrete semantics for
the program in the underlying language, where the pro-
gram state consists of a program counter, stack, heap, lo-
cal variables, and global variables. We instrument the pro-
gram state additionally with a stack w of dynamically held
permissions, with the convention that the stack grows from
right to left. The stack alphabet is 2P ; each σ ∈ 2P repre-
sents the set of permissions that an execution may hold at a
particular point. We augment the program state with the set
T of currently instantiated Thread objects, and a function
α : T → 2P that maps each Thread in T to its security
context. If S is the program configuration under the stan-
dard concrete semantics, then 〈S, w, T, α〉 is the program
configuration under the instrumented concrete semantics.

When the main method m′ of the program is invoked, the
set of Thread instances instantiated so far is the singleton
T0 = {t0}, where t0 is the Thread instance created by the
program launcher and representing the thread of execution
of m′. α0 is the function mapping Thread instances to
their security contexts, with α0(t0) = P , representing the
fact that the main thread, not having a parent thread, is only
going to be constrained by the methods that will appear on
its stack when an authorization check is performed.

The instrumentation for an execution x is defined as fol-
lows. Given a configuration 〈S,w, T, α〉, we denote a tran-
sition of the instrumented concrete semantics into a config-
uration 〈S′, w′, T ′, α′〉 by 〈S, w, T, α〉 V 〈S′, w′, T ′, α′〉,
assuming that S′ is the updated configuration according to
the standard concrete semantics applied to S. Since the
only operations that affect the instrumentation are method
calls and returns, we only describe the effects of these op-
erations. Such effects change the instrumentation based on
which methods are involved in the invocation.

In general, when a method m invokes another method

3

• Initialization— Call to main method m′ ∈M: 〈S, ε, {t0}, α0〉 V 〈S′, π(m′)ε, {t0}, α0〉
• Method Call— m ∈M calls m′ ∈M:

〈S, σw, T, α〉 V

〈S′, (π(m) ∩Q)σw, T, α〉, m′ is the privilege-asserting API with parameter Q ⊆ P
〈S′, (σ ∩ π(m′))σw, T ∪ {t}, [α|t 7→ σ ∩ π(m′)]〉, m′ = <init>, creating Thread instance t

〈S′, (π(m′) ∩ α(t))σw, T, α〉, m = start ∧m′ = run ∧m, m′ have Thread receiver t

〈S′, σσw, T, α〉, m′ is checkPermission/Demand with parameter p ∈ σ

ERROR, m′ is checkPermission/Demand with parameter p /∈ σ

〈S′, (σ ∩ π(m′))σw, T, α〉, otherwise

• Method Return— 〈S, σw, T, α〉 V 〈S′, w, T, α〉

Figure 2. Stack-Inspection Eager Concrete Semantics

m′, the set of permissions σ held at the top of the in-
strumentation stack w is intersected with π(m′), and this
new set of permissions is pushed onto the top of the
stack. The top of w is the authorization token examined
by checkPermission in Java and Demand in the CLR.

If stack inspection traversed only the stack of the cur-
rent thread, an active attacker could spawn a child thread—
which would have fewer stack frames, and potentially more
permissions, than its parent—and let it access a restricted
resource. To prevent such attacks, Java and the CLR force
the stack walk to traverse not only the stack of the child
thread, but that of its parent as well. We model this behav-
ior as follows. If m′ is the constructor of a new Thread,
then the new Thread instance, t, is added to T , and func-
tion α is augmented to map t to the current security context.
When start is called on t, that causes a call to run. At
that point, the authorization token is intersected with α(t).

If m′ is the privilege-asserting API, with a set of permis-
sions Q, then what gets pushed on the top of the stack is
π(m) ∩ Q. Therefore, all the permission sets that were in-
tersected to compute σ up to that point are stripped away,
except for π(m).

In Java, when a Permission object q is demanded,
the stack inspection is stopped at the stack frame preceding
doPrivileged indiscriminately, as long as q ∈ π(m).
Conversely, the CLR’s Assert can be parameterized with
a set Q of IPermission objects, and a stack inspection
for q is stopped only if q ∈ π(m)∩Q. Our unified treatment
of Java and the CLR assumes Q = P in the Java case.

The static analysis presented in this paper computes a
policy for a program p that is sufficient for the program to
run without entering the ERROR state. Furthermore, as we
demonstrate empirically in Section 6, the policy we com-
pute has a very small number of false positives—where a
false positive, in this case, is a superfluous permission, and
therefore, a PLP violation.

4 Static-Analysis Algorithm

A simple static permission analysis can be implemented
by representing the execution of the program as a callgraph,
propagating sets of permissions backwards in the callgraph
starting from authorization checkpoints, and performing set
unions at merge points [13, 18]. As we will observe in Sec-
tion 7, this approach is too conservative, unless aggressive,
but unscalable, context-sensitivity is adopted. This section
describes a modular static analysis algorithm that combines
a context-sensitive library analysis and a context-insensitive
library-client analysis based on it. The library-client analy-
sis is composed of (1) a string analysis that, for every pro-
gram variable of type String, generates a Context-Free
Language (CFL) representing possible values assigned to
that variable, and (2) a program slicer [10] that tracks inter-
procedural dataflows.

