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ABSTRACT
We present a new algorithm for eliminating null pointer checks
from programs written in Java�. Our new algorithm is split into
two phases. In the first phase, it moves null checks backward, and
it is iterated for a few times with other optimizations to eliminate
redundant null checks and maximize the effectiveness of other
optimizations. In the second phase, it moves null checks forward
and converts many null checks to hardware traps in order to
minimize the execution cost of the remaining null checks. As a
result, it eliminates many null checks effectively and exploits the
maximum use of hardware traps. This algorithm has been imple-
mented in the IBM cross-platform Java Just-in-Time (JIT) com-
piler. Our experimental results show that our approach improves
performance by up to 71% for jBYTEmark and up to 10% for
SPECjvm98 over the previously known best algorithm. They also
show that it increases JIT compilation time by only 2.3%. Alt-
hough we implemented our algorithm for Java, it is also applica-
ble for other languages requiring null checking.

1. INTRODUCTION
The Java language [4] has a powerful exception-handling mecha-
nism, which is useful for error handling, program control, and
safety preservation. However, because of the support for precise
exceptions in Java, any instruction potentially throwing an excep-
tion inhibits a compiler's ability to optimize the program. In gen-
eral, a program written in Java tends to have many such instruc-
tions, which become barriers to code motion and thus signifi-
cantly reduce the scope of optimizations.
For example, null pointer checks are required for every instance
variable access, method call, and array access. In fact, these op-
erations are quite common in typical Java programs. In practice,
the implementation of null checking can take advantage of hard-
ware traps [2, 13, 15]. For typical operating systems, accessing
the zero address (page) will throw an exception to the application,
and thus no explicit instruction has to be generated to check the
null pointer.
Even with such an implementation, null check elimination is still
important for two reasons. The first is that null checks become
barriers to optimizations, even with the hardware trap support,
and thus significantly reduce the scope of optimizations. The sec-

ond is that all the null checks cannot necessarily rely on the hard-
ware support mechanism.
For example, some operating systems do not generate an interrupt
when the offset of the address is larger than a certain size. As
another example, AIX does not generate an interrupt for reading
from the first page at the address zero. A more subtle example is
that when devirtualization [1, 3, 6, 7, 13] is applied, an explicit
null check instruction must be generated for an object access to
the method table, since this object access will be eliminated by
transforming the dynamic (virtual) call to a static (non-virtual)
call or inlining its method body. Here, the execution cost of the
generated null check instruction may not be negligible since the
inlined method body can often be just a few instructions.
Previous null check elimination techniques, such as the one by
forward data-flow analysis [14], have two drawbacks. The first is
that they cannot remove loop invariant null checks from the loop
and thus significantly limit the effectiveness of other optimiza-
tions. The second is that they do not exploit the maximum use of
the hardware trap to minimize the cost of null checks.
Our null check elimination algorithm solves these two issues us-
ing a two-phase approach. In both phases, a partial redundancy
elimination algorithm (PRE) [8, 9, 11] is enhanced to reduce the
number of null checks. For each instruction that can potentially
throw a null pointer exception, we split it into a null check and the
original operation to allow us to move the null check separately
from its original location.
In the first phase, as an architecture independent optimization,
null checks are moved backward in the control flow graph to the
earliest points they can reach without violating the precise excep-
tion support in Java. That is, our optimization prevents null
checks from moving across side-effecting instructions, which can
potentially throw exceptions other than a null pointer exception or
perform memory write operations. This phase is iterated for a few
times with other optimizations to eliminate redundant null checks
and maximize the effectiveness of other optimizations.
In the second phase, as an architecture dependent optimization,
null checks are moved forward in the control flow graph to the
latest points they can reach without violating the precise exception
support in Java. Then they are converted to hardware traps wher-
ever possible in order to minimize the execution cost of null
checking. Finally, those remaining null checks, which are not
converted to hardware traps, are eliminated if they are redundant.
As a result, our algorithm eliminates many null checks effectively
and exploits the maximum use of hardware traps. To the best of
our knowledge, this is the first algorithm to optimize null check-
ing in two phases and to provide such powerful null check elimi-
nation.
We implemented our new algorithm in the IBM cross-platform
Java Just-in-Time (JIT) compiler. Our JIT compiler supports Intel
IA32, PowerPC, and S/390, and our algorithm is applicable for all
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these architectures. We conducted experiments by running
jBYTEmark and SPECjvm98 benchmark programs on both a
Pentium III 600 MHz machine (with Windows NT 4.0) and a
PowerPC 604e 332 MHz machine (with AIX 4.3.3). Our prelimi-
nary performance results show significant improvements over
previous approaches.

1.1 Our Contributions
� A New Null Check Elimination Algorithm: Our two-phase

null check optimization algorithm can maximize the
effectiveness of other compiler optimizations unlike
previously known algorithms, and yet it can take full
advantage of the hardware trap mechanism. Although we
implemented our algorithm for Java, it is also applicable for
other languages requiring null checking.

� Empirical Evaluation: Our experimental results show that
our approach improves performance by up to 71% for
jBYTEmark and up to 10% for SPECjvm98 over the previ-
ously known best algorithm. They also shows that our ap-
proach increases JIT compilation time by only 2.3%.

