
A Scalable Technique for Characterizing the Usage of
Temporaries in Framework-intensive Java Applications∗

Bruno Dufour
Dept of Computer Science

Rutgers University
dufour@cs.rutgers.edu

Barbara G. Ryder
Dept of Computer Science

Rutgers University
ryder@cs.rutgers.edu

Gary Sevitsky
IBM T.J. Watson Research

Center
sevitsky@us.ibm.com

ABSTRACT
Framework-intensive applications (e.g., Web applications) heavily
use temporary data structures, often resulting in performance bot-
tlenecks. This paper presents an optimized blended escape analysis
to approximate object lifetimes and thus, to identify these tempo-
raries and their uses. Empirical results show that this optimized
analysis on average prunes 37% of the basic blocks in our bench-
marks, and achieves a speedup of up to 29 times compared to the
original analysis. Newly defined metrics quantify key properties of
temporary data structures and their uses. A detailed empirical eval-
uation offers the first characterization of temporaries in framework-
intensive applications. The results show that temporary data struc-
tures can include up to 12 distinct object types and can traverse
through as many as 14 method invocations before being captured.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures; D.3.4
[Programming languages]: Processors

General Terms
Experimentation, Languages, Measurement, Performance

Keywords
Dataflow analysis, escape analysis, program understanding, perfor-
mance, framework-intensive applications, Java

1. INTRODUCTION
The increasing complexity of tasks accomplished by software

has led to the proliferation of large framework-intensive applica-
tions. For example, Web applications are typically built by inte-
grating numerous layers of middleware, libraries and frameworks;
however while this eases development effort, this reliance on code
reuse comes at a cost. Passing data from one framework layer to
another often requires expensive operations such as wrapping and
unwrapping objects. This problem is exacerbated by the fact that

∗This work was funded in part by IBM Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT 2008/FSE-16, November 9–15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-59593-995-1 ...$5.00.

developers are unfamiliar with the underlying frameworks and li-
braries used by their applications and unaware of the cost of API
calls. As a result, framework-intensive applications do an extraor-
dinary amount of work to accomplish simple tasks. For example,
the conversion of a single date field from a SOAP data source to
a Java object can require as many as 268 method calls and the
generation of 70 objects [21]. Much work involves the creation
and initialization of temporaries, short-lived objects that are cre-
ated as the by-product of some computation. Object churn, that is
the excessive usage of temporaries, is a new, but common prob-
lem in framework-intensive applications, that can degrade perfor-
mance dramatically. The combined cost of allocating, initializing
and ultimately garbage collecting temporaries can dominate exe-
cution time. In extreme cases, object churn can result in almost
continuous calls to the garbage collector, effectively halting exe-
cution progress because of the amount of temporary storage being
used and released over short time intervals.

The sophisticated optimizations employed by modern just-in-
time compilers (JITs) are unable to ameliorate object churn. In par-
ticular, many JITs now employ an escape analysis to stack-allocate
temporary objects, yet high garbage collection rates still remain
in many framework-intensive systems. Costs are high even with
improvements in memory management. Determining why large
numbers of temporaries are created by these systems is the first
important question that needs to be addressed. In addition, ob-
ject churn cannot be alleviated solely by optimization of individ-
ual frameworks, because often the temporaries are passed in calls
across framework boundaries.

The goal of our research is to enable a characterization of tem-
poraries in framework-intensive applications and of the program
regions that create and use these temporaries. In addition to quan-
titative characterization, we want to aid program understanding of
specific temporary structures and their uses. The ultimate aim of
obtaining this information is to provide a deeper understanding of
object churn, in order to devise the appropriate actions for ame-
liorating the problem. This may be accomplished through focused
global optimizations, best practices for framework API design and
usage, and/or better diagnosis and assessment tools for framework-
intensive applications

There are two aspects of the behavior of framework-intensive
systems that make studying temporaries difficult. First, temporary
creation and usage is often not localized to a single method, but
involves multiple methods, each contributing a few allocations or
making use of temporary objects allocated elsewhere. Second, tem-
porary objects often appear as part of larger temporary data struc-
tures. In such cases, understanding the purpose of a single object
requires studying its role within a data structure. Existing profil-
ing tools like Jinsight [10] and ArcFlow [1] focus on the allocating

59

methods of individual objects, and therefore do not provide infor-
mation regarding how objects are used.