4.1 Modular Library Analysis

In component-based systems, access control is cen-
tralized. For example, in Java, all the security-
sensitive functions trigger, directly or indirectly, a call
to the checkPermission method on the instance
of SecurityManager currently active on the sys-
tem, passing it a Permission object. This func-
tion calls AccessController.checkPermission,
which performs the stack inspection. A context-
insensitive callgraph represents all calls to the same
method as one node; only one node models all the
calls to the checkPermission methods of all the
SecurityManager instances, and only one node mod-
els all the AccessController.checkPermission
calls, irrespective of which Permission parameter those
methods are passed.

The components of the program of Section 2 collec-
tively require five permissions, as shown in Table 1. Mod-
eling stack inspection as a simple backward dataflow prob-

4

lem in a context-insensitive callgraph would not effectively
disambiguate the different propagation paths of those per-
mission requirements. Furthermore, it would not be pos-
sible to distinguish which permission is shielded by the
doPrivileged call in createSocket. A security pol-
icy based on the results of this analysis would conserva-
tively fill every cell of Table 1 with a checkmark. Because
of lack of scalability, a global context-sensitive analysis
[13] offers no solution for large programs.

The analysis presented in this paper improves on pre-
cision and scalability via the construction of library sum-
maries, which eliminate the need for reanalyzing a library
at every library call. Once a summary has been built, the
permission analysis can start modeling stack inspections di-
rectly at the library entrypoints instead of starting from the
access-control enforcer. This reduces any imprecision due
to overlapping callgraph library paths.

To construct library entrypoint summaries, the library
l itself is analyzed context-sensitively as an incomplete
program, considering all its public and protected meth-
ods as possible entrypoints. Let G = (N, E) be a call-
graph representing the set of all possible executions of
l with an arbitrary client, and N1 and N2 the subsets
of N corresponding to the checkPermission/Demand
and doPrivileged/Assert APIs, respectively. At
run time, each permission in P is represented as an ob-
ject of type Permission in Java and IPermission
in the CLR. Statically, a permission can be represented as
the allocation site of the corresponding Permission or
IPermission object. Two permissions whose objects
share the same allocation site can be considered equivalent.
This equivalence relation partitions P into a finite set P ′ of
permission allocation sites.

Stack inspection can be statically modeled as a two-
phase backward dataflow problem. Phase 1 is a stan-
dard backward dataflow propagation, initialized as follows.
We define Gen(n) := ∅, ∀n ∈ N \ N1. If n ∈ N1,
let Q ⊆ P ′ be the set of Permission/IPermission
allocation sites that, in the model, can flow to the pa-
rameter of checkPermission/Demand; we impose
Gen(n) := Q. Furthermore, we define Kill(n) :=
∅, ∀n ∈ N \ N2. If n ∈ N2, let Q ⊆ P ′
be the set of Permission/IPermission allocation
sites that, in the model, can flow to the parameter of
doPrivileged/Assert; we impose Kill(n) := Q. No-
tice that doPrivileged is not parameterized based on
permissions [18]. Thus, in Java, Kill(n) = P ′, ∀n ∈ N2.
The dataflow equations are as follows:

Out(n) := (In(n) \ Kill(n)) ∪ Gen(n) (1)

In(n) :=
⋃

m∈Γ+(n)

Out(m) (2)

for all n ∈ N , where Γ+ : N → 2N is the successor

function in G, defined by Γ+(n) := {n′ ∈ N | (n, n′) ∈
E}.2 By Tarski’s Theorem [7], the recursive computation of
the solutions of Equations (1) and (2) converges to a fixed
point in O(|E||P ′|) time , given that the height H(2P

′
) of

the lattice 2P
′

is |P ′|, and to reach a fixed point, each edge
of G can be traversed at most H(2P

′
) times.

Phase 1 does not propagate permissions beyond the
privilege-asserting API. However, according to the stack-
inspection semantics, the code calling the privilege-
asserting API needs to be granted the shielded permissions,
as noted in Sections 2 and 3. Phase 2 models this through a
one-step, non-recursive backward propagation, as described
by Equation (3), to be solved upon completion of Phase 1.

In(n) := In(n) ∪
⋃

n2∈Γ+(n)∩N2

In(n2) (3)

for all n ∈ N . Equation (3) has a worst-case time complex-
ity of O(|E|) since each edge is traversed at most once.

To model multithreaded programs, we need to connect
the stack of a thread with that of its parent as described
in Section 3. This can be done by thread-augmenting G
as follows. Given a node r ∈ N representing the invo-
cation of the run method on a set of Thread receivers,
we identify all the Thread constructor nodes t1, . . . , tk ∈
N where those receivers were constructed, and add edges
(t1, r), . . . , (tk, r) to E. Equations (1), (2), and (3) take
care of properly annotating the nodes in a parent thread with
the permissions required by its children.