The rest of the paper is organized as follows. Section 2 summa-
rizes previous work. Section 3 gives an overview of our approach.
Section 4 presents the details of our algorithm. Section 5 shows
the performance results obtained in our experiments. Section 6
offers some concluding remarks.

2. PREVIOUS WORK
2.1 Implementation of Null Check
Some JIT compilers, such as the Jalapeño Dynamic Optimizing
Compiler [2] from the IBM T.J. Watson Research Center, LaTTe
JIT compiler [15], and our JIT compiler [6, 13], utilize hardware
traps and the associated OS support functions for null check im-
plementation. Jalapeño's object layout is designed in order to trap
in hardware for memory reads and writes, although the target
architecture (AIX on PowerPC) can trap only for writes to memo-
ry in the first page. Jalapeño accesses the object�s slots (including
object headers) using a negative offset from an object reference
(pointer). The designers rely on the fact that reading from the last
page triggers this hardware trap. LaTTe (whose target architecture
is SPARC) relies on all memory reads and writes causing hard-
ware traps. They assume that all null checks cause hardware traps.
However, such an assumption can not be used in applying some
code transformations, such as method inlining by devirtualization.
This is because the object�s slots are not always accessed in the
invoked method. Figure 1 shows such an example. If the null
check instruction of �a� in Figure 1(2) is not generated (by relying
on the hardware trap) and �i� has a negative value, no slot of �a� is
accessed. In this case, if �a� in (2) is a null pointer, no exception
occurs and the program continues to be executed. This violates

the Java language specification. In this case, null checking code
must be generated explicitly. Such null checks with method
inlining appear frequently in typical Java programs, and thus their
overhead is not negligible.

2.2 Elimination by Forward Analysis
Previous JIT compilers, such as the Jalapeño compiler [14] and
the previous version of our JIT compiler [6, 13], eliminate null
pointer checks by using forward data-flow analysis. This algo-
rithm eliminates redundant null checks that appear again in the
control flow graph. However, there are two drawbacks to this
approach:
� Forward data-flow analysis cannot move loop invariant null

checks out of the loop. For example, when the first object ac-
cess lies inside of the loop, its null check must remain in the
loop body. Such a null check becomes a barrier and thus sig-
nificantly limits the effectiveness of other optimizations.

� This elimination algorithm does not exploit the maximum
use of the hardware trap to minimize the cost of null checks.

3. OVERVIEW OF OUR APPROACH
This section describes how we solve the issues described in Sec-
tion 2. Section 3.1 describes the high-level flow diagram of our
null check optimization. Section 3.2 describes an overview of the
architecture independent optimization phase, which solves the
first issue in Section 2.2. Section 3.3 gives an overview of the
architecture dependent optimization phase, which solves the issue
in Section 2.1 and the second issue in Section 2.2.

3.1 High-level View of Our Algorithm
We begin by explaining the high-level flow diagram of our null
check optimization using Figure 2. Our algorithm is split into two
phases; the first is an architecture independent optimization (1),
and the second is an architecture dependent optimization (5). The
architecture independent optimization (1) moves null checks
backward and eliminates redundant null checks. This optimization
increases opportunities for both array bound check optimization
(2) and scalar replacement (3), and these optimizations also in-
crease opportunities for the null check optimization in phase 1 (1).
Therefore a few iterations (4) can achieve more optimizations. In
previous approaches, scalar replacement (3) is iterated in itself. In
our approach, however, phase 1 (1) is iterated with other optimi-
zations ((2) and (3)), providing a powerful optimization effect.

Null check optimization
(architecure independent)

Null check optimization
(architecture dependent)

Scalar replacement

(1)

(2)(4)

(5)

Array bound check optimization

(3)

Phase 1

Phase 2

Figure 2. High-level flow diagram of null check optimization

1) Before inlining

int func(int s1) {
   if (s1 < 0){
      return s1;
   } else {
      return this.field1;
   }
}

result = a.func( i );

2) After inlining

nullcheck a; // check instruction
// must be generated

if (i < 0){
   result = i;
} else {
   result = a.field1;
}

(Italic denotes the actual exception sites)
Figure 1.  Nullcheck with method inlining
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The architecture dependent optimization (5) moves null checks
forward and minimizes the execution cost of null checking by
utilizing the hardware trap.

3.2 Architecture Independent Optimization
We enhance partial redundancy elimination (PRE) [8, 9, 11] to
eliminate null checks and move them out of loops. Figure 3
shows an example of partially redundant null checks. In Figure 3
(1), the null check located at the merge point cannot be eliminated
without code motion, because the right path does not include any
null check. Therefore, a null check will be executed twice along
the left path. The architecture independent optimization first com-
putes the movable areas of null checks backward by taking into
account side-effecting instructions and finds insertion points,
which are at the end of basic blocks in our algorithm (2). It next
computes the non-null areas of the target variables assuming null
checks are inserted at the insertion points, and then eliminates
redundant null checks within the non-null areas (3). Finally, it
inserts null checks at the insertion points (4). As a result, a null
check will be executed only once along each path in this example.
Figure 4 shows an example where the architecture independent
null check optimization and scalar replacement assist each other.