In previous work [11], object lifetime information, computed us-
ing blended escape analysis, allowed summarization of the usage of
temporaries. First, by identifying which instances are used only lo-
cally within a region of the program, we can approximate the set of
temporaries. We can identify program regions that are the top users
of temporaries and rank them by the number of temporaries allo-
cated within them. Second, because escape analysis subsumes an
interleaved points-to analysis, it allows us to reason about how ob-
ject instances become connected during execution. We can group
the temporaries by their connectivity into data structures. We show
how this information can enable characterization studies as well as
better understanding of specific temporary structures.

Framework-intensive applications are a challenge to existing anal-
ysis techniques. Purely static analyses, accomplished through ex-
amination of code without execution, suffer problems of insuffi-
cient scalability and/or precision for answering behavioral ques-
tions for these systems. Purely dynamic analyses, accomplished
through judiciously placed instrumentation in source code or byte-
code, or by probing the JVM run-time system, introduce too much
execution overhead and possibly perturb execution behavior. Lim-
iting the amount of information collected at runtime severely im-
pacts the usefulness of the analysis.

Previously we proposed blended analysis as an alternative to a
purely static or dynamic analysis [11]. Blended analysis performs
an interprocedural static analysis on a calling structure obtained by
profiling an application. The goal of a blended analysis is to obtain
precision comparable to that of a purely dynamic analysis while
keeping the run-time overhead as low as possible. In other words,
blended analysis pushes the most expensive part of the computa-
tion to an offline static analysis that uses the results of a previous
lightweight dynamic analysis. This is essential for analysis of real-
world, deployed applications, for which slowing down execution
by more than a few percent is unacceptable. Blended analysis also
reduces the amount of work performed by the static analysis by
only analyzing the calling paths in the code that were exercised at
runtime, and eliminates the problems of how to handle dynamic
class loading and reflective method calls, as these are captured in
the execution trace(s).

Previous blended analyses used dynamic information to restrict
the static analysis to the actually executed methods. In this pa-
per we present a refinement that allows the blended analysis to fil-
ter out unexecuted code at the granularity of basic blocks rather
than methods. We show that this optimization significantly im-
proves both analysis scalability and the precision of the computed
results. We use an optimized blended escape analysis to perform a
detailed investigation of the nature and usage of temporaries in four
benchmarks obtained from two framework-intensive applications:
Trade 6, a financial simulation Web application, and the Eclipse
JDT Compiler, an incremental Java compiler. We have designed
new metrics to capture the effects of the pruning technique on the
scalability and precision of the analysis. We also have new met-
rics that enable the first automated characterization of the behavior
of temporaries in such benchmarks. The results provide unique
insights on the complexity of temporary data structures, the way
they are used in typical scenarios, and the challenges faced in help-
ing developers to understand and fix performance problems due to
temporaries.

In our previous work [11], we described the blended analysis
paradigm and presented an original blended escape analysis algo-
rithm with postprocessing. Some simple aggregate measures of the
escape behavior of objects were calculated using Trade 6, but dis-

appointingly, were not useful for explaining the behavior of tempo-
raries. In addition, previously there was no characterization of the
regions where temporary objects were used, nor of the temporary
data structures themselves.

Thus, this paper makes the following major contributions:

• An optimized blended escape analysis algorithm that prunes
away unexecuted basic blocks in methods, achieving increa-
sed precision and scalability attested to by empirical experi-
ments. The pruning technique is generally applicable to any
static analysis used in the blended analysis paradigm, as it
uses light-weight dynamic information (i.e., executed calls
and object creations) to prove the infeasibility of basic blocks
in the executions to be analyzed.

• New metrics for blended static and dynamic analyses that
quantify key properties related to the use of temporary ob-
jects. By combining static and dynamic information, we have
defined a new data structure abstraction that supports a rich
characterization of temporary data structures, a first step to-
wards dealing with the performance problems they incur.

• Initial empirical findings that characterize the nature and us-
age of temporary objects in representative, framework-inten-
sive Java applications. Our analysis enables the location of
regions of excessive temporary usage in framework-intensive
applications.