To detect what permissions are needed by each method,
we define a function π′ : M → 2P

′
as follows: for every

m ∈ M, if m is represented by nodes n1, n2, . . . , nk ∈ N ,
then π′(m) :=

⋃k
i=1 In(ni).3 The static analysis presented

in this section induces an access-control policy π̃ : M →
2P on l defined by π̃(m) :=

⋃
Q∈π′(m) Q,∀m ∈M.

Our library analysis is sound, as can be easily proved by
a straightforward induction on the structure of G.

4.2 String Analysis

It is very common for a fully-qualified file name to be
specified as something like dir + File.separator
+ name.substring(1). A permission analyzer that
does not perform string analysis will have to conservatively
approximate the permission to read such a file as the permis-
sion to read all the files of the file system—an overapprox-
imation that may cause PLP violations. Our library-client
analysis, which will be presented in Section 4.3, is the first
one to use string analysis to resolve string values used in
permission requirements.

2In(n) and Out(n) are defined at the exit and entry of n, respectively.
3If m is not represented by any node in the callgraph (m is unreach-

able), then k = 0 and π′(m) = ∅. If m is reachable, then k ≥ 1 since G
is context-sensitive.

5

String analysis is a family of static program analyses that
approximate the possible string values of the program vari-
ables arising at run time. Our string analysis algorithm is
based on the one proposed by Minamide [15]. It produces
a Context-Free Grammar (CFG) that represents the possi-
ble string values assigned to program variables. The CFG is
deduced by solving the subset constraints among the sets of
strings assigned to program variables. For every predefined
string operation that appears in a program, we automati-
cally generate a sound approximation of the transformation
that maps the CFG representing the possible input strings to
the CFG of the possible output strings. Sound here means
that the resulting CFG contains all the actual strings aris-
ing at run time. For example, toLowerCase() in Fig-
ure 1 can be approximated by a homomorphism, which is
a structure-preserving mapping between CFGs. Similarly,
substring(2) in Figure 4 can be represented by a fi-
nite automaton with output, or transducer, which induces
a stateful transformation, as shown in Figure 3. In Figure
3, the transitions labeled with A/ε indicate that the trans-
ducer will produce ε for the first two input characters read.
The CFG approximating the output of the Java program ob-
tained by considering assignments as production rules is
then transformed into another CFG via the transducer, as in
Figure 4 (the image of a CFG under a transducer is a CFG).

Figure 3. The Transducer for substring(2)

A cheaper, yet sound, string analysis based on con-
stant propagation would only give us the constant values
in the program propagated through the string operations,
and would overapproximate every non-constant value to *,
which is too conservative.

Our string analysis has a novel labeling feature that
records how each string is constructed. Every label is de-
termined based on the program locations corresponding to
string creations and manipulations. Labeling starts by asso-
ciating labels with every character and each approximated
string operation while translating a program into production
rules. Each labeled approximated string operation propa-
gates its own label as well as the labels of the input charac-
ters to the characters of the resulting CFG. Label propaga-
tion is performed by calculating label-set unions.

Figure 4 shows a sample program and the production
rules translated from it. Superscript numbers are program
locations indicating where the string characters are created
and manipulated. Label 1 on characters x,y, and z indicates
that x,y, and z are created on program location 1. Label 2
on character a indicates that a is created on program loca-
tion 2. The approximated function concat has label 3 to

String a = "xyz";
for (int i = 0; i < 3; i++) a = a + "a";
String r = a.substring(2);

Sa → x{1} y{1} z{1}

Sa → concat3(Sa, a{2})
Sr → substring4(Sa, 2)

Figure 4. Program and Production Rules

indicate that concatenation of strings is performed on pro-
gram location 3. Label 4 represents a program location on
which substring is applied. The labeled approximated
function concat3 concatenates two CFGs and propagates
label 3 to every character. Likewise, substring4 propa-
gates label 4. By applying the labeled approximated func-
tions, we obtain the following CFG: S′a → z{1,4}, S′a →
S′a a{2,3,4}, Sr → S′a. This CFG represents the set
of strings {z{1,4},za{1,2,3,4},zaa{1,2,3,4}, . . .}. We con-
clude that z is constructed only through locations 1 and 4,
while the other strings are constructed through all the loca-
tions. More formally:

Definition 4.1 (String Analysis) A string analysis S for a
call graph G = (N,E) is a tuple (Sv, So, Ss, Sc) where
Sv, So are two sets and Ss, Sc are two functions such that:
• Sv := {primitive string components in G}
• So := {primitive string operations in G}
• Ss(w) := {CFG estimate of strings held by w}
• Sc(x) := {y ∈ So ∪ Sv |x is labeled with y}

For each disjunct x, Sc(x) returns the constituent compo-
nents that may have been used in the computation of the
value of x. These constituents have two forms: Sv is the set
of manifest string constants and string input parameters in
G, and So is the set of result values of all primitive string
operations in G. Thus, Sc(x) denotes all primitive string
components and all applied string operations that together
gave rise to x. Therefore, the universe of labels is Sv ∪ So,
and Sc is the labeling function of our string analysis.