The first "nullcheck a" in (2) cannot be eliminated from the loop
by the previous approach [14] using forward data-flow analysis,
because the outer path does not include any null check. However,
our approach moves "nullcheck a" out of the loop in (3). The re-
sult of (4) cannot be achieved without the null check optimization
in (3), since a null check becomes a barrier to moving the related
memory accesses backward. The result of (5) also cannot be
achieved without the scalar replacement in (4), since a write to a
variable becomes a barrier to moving its null check. Therefore
combining these optimizations in this manner is particularly ef-
fective for loop invariant code motion.

3.3 Architecture Dependent Optimization
This phase converts as many null checks as possible to those
utilizing hardware traps, while we generate an explicit null check
instruction for each of the remaining null checks. A distinguished
feature of our approach is to use a PRE algorithm in the opposite
direction to maximize the number of null checks detected by
hardware traps.

3.3.1 Implicit Null Check and Explicit Null Check
We first explain our implementation of the null checks. We define
two kinds of null checks:
� Implicit Null Check, which does not need to generate an

actual null check instruction, but relies on the hardware trap.
� Explicit Null Check, which needs to generate an actual null

check instruction.
To implement null checking, we use implicit null checks wherever
possible. However, in some cases we have to use explicit null
checks in order to meet the Java language specification. For ex-
ample, when an instruction requiring null checking does not cause
a hardware trap, its null check must be an explicit null check.
For Figure 5 (1), as the offset of the memory access for the
BigOffset is not within the (protected) trap area, its null check
must be an explicit null check. Fortunately, this case is rare in
Java. For any array access, the array length is required for bounds
checking and its offset is typically zero from the top of the object,
though this depends on the implementation of the object layout.
For a field access, its offset is usually within the trap area. In ex-
treme cases the offset can be larger than the trap area since Java
Virtual Machine Specification [10] states that it can be as large as
512 KB (which is 65534 * 8 = 524272). Our JIT compiler for
Windows has implemented both explicit and implicit null checks.
For Figure 5 (2), if the operating system detects hardware traps

Nullcheck a
t += a.field1

1) Before optimization

Nullcheck a
t += a.field2

a = func( )

Nullcheck a
t += a.field1

4) Optimization result

t += a.field2

a = func( )
Nullcheck a

Nullcheck a
t += a.field1

2) Compute insertion
     points of null checks

Nullcheck a
t += a.field2

a = func( )

Nullcheck a
t += a.field1

3) Eliminate null checks

Nullcheck a
t += a.field2

a = func( )

eliminated Insert
Nullcheck a
at insertion

point

Non-null
area of

'a'

Movable area of
Nullcheck a

backward
(    :Insertion Points)

Figure 3. Architecture independent optimization

1) Original program

do {
  i += a.b.c + a.b.d;
} while(some cond);

2) Intermediate
    representation

do {
    nullcheck a
    T1 = a.b
    nullcheck T1
    T2 = T1.c

    nullcheck a
    T3 = a.b
    nullcheck T3
    T4 = T3.d

    i += T2 + T4
}while(some cond)

3) After null check
    optimization

nullcheck a
do {
    T1 = a.b
    nullcheck T1
    T2 = T1.c

    T3 = a.b
    nullcheck T3
    T4 = T3.d

    i += T2 + T4
} while(some cond)

4) After scalar
    replacement

nullcheck a
Tb = a.b
do {
    nullcheck Tb
    T2 = Tb.c

    nullcheck Tb
    T4 = Tb.d

    i += T2 + T4
} while(some cond)

5) After null check
    optimization

nullcheck a
Tb = a.b
nullcheck Tb
do {
    T2 = Tb.c

    T4 = Tb.d

    i += T2 + T4
} while(some cond)

6) After scalar
    replacement

nullcheck a
Tb = a.b
nullcheck Tb
Tc = Tb.c
Td = Tb.d
do {

    i += Tc + Td
} while(some cond)

(assumption : �a� and �i� are local variables)

Figure 4. Architecture independent null check optimization and scalar replacement
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only for memory writes to the (protected) trap area as in the case
of AIX, the null check for a memory read must be an explicit null
check. However, such an operating system has an advantage in
that the compiler can apply speculation to memory reads. If a
memory read with a null pointer is guaranteed not to cause a
hardware trap, it can be moved across its null check speculatively.
Furthermore, it can be moved out of the loop as a loop invariant
instruction.
Figure 6 shows an example of such a case. In (2), "nullcheck b"
cannot be moved across the memory write, "a.I = T2." However, if
the operating system does not generate a trap for the memory read,
"arraylength b" can be moved up across "nullcheck b." Finally
"arraylength b" can be moved out of the loop as shown in (3).
Our JIT compiler for AIX could use implicit null checks for the
memory writes, but we have not implemented it yet. At present,
we skip the architecture dependent optimization for AIX. In the
code generation phase, we generate a conditional trap instruction
(which requires only one cycle if it is not taken) for each explicit
nullcheck corresponding to a memory read or a write. Instead, we
apply speculation for memory reads in the scalar replacement
phase. Our JIT compiler for Windows cannot use speculation
because a memory read causes a hardware trap on this platform.