In Section 2, we give some background on blended escape anal-
ysis and discuss novel optimizations that improve its scalability. In
Section 3 we present our metrics, along with our data and the re-
sults of our empirical study. In Section 4 we discuss some related
work and close with our conclusions in Section 5.

2. ANALYSIS REFINEMENTS
Blended analysis [11] is a tightly coupled combination of dy-

namic and static analyses, in which the dynamic analysis deter-
mines the program region to which the static analysis will be ap-
plied. In our previous work on blended analysis, the dynamic anal-
ysis obtained a calling structure of a program on which a subse-
quent, interprocedural static analysis was performed. Blended anal-
ysis aims to capture detailed properties of a single execution or set
of executions. This means the analysis is unsafe because it does not
summarize the behavior of all possible executions, like a standard
static analysis [18]. Nevertheless, blended analysis is well suited
for program behavior understanding tasks, since they usually re-
quire very detailed information about a given execution (e.g., a run
that exhibits performance problems).

Blended analysis offers many advantages compared to a purely
static or dynamic analysis. First, blended analysis limits the scope
of the static analysis to methods in the program that actually were
executed, thus dramatically reducing the cost of a very precise static
analysis by reducing its focus, allowing achievement of high pre-
cision over an interesting portion of the program. Second, blended
analysis only requires a lightweight dynamic analysis, thus limiting
the amount of overhead and perturbation during execution.

Our first instantiation of blended analysis was a blended escape
analysis [11]. In this section, first we briefly present background
information on escape analysis, and in particular summarize our
previous work on blended escape analysis. Second, we discuss two
optimizations that significantly lower analysis cost, improve scala-
bility and increase precision. The first optimization uses declared
type information to improve the computed results; the second uses
dynamic information about executed calls and object allocations to
reduce the work of the intraprocedural analysis.

60

1 public X identity(X p1) {
2 return p1;
3 }

5 public X escape(X p2) {
6 G.global = p2;
7 return p2;
8 }

10 public void f() {
11 X inst;
12 if (cond)
13 inst = identity(new Y());
14 else
15 inst = escape(new Z());
16 }

Listing 1: Example program

phantom1

p1 return

phantom2

p2 returnGlobal

global

a) Connection graph for identity b) Connection graph for escape

Z

instGlobal

global Y

c) Connection graph for f

Figure 1: Summary connection graphs for methods in the example program

2.1 Blended Escape Analysis
Escape analysis. Escape analysis computes bounds on the reach-

ability of objects. An object is said to escape a method m if it is
reachable beyond the lifetime of an invocation of m during which
it is created. Similarly, an object escapes a thread t if it is reach-
able at any point from a reference outside of t. Escape analysis has
traditionally been used to compute those objects that are address-
able only during the lifetime of their allocating method or within
their allocating thread. The former allows objects to be allocated
on the run-time stack rather than in the heap, thus reducing heap
fragmentation and garbage collection overhead; the latter enables
optimizations to avoid costly synchronization operations.

Escape analysis examines assignments and uses of references to
compute an escape state for each object. Each object can be as-
signed one of three possible escape states: globally escaping, arg
escaping or captured. An object is marked globally escaping when
it becomes globally reachable (e.g., by being assigned to a static
field). Objects that are reachable through parameters or that are
returned to caller methods are labeled arg escaping. Objects that
don’t escape are marked as captured. During the analysis, a given
object can have different escape states in different methods along
a call path in the program; however, all objects eventually either
globally escape or become captured. We refer to the final escape
state of an object as its disposition.

Choi et al. [7] defined a context-sensitive, flow-sensitive [24] es-
cape analysis algorithm. It computes a connection graph for each
method in a call graph that summarizes connectivity between ob-
jects and stores their escape states. Connection graph nodes rep-
resent objects, reference variables or fields, and edges represent
points-to relationships between them. Intuitively, escape states are
propagated backwards along call paths in the call graph, starting
from leaf methods.