4.3 Library-Client Analysis

Let G = (N,E) be a thread-augmented callgraph rep-
resenting the execution of a program p including library l.
A summary for l constructed as described in Section 4.1
identifies a subset N3 ⊆ N of nodes that overapproximates
the set of security-sensitive entrypoints of l (methods that,
when invoked, trigger a stack inspection), and since the li-
brary analysis is sound, for each entrypoint m, π̃(m) is a
superset of the set of permissions required to invoke m.

If a program p includes l, a backward dataflow permis-
sion analysis for p can be initialized at the nodes in N3 as

6

opposed to the ones in N1. As observed in Section 4.1, this
will avoid the false positives due to callgraph paths over-
lapping on one or more l nodes. However, summaries of l
cannot avoid the false positives generated by paths overlap-
ping on nodes outside of l—in the callgraph representing
the executions of clients of l. In the example of Section
2, summarizing the permission requirements of the con-
structors of Socket and FileOutputStream would
be sufficient to identify that the only permission shielded
by the call to doPrivileged is FilePermission
"C:/log.txt", "write", but that will not disam-
biguate the four SocketPermission requirements for
connectToEnt and connectToSchool. The analy-
sis would conservatively tag every node in both paths as
requiring all four permissions. This section presents a scal-
able algorithm combining callgraph analysis, pointer anal-
ysis, program slicing, and string analysis.

We partition N3 into subsets N3,1, N3,2, N3,3. Nodes
in N3,1 represent methods that require “constant permis-
sions”. A constant permission is either a permission with
no parameters, such as AllPermission, or a permis-
sion with string-constant parameters where the constants
are defined by the access-control enforcer and do not de-
pend on the client. A callgraph node representing a call to
ClassLoader.<init> is in N3,1 because the permis-
sion requirement it generates is RuntimePermission
"createClassLoader", and createClassLoader
is a string constant defined by the Java runtime. A
node in N3,2 represents a string-parameterized entry-
point, whose required permissions depend on one or
more String parameters passed by the client. A call-
graph node representing a call to Socket.<init> is
in N3,2 because its String parameter (for example,
ibm.com) flows directly to a parameter of the required
permission (as in SocketPermission "ibm.com",
"resolve"). Finally, a node in N3,3 represents a
non-string-parameterized entrypoint, whose required per-
missions depend on one or more non-String parame-
ters passed by the client. For example, any node rep-
resenting a call to the FileOutputStream construc-
tor with a File parameter is in N3,3. That File pa-
rameter wraps the filename String object that becomes
the target parameter in the permission requirement, as in
FilePermission "C:/log.txt", "write". Our
static permission analysis for client code treats these three
cases differently.
Permission Requirements from Nodes in N3,1 can be
computed via a simple backwards dataflow problem as in
Equations (1), (2), and (3).
Permission Requirements from Nodes in N3,2 are more
complicated to model since they require distinguishing the
propagation of permission requirements that differ by their
parameters. Figure 5 shows the callgraph of a program call-

Figure 5. Library-Client-Analysis Scenario

ing System.getProperty, a string-parameterized en-
trypoint.4 Informally, the analysis proceeds as follows:
1. The string analysis computes the CFL of the possible
values for the String parameters to the security-sensitive
call. The possible String values computed for the param-
eter to getProperty in Figure 5 are s1.txt, s2.txt,
s3.txt, and s4s3.txt.
2. The string analysis maps each String parameter iden-
tified in Point 1. to its labels, as discussed in Section 4.2.
For example, in Figure 5, the four String values listed
in Point 1. are mapped to sets of labels {l0, l1}, {l0, l2},
{l0, l3}, and {l0, l3, l4, l5}, respectively.
3. Each of the values in the CFL is used to instantiate a
permission requirement, such as PropertyPermission
"s1.txt", "read" in Figure 5.5

4. An analysis that agglomerates all these permissions in-
discriminately is unsatisfactory since it may lead to PLP
violations. To identify the propagation stacks of each
permission requirement, our analysis computes a back-
ward slice rooted at the parameter-passing statement in
each predecessor (m1) of the security-sensitive entrypoint
(getProperty), and then follows the backward slice as

4Next to each node in Figure 5 is a box showing the relevant code in
the corresponding method.

5If the security-sensitive method takes multiple String parameters, a
permission will be instantiated for each element of the Cartesian product
of the sets of the different parameter values.