3.3.2 Architecture Dependent Optimization
We explain this algorithm by using Figure 7, which is essentially
the same as the method inlining example in Figure 1(2). A null
check in Figure 7(1) must be implemented as an explicit null
check even if the previous approach in Section 2.1 is applied,
because no slot of object �a� is accessed along the right-hand path.
We use the PRE algorithm in the opposite direction in order to
minimize the execution cost of null checks by utilizing hardware
traps.
At first, the architecture dependent optimization treats all null
checks as explicit null checks in the input code, and it computes
the movable areas of null checks in a forward direction by taking
into account side-effecting instructions and finds insertion points
(1). Second, it inserts either an explicit null check or an implicit
null check depending on the next instruction following each in-
sertion point. If the next instruction is known to cause a hardware
trap by accessing an slot of object referred by the null check, then
an implicit null check (which does not generate actual code) is
inserted (2). The instruction following an implicit null check
should be the actual exception site, and therefore we must mark
such an instruction as an exception site. This is to prevent in-
struction-level optimizations (such as code scheduling) from ap-
plying code motion illegally beyond the exception site in the later
phase. Third, it computes the substitutable areas of null checks to
eliminate them wherever possible (3). As a result, we can reduce
the execution cost along the left path (4), and thus we can opti-
mize the explicit null checks generated by method inlining.
As another example, if this optimization is applied to the result of
Figure 4 (6), all the null checks are replaced by implicit null
checks.

4. OUTLINE OF OUR ALGORITHM
This section describes the outline of our algorithm for null check
optimization. Section 4.1 describes two transformations for the
architecture independent optimization. Section 4.2 describes two
transformations for the architecture dependent optimization.

4.1 Architecture Independent Optimization
4.1.1 Algorithm for Null Check Insertion
The goal of this stage is to compute the earliest points null checks

Hardware Trap
Area only
for Write

NULL
(2) OS detects trap only for memory write

(program)

explicit_nullcheck a;
i = a.field1;
implicit_nullcheck b;
b.field2 = i;

Hardware Trap
Area for

Read and Write

NULL
(1) Offset is not within the trap area

(program)

implicit_nullcheck a;
i = a.SmallOffset;
explicit_nullcheck b;
b.BigOffset = i;

SmallOffset

BigOffset

Figure 5. Examples where an explicit null check is required

(assumption : �a�, �b�, and �total� are local variables)
Figure 6.  An example of speculation

t += a.field1

1) Before optimization

Nullcheck a

4) After optimization

implicit_nullcheck a
t += a.field1

2) Insert null checks

explicit_nullcheck a

Nullcheck a

3) Eliminate null checks

implicit_nullcheck a
t += a.field1 explicit_nullcheck a

Nullcheck a
Substitutable area
by the following
null checks of

'a'eliminated

implicit_nullcheck a
t += a.field1 explicit_nullcheck a

(Italic denotes the actual exception cites)

Movable area of
Nullcheck a

forward
(     :Insertion Points)

Figure 7.  Architecture dependent optimization

3) Optimization
    result
explicit_nullcheck a
Ti = a.I
Tbl = arraylength b
do {
   T1 = Ti
   Ti = Ti + 1
   a.I = Ti

   explicit_nullcheck b

   boundcheck T1, Tbl
   T4 = b[T1]
   total += T4
} while(some cond)

2) Intermediate
    representation

do {
   nullcheck a
   T1 = a.I
   T2 = T1 + 1
   nullcheck a
   a.I = T2 // barrier

// of null check
   nullcheck b
   T3 = arraylength b
   boundcheck T1, T3
   T4 = b[T1]
   total += T4
} while(some cond)

1) Original program

do {
   total += b[a.I++];
} while(some cond);
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can reach when they are moved backward in the control flow
graph. First, we compute the Out_bwd(n), which is the set of null
checks that can be moved up to the exit point of basic block n
from succeeding basic blocks, by solving the following backward
data-flow equations:

Out_bwd(n) =     ∩    ( In_bwd(m) � Edge_try(m, n) )
           m  = Succ(n)

In_bwd(n) = (Out_bwd(n) - Kill_bwd(n))  ∪ Gen_bwd(n)
Here, Gen_bwd(n), Kill_bwd(n), and Edge_try(m, n) are defined
as follows:
Gen_bwd(n) : The set of null checks that are located in basic

block n and can be moved up to the entry point of basic block
n.

Kill_bwd(n) : The set of null checks that cannot be moved up
beyond basic block n in the backward direction because one of
the following conditions holds:
� There is an instruction that overwrites a variable targeted

by the null check.
� There is a side-effecting instruction, which can potentially

throw an exception other than a null pointer exception or
perform a memory write (including a local variable write
in a try region).

Edge_try(m, n) : The set of null checks that cannot be moved on
the edge from basic block m to basic block n, because basic
block m and basic block n are not in the same try region.

Finally, Earliest(n) is computed by the following equation:
Earliest(n) : The set of null checks that can reach the exit of the

basic block n but cannot beyond basic block n when they are
moved backward in the control flow graph.

    __________
Earliest(n) = (    ∪     Out_bwd(m) )  ∩ Out_bwd(n)
                      m  = Pred(n)

We call Earliest(n) as the insertion points for basic block n, since
they are the set of null checks which will be inserted at the exit of
basic block n. They are not yet inserted at this time, because some
of them might be eliminated by the following optimization phase
described in Section 4.1.2.