For example, consider the code shown in Listing 1. Method
identity just returns its parameter. The escape analysis algo-
rithm computes the connection graph for this method as follows.
First, a node is created to represent the parameter p1, along with a
phantom object node to represent all objects that could be passed to
identity through p1. An edge is created between p1 and phantom1
to indicate that p1 can point to phantom1. Because p1 is an ex-

ternal reference, it is initially marked as being arg escaping (light
gray). Next, the return statement on line 2 causes a return node
to be created (and marked arg escaping because returned objects
arg-escape the method). An edge is also added between the return
node and p1 to indicate that any object pointed to by p1 can be re-
turned from identity. Finally, the graph is simplified by making
each reference node (e.g., return, local variable or parameter node)
point directly to all objects that are transitively reachable from it.
Redundant edges are also removed during this process, and escape
states are propagated along the remaining edges. In this example,
the return node is made to point directly to phantom1, and the
now redundant edge between return and p1 is removed (shown
as a dashed edge in Figure 1). Propagating escape states causes
phantom1 to be marked arg escaping. Figure 1 a) shows the final
connection graph for identity.

Method escape is similar to method identity except that it ad-
ditionally assigns its parameter to a global field, causing it to escape
globally. The initial connection graph for escape contains nodes
p2 and phantom2 (similarly to the previous example). The field
assignment statement on line 6 causes the field node global to be
created, and made to point to phantom2. Note that for simplicity,
static field accesses are modeled as instance fields of a global ob-
ject that is initially marked as globally escaping (dark gray). The
return statement for method escape is processed in the same way
as in identity. When the resulting connection graph is simpli-
fied, however, note that phantom2 is marked as globally escaping,
as shown in Figure 1 b).

Method f makes calls to both identity and escape demon-
strating how previously computed connection graphs are used at a
call site. The escape analysis for f proceeds by first creating a node
for local variable inst. When analyzing the if branch of the con-
ditional statement, the analysis first creates an object node for Y. A
mapping is then established between the parameters of the callee
and the arguments in the caller. For instance, phantom1 is mapped
to Y in this case. A similar mapping is established between the re-
turn value and the inst variable. Processing the call to identity
results in the addition of an edge between inst and the Y object in
the connection graph for f. Note that arg escaping objects in the
callee are marked as non-escaping in the caller during this process,

61

causing object Y to correctly appear as non-escaping (white) in the
connection graph for f. The else branch of the conditional state-
ment is processed similarly, and the final connection graph for f
is shown in Figure 1 c). Note that object Z is marked as globally
escaping since it was mapped to the globally escaping phantom2
when processing the call to escape.

Blended escape analysis. As mentioned previously, we used a
blended version of the Choi et al. escape analysis to approximate
the effective lifetime of an object, that is, the time from object allo-
cation to its last use [11]. We use IBM’s Jinsight tool to generate
a dynamic call graph used as input to the blended escape analysis.
The Jinsight profiler is routinely used within IBM for performance
diagnosis. We extended the tool to generate various kinds of dy-
namic calling structures from existing traces. This ensures that our
technique can easily be integrated in the normal performance un-
derstanding workflow.

In framework-intensive applications, object allocations frequently
occur in low-level library methods that are used in many different
contexts. We therefore extended the original analysis to maintain
a distinct escape state for each object at every method in the call
graph. This allows our blended escape analysis to distinguish be-
tween different escape behaviors along individual paths in the call
graph. As will be shown, this additional information is useful for
understanding program behavior and data manipulation, in contrast
to previous uses of escape analysis.

Postprocessing connection graphs. The precision of the in-
formation in the connection graphs can be further improved by a
mapping onto a program representation that retains richer calling
context information than the dynamic call graph used in the escape
analysis. A dynamic calling context tree (CCT) [2] is a context-
sensitive calling structure in which method invocations are differ-
entiated based on their call chain prefix. In other words, two invo-
cations of the same method are considered equivalent if and only
if they are the result of the same sequence of method calls start-
ing at the program entry point. Note that the presence of recursion
is a special case that introduces cycles in a CCT. In contrast, a call
graph is a context-insensitive calling structure where the same node
represents all invocations of a given method. For brevity, we use the
term context to refer to a CCT node and simply refer to a call graph
node as a method.