7

this overlaps possible stacks; we get what we call stack
slices, represented in Figure 5 with solid, curved edges.
5. Where the slice stops overlapping with any stack (by
coming to an end, or going through a method return or field-
read operation), the string analysis is queried to collect the
set of labels that may participate in the definition of the re-
sulting string. Points of query in Figure 5 are m3,m9,m14
(field reads), m4 (slice end), and m10 (method return).
6. This operation annotates some of the nodes of the stack
slice with sets of labels; for example, m2 → {l0},m4 →
{l2},m3→ {l3},m2→ {l0},m9→ {l1},m10→ {l4, l5}.
7. The sets of labels are then propagated in a backward
dataflow problem through the stack slice, performing set
unions at the merge points. The sets of labels obtained when
the fixed point is reached will be used to distinguish the
possible permission requirements at those entrypoints. For
example, in Figure 5, client entrypoints m3,m7,m12,m14
will be tagged as requiring the following sets of permis-
sions, respectively:
• {PropertyPermission "s3.txt", "read"}
• {PropertyPermission "s2.txt", "read"}
• {PropertyPermission "s1.txt", "read"}
• {PropertyPermission "s4s3.txt", "read",
PropertyPermission "s3.txt", "read"6}

8. Those requirements are then propagated forward in the
stack slice and then backwards in the callgraph, performing
set unions at the entrypoints.
9. Both the backward propagations of Points 7 and 8 above
must stop at privilege-asserting API nodes. A one-step
backward propagation as the one induced by Equation (3)
is then required as discussed in Section 4.1.

We can describe this algorithm more formally:

Definition 4.2 (Stack Slice) A stack slice Σ(v, n) is a
backward slice with respect to a local variable or parame-
ter v and node n that follows only definitions within a given
program stack, stopping at any other kind of definition, such
as a read from the heap or a function return value. For our
purposes, all values in the stack fall into four categories,
and the stack slice is defined as follows in terms of them:
• constant c: Σ(c, n) := {c}
• parameter p: Σ(p, n) := {p}∪⋃

η(x)∈∆−(n,p) Σ(x, n)
• primitive string operation r = f(v1, . . . , vn):

Σ(r, n) := {r} ∪⋃
vi

Σ(vi, n)
• other v: Σ(v, n) := {v}

where function η maps any local variable or pa-
rameter to its defining callgraph node, ∆−(n, p) :=
{η(x) |n →∗ η(x) ∈ E ∧ η(x) → η(p) ∈ E }, and → de-
notes edges in G. We also define τ(v) to return which of
the four categories a given v belongs to, for any v from a
stack slice.

6This is a false positive for m14.

Our notion of permissions pertains to sensitive nodes. A
sensitive node s has two properties: a sensitive value vs,
which holds permissions, and the set of permissions re-
quired, ps. For simplicity, we assume that this set of per-
missions is determined by the set of strings reaching vs.

We would like to define a safe approximation of the
required permissions. To do so, we observe that only
strings actually read onto or computed in a given stack can
be passed up that stack to a sensitive operation. Thus, if we
compute the components of all strings read onto the stack
and all operations on the stack itself, we can filter any string
at the sensitive operation that is composed in part of any
other operation or component. Based on that observation,
we take a stack slice Σ(vs, n) that covers all dataflow
through stacks from n to the sensitive operation in s, and
we compute (1) all the components of all the strings read
into the slice, and (2) the operations on them. We then use
those components to prune the full set of strings at the sen-
sitive operation as determined by the overall string analysis.
Hence, the set of string components needed for the stacks
rooted at n for sensitive value vs is defined by CS(vs, n) :=
{c|∃x ∈ Σ(vs, n) ∧ c ∈ Sc(x) ∧ τ(x) ∈ {constant, other}}.
The components in CS(vs, n) are the only ones that can
appear in strings passed to the sensitive operation. So
we need permissions in the stack rooted at n only for
strings that contain those components; we define this as
P (vs, n) := {s |s ∈ Ss(vs) ∧ (Sc(s) ∩ CS(vs, n)) 6= ∅}.
Given any m ∈ M represented by n ∈ N , the permissions
needed by m at runtime are overapproximated by set
π̃(m) :=

⋃
vs|n→∗η(vs) P (vs, n). The soundness of this

algorithm can be proved with a straightforward induction
on the depth of the stack, based on the correctness of the
stack slice.
Permission Requirements from Nodes in N3,3. Non-
string-parameterized permissions depend on non-String
parameters passed by the client. Since permissions are char-
acterized by string values, those non-String parameters
act as string containers from which the string values are
extracted at run time to form the permissions. For exam-
ple, the call to the FileOutputStream constructor in
the following code snippet is a node in N3,3, and the File
object passed to it acts as a string container.

File f = new File("C:", "log.txt");
FileOutputStream fos = new FileOutputStream(f);

To reconstruct the string in the permission requirement
(which here is FilePermission "C:/log.txt",
"write"), pointer analysis is used to locate the allocation
of the File object, detect its String parameters C: and
log.txt, and compute the String C:/log.txt that ap-
pears in the permission, according to predefined rules. If
no rule is available for a specific string container, the con-
servative top value for the corresponding permission type,

8

typically a wildcard (*), is used. If one of the parameters
is itself a string container, then the process is iterated un-
til all the strings are fully evaluated. Once the strings are
available, the analysis proceeds as in the N3,2 case.