4.1.2 Algorithm for Null Check Elimination
The goal of this stage is to eliminate null checks that are known to
be non-null. First, we compute the In_fwd(n) by solving the fol-
lowing forward data-flow equations:
In_fwd(n), Out_fwd(n) : The set of null checks that are known to

be non-null at the entry/exit point of basic block n.

In_fwd(n) =     ∩   (Out_fwd(m)∪Earliest(m)∪Edge(m, n) )
       m  = Pred(n)

Out_fwd(n) = (In_fwd(n) - Kill_fwd(n))  ∪ Gen_fwd(n)
Here, Gen_fwd(n), Kill_fwd(n), and Edge(m, n) are defined as
follows:
Gen_fwd(n) : The set of null checks that are known to be non-null

at the exit of basic block n, because there is a null check to the
same target variable, or there is a new instruction that creates a
new object pointed by the same target variable.

Kill_fwd(n) : The set of null checks whose target variables are
overwritten in basic block n.

Edge(m, n) : The set of null checks that are on the edge from basic
block m to basic block n and that are known to be non-null be-
cause one of the following conditions holds:
� There is an instruction such as ifnull, ifnonnull, or in-

stanceof-if<cond>, which tells if the target variable is null
or not.

� Basic block m is the entry of  an instance method and ba-
sic block n is its first basic block, in which the target vari-
able points to the �this� object.

Now we are ready to eliminate null checks from each basic block.
At any point of basic block n, the set of null checks that are
known to be non-null can be computed from In_fwd(n). For any
null check C in basic block n, C is eliminated if it is part of the
computed set at the point immediately preceding C and thus it is
known to be non-null.
Next, we eliminate unnecessary null checks from Earliest(n) by
computing the following equation, and insert those null checks,
which appear in the computed Earliest(n), at the exit of basic
block n.
Earliest(n) = Earliest(n) - Out_fwd(n)

4.2 Architecture Dependent Optimization
4.2.1 Algorithm for Null Check Insertion
The goal of this stage is to compute the latest points null checks
can reach when they are moved forward in the control flow graph.
First, we compute the In_fwd(n), which is the set of null checks
that can be moved down to the entry point of basic block n from
preceding basic blocks, by solving the following forward data-
flow equations:

In_fwd(n) =    ∩    ( Out_fwd(m) � Edge_try(m, n) )
        m  = Pred(n)

Out_fwd(n) = (In_fwd(n) - Kill(n)) ∪ Gen_fwd(n)
Here, Gen_fwd(n) and Kill(n) are defined as follows:
Gen_fwd(n) : The set of null checks that are located in basic block

n and can be moved down to the exit point of basic block n.
Kill(n) : The set of null checks that cannot be moved down

beyond the basic block n in the forward direction because one
of the following conditions holds:
� There is an instruction that overwrites a variable targeted

by the null check.
� There is an instruction that accesses a slot of the object

referred by the null check and causes the hardware trap if
its target variable is a null pointer.

� There is a side-effecting instruction, which can potentially
throw an exception other than a null pointer exception or
perform a memory write (including a local variable write
in a try region).

Finally, Latest(n) is computed by the following equation:
Latest(n) : The set of null checks that can reach the entry of the

basic block n but cannot beyond basic block n when they are
moved forward in the control flow graph.

                                _________
Latest(n) = (    ∪     In_fwd(m) )  ∩  In_fwd(n)
                    m  = Succ(n)

The insertion points inside basic block n are determined from
Latest(n) by means of the following algorithm.
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Inner = Latest(n)
for (each I from the first to the last instruction in basic block n) {
    if (I is a null check ) {
         C = null check by instruction I;
         Inner = Inner ∪ C;
    } else {
        if (I accesses object's slots &&
             I will cause a hardware trap if object reference is null){
            C = null check for instruction I;
            if (C ∈ Inner) {
                 Insert implicit null check for C  before I; // this step is optional.
                 Mark I as exception site;
                 Inner = Inner - C;
            }
        }
        if (I might cause other kinds of exceptions ||
             I might write to memory ||
             (I writes to local variable && basic block n is in a try region)) {
            for (each C ∈ Inner) {
                 Insert explicit null check for C  before I;
            }
            Inner = φ;
        } else if (I overwrites a local variable that has object) {
            C = null check of the local variable;
            if (C ∈ Inner) {
                Insert explicit null check for C  before I;
                Inner = Inner - C;
            }
        }
    }
}
for (each C ∈ Inner) {
     Insert explicit null check for C at the exit of basic block n;
}

4.2.2 Algorithm for Explicit Null Check Elimination
The goal of this stage is to eliminate explicit null checks that are
known to be substitutable. That is, they are redundant because
they can be checked later in the control graph. First, we compute
the Out_bwd(n), which is the set of null checks that are known to
be substitutable at the exit point of basic block n, by solving the
following backward data-flow equations:

Out_bwd(n) =    ∩     (In_bwd(m) � Edge_try(m, n) )
                      m  = Succ(n)

In_bwd(n) = (Out_bwd(n) - Kill(n)) ∪ Gen_bwd(n)
Here, Gen_bwd(n) and Kill(n) are defined as follows:
Gen_bwd(n): The set of null checks that are known to be substi-

tutable at the entry point of basic block n, because there is a
null check to the same target variable or there is an instruction
accessing the object�s slot pointed by the same target variable
and causing a hardware trap if it is a null pointer.