5 Implementation

A3 is based on top of IBM Research’s Watson Libraries
for Analysis (WALA) [27]. A novel contribution of this
paper is the functional modularity of the analysis. A3
uses automatically generated summaries for all the standard
Java libraries. Without such summaries, the analysis was
shown not to scale to large applications. To disambiguate
permission-propagation paths inside a library, A3 builds a
1-CFA context-sensitive library callgraph [8], but this may
be too expensive even for a library. A preanalysis of the
standard Java libraries has shown that their permission re-
quirements are totally functional because the permissions
required by a program when invoking an entrypoint method
depend at most on the receiver and the parameters passed
to it; there are no side effects due to interactions with the
heap or other entrypoint calls. Therefore, partitioning the
library entrypoints into smaller subsets, and repeatedly run-
ning the 1-CFA summary-construction analysis on the call-
graphs generated based on those partitions is sound; no per-
mission requirement will be lost. Empirically, we found that
an effective way to partition the entrypoints of the standard
libraries is by groups of 10 packages.

For client analysis, A3 builds a 0-1-CFA context-
insensitive callgraph [8]. As discussed in Section 4.3, A3
makes heavy use of program slicing. The slicing algorithm
of A3 is built on top of WALA and has the following charac-
teristics: (1) it tracks data dependencies, (2) it safely ignores
control dependencies (which are irrelevant for permissions),
and (3) it is context-insensitive [25].

6 Experimental Results

This section summarizes the experimental results ob-
tained by executing A3 on five applications from Source-
Forge [24], listed in Table 2. The results are compared with
those obtained with SWORD4J [26] (the SWORD4J algo-
rithm is discussed in Section 7). All the public methods
of those five applications were considered as entrypoints
for the analyses. The results were obtained on a Lenovo
T61P ThinkPad with an Intel T7700 Core Duo 2.40 GHz
processor, 3 GB of Random Access Memory (RAM), and
Microsoft Windows XP SP2 operating system. Both ana-
lyzers were run on a Sun Microsystems Java Standard Edi-
tion (SE) V1.4.2 05 Runtime Environment.

For each application, Table 2 compares the number of
nodes in the generated callgraphs and the times taken to

perform the two analyses, and classifies the permissions de-
tected. Among these permissions, we identify the false pos-
itives, and distinguish those due to Wrong Method Identi-
fication (WMI) from those due to Wrong Permission Iden-
tification (WPI). A WMI comes from the analysis conser-
vatively positioning the method on a stack requiring per-
missions when that method is not security-sensitive at run
time. A WPI comes from the analysis conservatively identi-
fying an unnecessary permission class on a particular stack.
Once a false positive is computed for a method, the analysis
automatically propagates it to all the predecessors of that
method. However, we report each false positive only once
at its first occurrence in the application code.

For A3, we pick out those permissions that are instan-
tiated starting from the library entrypoints, based on the
specific parameters passed by the client code. Comput-
ing the values of these permissions requires string analy-
sis. Thus, among them, we do not count those that de-
pend on constant strings, which both A3 and SWORD4J
can detect. Since SWORD4J does not model string oper-
ations, each permission instantiated by A3 is overapproxi-
mated by SWORD4J with *. For example, JPTAPI con-
structs a FileReader object with a File parameter in-
stantiated with String value C:/test.txt. The cor-
responding FileReader constructor node is in N3,3, and
the File parameter is a string container. Following the
algorithm described in Section 4.3, A3 identifies the pre-
cise FilePermission "C:/test.txt", "read"
requirement, whereas SWORD4J reports a conservative
FilePermission "*", "read"—an approximation
that can easily lead to PLP violations.

By comparing the number of non-instantiated permis-
sions detected by the two analyzers, A3 has a false-positive
rate of only 14%, as opposed to 61% of SWORD4J—a
precision improvement of 77%. For the instantiated per-
missions, A3 identifies on average 21% false positives due
to the conservativeness of the analysis. By our defini-
tion, these false positives are not WPIs because the per-
mission class is correctly identified. Despite these false
positives, the instantiated permissions reported by A3 are
more precise and useful in 53% of the cases than the
corresponding results reported by SWORD4J. For exam-
ple, assume that A3 overapproximates the filename in a
FilePermission with set of strings {f1,f2}, in which
f1 is an actual requirement and f2 a false positive, against
a * overapproximation by SWORD4J. It is easier for a
system administrator to extract a minimal policy from
{f1,f2} than from *. Furthermore, even if the unneces-
sary f2 permission were mistakenly granted, that would be
less of a security exposure than granting the * permission.