Kill(n) :  The set of null checks that cannot be substitutable above
basic block n. This set is the same as Kill(n) in Section 4.2.1.

Now we are ready to eliminate null checks from each basic block.
At any point of basic block n, the set of null checks that are
known to be substitutable can be computed from Out_bwd(n). For
any explicit null check C in basic block n, C is eliminated if it is
part of the computed set at the point immediately succeeding C
and thus it is known to be substitutable.

5. EXPERIMENTAL RESULTS
We chose two benchmark programs for the evaluation of our op-
timizations: jBYTEmark version 0.9 (from BYTE Magazine) and
SPECjvm98 [12]. For SPECjvm98, the measurements were per-
formed in the test mode (not in SPEC-compliant mode) with the

count of 100 (as specified for the SPEC-compliant mode). All the
experiments described in Section 5.1 through 5.3 were conducted
on an IBM IntelliStation M Pro (Pentium III 600 MHz with 384
MB of RAM), Windows NT 4.0 Service Pack 5, and IBM Devel-
oper Kit for Windows, Java Technology Edition, Version 1.2.2.
The experiment described in Section 5.4 was conducted on a
PowerPC 604e 332 MHz with 128 MB of RAM, AIX 4.3.3.
To show our baseline performance, we disabled all the null check
optimizations and always generated explicit null checks for all the
required null checks (denoted as "No Null Opt. (No Hardware
Trap)" in Table 1 and Table 2). To compare the effectiveness of
implicit null checks (that is with the hardware trap) over explicit
null checks, we disabled all the null check optimizations and util-
ized the hardware trap (denoted as "No Null Opt. (Hardware
Trap)" in Table 1 and Table 2). To compare the performance im-
provement of previous approach over our baseline, we imple-
mented Whaley's algorithm [14] (denoted as "Old Null Check" in
Table 1 and Table 2) for null check elimination. To compare the
performance improvement of the architecture independent optimi-
zation over our baseline, we disabled the architecture dependent
optimization and enabled only the architecture independent opti-
mization (denoted as "New Null Check (Phase1 only)" in Table 1
and Table 2). To compare the performance improvement of the
new algorithm over our baseline, we enabled all the null check
optimizations (denoted as "New Null Check (Phase1+Phase2)" in
Table 1 and Table 2).
In order to validate the competitiveness of the compilation time
and overall performance of our optimizations, we also measured
these benchmarks by running the HotSpot� Server VM 2.0 beta
[5] (called the HotSpot for the rest of this paper) under the same
software environment.

5.1 Performance Improvement
Figure 8 shows the percentage of performance improvement over
our baseline for jBYTEmark v.0.9 achieved by the new null check
optimization described in Section 4. We found that the architec-
ture independent optimization is very effective for Assignment,
Neural Net, and LU Decomposition. This is because these
benchmarks use multidimensional arrays, which are optimized
effectively by the iterative use of null check optimization, array
bounds check optimization, and scalar replacement. As a result,
some loop invariant array accesses are moved out of loops, and
thereby performance is greatly improved.
Figure 9 shows the percentage of performance improvement over
our baseline for SPECjvm98 achieved by the new null check op-
timization. We found that the architecture dependent optimization
is particularly effective for mtrt after method inlining is performed.
This is because mtrt has small methods (to access data in a class)
which are called frequently and many explicit null checks associ-
ated with these calls can be eliminated only after they are inlined.

5.2 Performance Compared with the HotSpot
Figure 10 shows the performance comparison for jBYTEmark
between our JIT compiler (with our null check optimization) and
the HotSpot. Our JIT compiler shows significantly better perfor-
mance for the five benchmark programs. The average relative
performance of our JIT compiler is 69% better than the HotSpot.
Figure 11 shows the performance comparison for SPECjvm98
between our JIT compiler (with our null check optimization) and
the HotSpot. Our JIT compiler shows slightly better performance.
The average relative performance of our JIT compiler is 6% better
than the HotSpot.
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Table 1.  Performance for jBYTEmark v.0.9 (Larger numbers are better)

(unit : index) Numeric
Sort String Sort Bitfield FP

Emulation Fourier Assignment IDEA
encryption

Huffman
Compression Neural Net LU Decom-

position
New Null Check
(Phase1+Phase2) 201.96 54.41 258.86 219.64 22.75 207.41 67.46 159.33 200.50 205.90

New Null Check
(Phase1 only) 202.10 54.46 258.89 219.64 22.74 181.75 67.49 158.49 200.10 203.64

Old Null Check 160.78 49.87 245.25 186.12 22.74 130.10 63.27 156.08 130.82 158.31
No Null Opt.

(Hardware Trap) 157.01 49.58 245.13 170.18 22.74 125.31 63.14 151.88 130.42 119.91

No Null Opt.
(No Hardware Trap) 156.94 49.08 227.85 163.87 22.68 107.87 62.99 134.40 116.81 112.57

HotSpot 207.13 44.73 234.00 206.56 8.06 114.74 25.69 145.24 88.87 106.62

Table 2.  Performance for SPECjvm98 (Smaller numbers are better)

(unit : sec) mtrt jess compress db mpegaudio jack javac
New Null Check
(Phase1+Phase2) 6.44 7.67 17.38 24.42 11.32 9.39 14.18

New Null Check
(Phase1 only) 6.89 7.71 17.45 24.43 11.33 9.45 14.31

Old Null Check 7.05 7.86 17.49 24.70 11.33 9.77 14.30
No Null Opt.

(Hardware Trap) 7.09 7.95 17.55 24.71 11.39 9.80 14.33

No Null Opt.
(No Hardware Trap) 7.38 8.25 18.70 25.33 12.00 10.02 15.17

HotSpot 5.73 6.53 20.13 24.61 14.78 9.25 17.50
New Null Check (Phase1+Phase2): New null check optimization. Enable both the architecture independent and dependent optimizations. It utilizes hardware traps.
New Null Check (Phase1 only): New null check optimization. Disable the architecture dependent optimization. It utilizes hardware traps.
Old Null Check Optimization: Use Whaley's algorithm[14] for null check elimination. It utilizes hardware traps.
No Null Opt. (Hardware Trap): Disable all the null check optimizations. It utilizes hardware traps.
No Null Opt. (No Hardware Trap): Disable all the null check optimizations. It does not utilize hardware traps.
HotSpot: HotSpot Server VM 2.0 beta
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5.3 JIT Compilation Time
In this section, we compare the JIT compilation time by our new
algorithm with that by the previous approach (Whaley�s algo-
rithm). We measured the compilation time of jBYTEmark (1.35
sec), but the number of instructions executed by jBYTEmark
seems to depend on the execution speed. When the execution
speed is faster, jBYTEmark seems to use a larger iteration count
for measurement because of accuracy. It means that the ratio of
the compilation time over the total execution time of jBYTEmark
is different on each environment. For instance, the ratio becomes
smaller on a faster machine. In our environment, the ratio of the
compilation time over the total execution time was 2.6% for the
total of jBYTEmark. Because we think the ratio of the compila-
tion time of jBYTEmark does not have much significance for the
above reason, we did not put it in Figure 12.
We assume that the difference between the first run and the best
run of SPECjvm98 is essentially due to the compilation time. In
order to reduce cache and file system effects between the first run
and the best run, we executed SPECjvm98 once before starting
measurements. However, the assumed compilation time may still
include cache and file system effects. Table 3 shows the time for
the first run, best run, and the assumed compilation time of our
JIT compiler and the HotSpot. This shows that our JIT compiler

spends significantly less time in compilation when compared with
the HotSpot. Figure 12 shows the ratio of the compilation time
over the whole execution time (that is, the time spent for the first
run) of our JIT compiler. In summary, javac is the benchmark
program that the JIT compiler took the longest time to compile.
We further measured the breakdown of our JIT compilation time
by using a trace tool available in AIX, and computed the compi-
lation time by taking into account platform differences. Table 4
and Figure 13 show the results. (We truncated the graph below
90% in Figure 13.) For compress, db, and mpegaudio, we meas-
ured the breakdown of the total compilation time of these three
benchmark programs because each of them spent little time for
compilation. The new null check optimization itself takes about 3
times longer in the compilation time than the old one (Whaley�s
algorithm), and it also slightly increases the compilation time for
the other optimizations. This is because the new null check opti-
mization increases the opportunities for the other optimizations,
such as scalar replacement, to be applied.
Table 5 shows the increase in the compilation time by our new
algorithm relative to that by the old one. In summary, the new
algorithm increased the total compilation time by 2.3% (on aver-
age).
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5.4 Speculation versus Implicit Null Check
As we described in Section 3.3.1, we use conditional trap instruc-
tions available for the PowerPC to detect null pointers associated
with memory reads and writes on AIX. For memory reads, we

used speculation. To find the performance gain over the baseline
(denoted as "No Null Check Optimization" in Table 6 and Table
7), we disabled the whole phase of our null check optimization.
To see the effectiveness of speculation (denoted as "Speculation"
in Table 6 and Table 7), we disabled speculation (denoted as "No
Speculation" in Table 6 and Table 7) in the scalar replacement
phase. To compare the effectiveness of implicit null checks (de-
noted as "Illegal Implicit" in Table 6 and Table 7), we applied the
architecture dependent null check optimization for Intel as the
phase 2 optimization for AIX after the architecture independent
optimization is applied in the phase 1. We note here that this vio-
lates the Java language specification since a NullPointerException
may not be thrown correctly on AIX. This is purely for our ex-
perimental purpose.