Typically, the false negatives of a static analysis for Java
arise from not modeling native methods. However, native
methods are not involved in authorization requirements be-

9

Application SWORD4J A3
Nodes Time Permissions Nodes Time Permissions

sec. WMI WPI Detected Inst. sec. WMI WPI Detected Inst.
JPDStore 28524 117 0 14 18 - 482 8 0 1 13 8
JPTApi 26871 109 0 13 14 - 175 5 0 0 2 2
Java Integrity 27427 70 1 1 14 - 257 10 0 1 10 7
JavaCup 32893 128 0 1 5 - 636 13 0 0 7 5
Ganymede 35820 93 0 16 22 - 1167 19 0 4 11 4

Table 2. Experimental Results of A3 Analysis

cause they are executed outside of the Java Virtual Machine
(JVM), so we expect neither A3 nor SWORD4J to exhibit
any false negatives due to native methods.7 However, for
scalability reasons, SWORD4J unsoundly excludes from
the analysis scope several packages, such as java.awt
and javax.swing. No permissions required by those
packages and their callers will be reported by SWORD4J.
Consequently, SWORD4J may have false negatives. We de-
tected four SWORD4J false negatives on JavaCup. Con-
versely, A3 does not exclude any libraries; it soundly mod-
els the execution of any application and we did not detect
any false negatives.

Besides the precision gains, our analysis offers benefits
in terms of running time and scalability, due to the mod-
ularity and context-insensitivity of A3. In terms of run-
ning time (excluding the time required to compute the sum-
maries, which are then used by all the analyses) A3 outper-
forms SWORD4J by an average factor of 12. By using the
callgraph size to measure the scalability of the analysis, we
notice that the callgraphs generated by A3 are smaller than
those generated by SWORD4J by an average factor of 80.

7 Related Work

The work related to this paper covers several areas: se-
curity analysis, modular static analysis, and string analysis.

In the area of security analysis, Wallach and Felten
present a formalization of stack inspection that examines
authorization based on the principals currently active in a
thread stack at run time (security state) [28]. An optimiza-
tion technique, called Security-Passing Style (SPS), encodes
the security state of an application while the application is
executing. Each method is modified to pass a security token
as part of each invocation. The token represents an encoding
of the security state at each stack frame, as well as the re-
sult of any authorization test encountered. Pottier et al. [19]
extend and formalize the SPS via type theory using a λ-
calculus, but do not handle incomplete programs. Jensen et
al. [11] focus on proving that code is secure with respect to
a global security policy. Their model employs operational

7The only native methods that are important in authorization are
doPrivileged and Thread.start (discussed in Section 3), and
these methods are synthetically modeled by A3.

semantics, using a two-level temporal logic, and shows how
to detect redundant authorization tests. They assume that
the whole program is available for analysis. Bartoletti et
al. [1] are interested in optimizing performance of run-time
authorization tests by eliminating redundant tests and re-
locating others. The reported results apply operational se-
mantics to model the run-time stack. Rather than analyzing
security policies as embodied by existing code, Erlingsson
and Schneider [4] describe a system that inlines reference
monitors into the code to enforce specific security policies.
The objective is to define a security policy and then inject
authorization points into the code to reduce redundant tests.
Conversely, this paper studies authorization from the per-
spective of an existing system containing authorization test
points. Koved et al. [13] and Pistoia et al. [18] automate
static security analysis for Java authorization and privilege
assertion, respectively, in the SWORD4J tool [26]. Stack
inspection is modeled as a backward dataflow problem on
a context-sensitive callgraph, which often does not effec-
tively disambiguate permission flows. Since an expensive
context-sensitivity is applied indiscriminately, scalability is
affected too. Conversely, A3 builds a relatively inexpensive
0-1-CFA callgraph [8, 23], and adds precision only where
needed using more expensive analyses. Also, A3 summa-
rizes libraries and uses string analysis to enhance precision.
Pistoia et al. [17] identify flaws in stack inspection, which
arise when code no longer on the stack is still capable of
influencing a security-sensitive operation.

The modular analyses most closely related to our work
are those which compute dataflow summaries for library
methods. Rountev et al. describe a general approach for
static analysis of program fragments [21]. The interactions
of a program fragment with the rest of the program are mod-
eled by summary values and functions. This formal analysis
model is later instantiated in a points-to and side-effect anal-
ysis for C libraries and their clients [20]. If we consider the
set of Java libraries in a benchmark to be the program frag-
ment, then our modular permissions analysis of the libraries
is a specific simple instance of this analysis model. Note
that the permission dataflow solution for the Java Runtime is
independent of the library client. Flanagan and Felleisen [5]
present a general approach for componential set-based anal-
ysis of functional languages. The static analysis represents

10

program properties by sets of constraints (set-based analy-
sis). The main idea is to derive a separate simplified con-
straint system on each module for the dataflow problem be-
ing solved. These constraints are later combined to obtain
the solution for the entire program. In some sense, the in-
dividual constraint files are analogous to the library sum-
maries in our algorithm. Meunier et al. apply the ideas in
the previous paper to PLT Scheme, in which programs con-
sist of modules with contracts, that describe function inputs
and outputs using predicates [14]. Zhang and Ryder de-
scribe a modular reachability analysis that summarizes the
possible callbacks from a library associated with each of its
public entries [31].

A Java String Analyzer (JSA) was first introduced by
Christensen et al. [2, 12]: possible strings arising at run
time are approximated by a regular language for statically
checking errors in dynamically generated Structured Query
Language (SQL) queries. Wassermann and Su [29] extend
Minamide’s algorithm [15] (discussed in Section 4.2) to
syntactically isolate tainted substrings from untainted sub-
strings. They label non-terminals in a CFG with annotations
reflecting taintedness and untaintedness. Fang Yu et al. [30]
propose a string-analysis algorithm for PHP that is based
on finite automata. Their algorithm computes an automaton
to model every string value in the program, whereas ours
builds a CFG.

8 Conclusion

This paper has presented a novel modular static analy-
sis for identification of permission requirements for stack-
inspection systems. Furthermore, since strings are essen-
tial when defining permissions, string analysis is used to
enhance precision, and a combination of string analysis
and program slicing allows for disambiguating permission-
propagation paths. The analysis has been implemented in a
tool for automatic identification of Java permission require-
ments called A3. The effectiveness of A3 on public bench-
marks shows outstanding improvement over previous work.
In the future, we would like to extend this work to model
more complex authorization systems, such as Information-
Based Access Control (IBAC) [17].

References

[1] M. Bartoletti, P. Degano, and G. L. Ferrari. Static Analysis
for Stack Inspection. In ConCoord 2001.

[2] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Pre-
cise Analysis of String Expressions. In SAS 2003.

[3] Equinox Project, http://www.eclipse.org.
[4] U. Erlingsson and F. B. Schneider. IRM Enforcement of

Java Stack Inspection. In S&P 2000.
[5] C. Flanagan and M. Felleisen. Componential Set-based

Analysis. TOPLAS, 21(2), 1999.

[6] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers.
Going Beyond the Sandbox: An Overview of the New Secu-
rity Architecture in the Java Development Kit 1.2. In USITS
1997.

[7] G. Grätzer. General Lattice Theory. Birkhäuser, 2nd ed.,
2003.

[8] D. Grove and C. Chambers. A Framework for Call Graph
Construction Algorithms. TOPLAS, 23(6), 2001.

[9] N. Hardy. The Confused Deputy (Or Why Capabilities
Might Have Been Invented). OSR, 22(4), 1988.

[10] S. Horwitz, T. W. Reps, and D. Binkley. Interprocedural
Slicing Using Dependence Graphs. In PLDI 1988.

[11] T. P. Jensen, D. L. Métayer, and T. Thorn. Verification of
Control Flow Based Security Properties. In S&P 1999.

[12] Java String Analyzer, http://www.brics.dk/JSA/.
[13] L. Koved, M. Pistoia, and A. Kershenbaum. Access Rights

Analysis for Java. In OOPSLA 2002.
[14] P. Meunier, R. B. Findler, and M. Felleisen. Modular Set-

based Analysis from Contracts. In POPL 2006.
[15] Y. Minamide. Static Approximation of Dynamically Gener-

ated Web Pages. In WWW 2005.
[16] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing

Robust Declassification. In CSFW 2004.
[17] M. Pistoia, A. Banerjee, and D. A. Naumann. Beyond Stack

Inspection: A Unified Access Control and Information Flow
Security Model. In S&P 2007.

[18] M. Pistoia, R. J. Flynn, L. Koved, and V. C. Sreedhar. In-
terprocedural Analysis for Privileged Code Placement and
Tainted Variable Detection. In ECOOP 2005.

[19] F. Pottier, C. Skalka, and S. F. Smith. A Systematic Ap-
proach to Static Access Control. In ESOP 2001.

[20] A. Rountev and B. G. Ryder. Points-to analysis and side-
effect analysis for programs built with precompiled library
modules. In CC 2001.

[21] A. Rountev, B. G. Ryder, and W. Landi. Data-Flow Analysis
of Program Fragments. In FSE 1999.

[22] J. H. Saltzer and M. D. Schroeder. The Protection of Infor-
mation in Computer Systems. In Proceedings of the IEEE,
63, 1975.

[23] O. Shivers. Control Flow Analysis in Scheme. In PLDI
1998.

[24] SourceForge.net, http://www.sourceforge.net.
[25] M. Sridharan, S. J. Fink, and R. Bodı́k. Thin Slicing. In

PLDI 2007.
[26] IBM Java Security Workbench Development for Java

(SWORD4J), http://www.alphaworks.ibm.com/
tech/sword4j.

[27] T. J. Watson Libraries for Analysis (WALA), http://
wala.sourceforge.net.

[28] D. S. Wallach and E. W. Felten. Understanding Java Stack
Inspection. In S&P 1998.

[29] G. Wassermann and Z. Su. Sound and Precise Analysis
of Web Applications for Injection Vulnerabilities. In PLDI
2007.

[30] F. Yu, T. Bultan, M. Cova, and O. H. Ibarra. Symbolic String
Verification: An Automata-Based Approach. In SPIN 2008.

[31] W. Zhang and B. G. Ryder. Automatic Construction of Ac-
curate Application Call Graph with Library Call Abstrac-
tion. Journal of Software Maintenance and Evolution, 19(4),
2007.

11