Table 5.  Increases in JIT compilation time in our approach
Increase in total

compilation time (second)
Increase in total

compilation time (%)
mtrt 0.07 2.31%
jess 0.06 2.22%

db + compress
+ mpegaudio 0.02 1.61%

jack 0.05 1.95%
javac 0.23 2.82%

jBYTEmark 0.04 2.74%

Table 3.  JIT compilation time of SPECjvm98 (seconds)

mtrt jess compress db mpegaudio jack javac
first run 9.47 10.37 17.43 24.62 12.56 11.95 22.33
best run 6.44 7.67 17.38 24.42 11.32 9.39 14.18Our JIT

compiler compilation
time
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0.05
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(0.81%)

1.24
(9.87%)

2.56
(21.42%)

8.15
(36.50%)

first run 11.50 18.06 20.75 26.80 19.23 21.88 57.38
best run 5.73 6.53 20.13 24.61 14.78 9.25 17.50HotSpot

compilation
time
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Figure 12. Ratio of our JIT compilation time
(100% = time spent for the first run of each program)

Table 4.  Breakdown of our JIT compilation time (seconds)
Null check

optimization Others

NEW 0.07 (2.31%) 2.96 (97.69%)mtrt OLD 0.02 (0.66%) 2.93 (96.70%)
NEW 0.06 (2.22%) 2.64 (97.78%)jess OLD 0.02 (0.74%) 2.62 (97.04%)
NEW 0.035 (2.35%) 1.455 (97.65%)db + compress

+ mpegaudio OLD 0.012 (0.81%) 1.454 (97.58%)
NEW 0.06 (2.34%) 2.50 (97.66%)jack OLD 0.02 (0.78%) 2.49 (97.27%)
NEW 0.17 (2.09%) 7.98 (97.91%)javac OLD 0.06 (0.74%) 7.86 (96.44%)
NEW 0.023 (1.70%) 1.327 (98.30%)jBYTEmark OLD 0.008 (0.59%) 1.305 (96.67%)
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Table 6.  Performance for jBYTEmark v.0.9 on AIX (Larger numbers are better)

(unit : index) Numeric
Sort String Sort Bitfield FP

Emulation Fourier Assignment IDEA
encryption

Huffman
Compression Neural Net LU

Decomposition
Speculation 186.12 30.01 84.45 87.46 13.26 96.47 45.14 97.35 86.03 92.08

No Speculation 181.09 29.77 83.65 86.16 13.25 94.76 45.14 97.20 75.94 91.66
No Null Check
Optimization 173.92 28.17 83.42 79.89 13.23 81.71 44.68 97.14 73.93 79.98

Illegal Implicit
(No Speculation) 183.28 29.91 84.40 86.62 13.25 95.66 45.60 100.74 77.35 92.66

Table 7.  Performance for SPECjvm98 on AIX (Smaller numbers are better)

(unit : sec) mtrt jess compress db mpegaudio jack javac
Speculation 20.34 25.92 43.80 72.08 20.16 44.56 47.14

No Speculation 20.56 26.28 44.21 72.39 20.33 44.66 47.26
No Null Check
Optimization 21.00 26.28 44.25 72.85 20.42 45.36 47.34

Illegal Implicit
(No Speculation) 19.94 26.09 43.75 71.86 19.87 44.71 46.90

Speculation: Enable new null check optimization. Enable speculation. All null checks are explicit null checks.
No Speculation: Enable new null check optimization. Disable speculation. All null checks are explicit null checks.
No Null Check Optimization: Disable all the null check optimizations and speculation. All null checks are explicit null checks.
Illegal Implicit (No Speculation): Apply the architecture dependent optimizations for Intel, assuming memory accesses cause hardware traps. Disable speculation.
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Figure 14.  Improvement for jBYTEmark v.0.9 on AIX
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Figure 14 shows the percentage of performance improvement
over our baseline (No Null Check Optimization) for jBYTEmark
v.0.9. We found that speculation is very effective for Neural Net.
This is because four instructions were moved out of the innermost
loop (across their null checks) with speculation.
Implicit null checking for Neural Net is least effective among all
the benchmarks when the result is compared to that of the Intel
platform. On the Intel platform, the method java.lang.Math.exp
was inlined, but it was not on the PowerPC. This is because our
JIT compiler for Intel converts this method to an exponential in-
struction. However, it does not for the PowerPC, since the
PowerPC does not have such an instruction. Therefore, this
method call became a barrier for scalar replacement, and the im-
provement from implicit null checking is particularly limited on
the PowerPC relative to other benchmarks.
Figure 15 shows the percentage of performance improvement
over our baseline (No Null Check Optimization) for SPECjvm98.
We noticed that implicit null checking is especially effective for
mtrt. This is also true for Intel, though the improvement is smaller
on the PowerPC platform than that on the Intel platform. This is
because the execution cost for an explicit null check on the
PowerPC platform (using a conditional trap) is smaller than that
on the Intel platform.

6. CONCLUSIONS
In this paper, we have presented a new algorithm for null pointer
check elimination, which has been implemented in the IBM Java
Just-in-Time compiler. The architecture independent optimization
moves null checks backward, and it is iterated for a few times
with other optimizations to eliminate redundant null checks. This
optimization maximizes the effectiveness of other optimizations.
Then the architecture dependent optimization converts null checks
to hardware traps in order to minimize the execution cost of null
checking. Preliminary performance results show a significant
performance improvement over the previously known best ap-
proach. Although we implemented our algorithm for Java, it is
also applicable for other languages requiring null checking. We
expect the importance of the techniques presented in this paper to
grow further.
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