The postprocessing algorithm effectively overlays information
from the connection graphs onto the CCT. This serves two main
purposes: it provides more fine-grained information about instances
at each context, and it allows behaviors that were merged in the
blended escape analysis to be disambiguated. Note that a simi-
lar gain could be achieved by using different choices of calling
structures for a blended analysis. As future work, we will study
the impact of varying the level of context sensitivity in the calling
structure representation on the cost and precision of the blended
analysis.

The postprocessing phase of the blended escape analysis manip-
ulates both static and dynamic object abstractions at the same time.
For clarity, we refer to the dynamic abstraction of an object as an
instance (i.e., an object that was dynamically allocated at runtime)
and reserve the term object to denote abstract objects used by the
static analysis, which are allocation sites in our analysis.

The postprocessing algorithm generates a reduced connection
graph for each context in the CCT. The reduced connection graph
for a given context contains only nodes of the original connection
graph that correspond to abstract objects with visible instances in
this context. An instance is visible at a given context if its allo-
cation has been observed and the instance was not captured lower
in the CCT. Each reduced connection graph node is decorated with

its associated instances. This is achieved by propagating visible in-
stances backwards in the CCT.1 The reduced connection graph also
elides edges other than those that represent points-to relationships
between objects through their reference fields.

The reduced connection graphs are used for two purposes. First,
they allow the number of instances captured at each context to be
computed, thus enabling the identification and ranking of the call-
ing contexts according to their usage of temporaries. Second, they
summarize the connectivity of objects at a given context using a
simple and easily accessible representation. In practice, we have
found that reduced connection graphs, unlike the original raw con-
nection graphs, provide a good level of abstraction for understand-
ing and manual exploration of temporary structures.

2.2 Optimized blended analysis
Declared Types. Due to the conservative nature of static analy-

sis, it is common for edges that violate type assignment rules to be
created in the connection graphs. To address this issue, we modi-
fied the escape analysis to take advantage of knowledge of declared
types; thus, type-inconsistent edges are never added to the connec-
tion graph.2 This optimization is well-known, and has been shown
to significantly increase the precision and to reduce the execution
time cost of points-to analysis [17].

Basic Block Pruning. Most applications only execute a very
small portion of their source code during a single execution. Blended
analysis exploits this observation by using a dynamic calling struc-
ture as a basis for the static analysis. This ensures that only methods
that were executed are visited by the analysis, thus reducing the
amount of interprocedural propagation. However, even methods
that were exercised during an execution typically contain a signifi-
cant number of unexecuted instructions. Based on this observation,
we developed a new technique that employs the dynamic informa-
tion collected in order to reduce the amount of intraprocedural work
of the static analysis and to improve precision.

Our technique works by pruning a basic block from the control
flow graph of a method if it can be shown that the block was never
executed. Unexecuted basic blocks are identified using two kinds of
dynamic information for each method, observed calls and allocated
types of instances. The dynamic calling structure contains a list of
observed targets for each executed method. We also annotate all
nodes in the calling structure with a list of observed allocated types
collected during profiling. Any basic block that contains a call site
that does not match any observed target, or that contains an object
allocation that did not execute, can be marked as unexecuted. The
control flow graph (CFG) for this method can then be pruned by
removing any path from entry to exit that includes at least one basic
block that never executed. Pruning a path in the CFG removes all
basic blocks that are not shared between this path and any other
possibly executed path.

The amount of information collected at runtime is limited by our
choice of profiler. While Jinsight provides the full calling context
for each object allocation and method invocation, it does not record
enough information to determine which allocation sites or call sites
correspond to these events. This limitation of the profiler requires
conservative assumptions to be made in cases where a given call
or allocation could have originated from multiple sites in the same
method.3 In such cases, we safely assume that all matching sites

1Cycles in the CCT are handled in the propagation by fixed point
iteration.
2In our experiments, we used declared types both in our original
and pruned algorithm (described next).
3To address this limitation, we are investigating additional ways to
build calling structures using lightweight bytecode instrumentation.

62

were potentially executed. This may force our analysis to consider
unexecuted code, but it ensures analysis of all executed code.

Pruning unexecuted blocks is a technique that is generally ap-
plicable to any blended analysis. It is particularly compelling in
the case of a flow-sensitive analysis that typically requires state to
be maintained at each basic block in the CFG. Each pruned basic
block therefore translates directly into memory savings in addition
to reducing the overall amount of work to be performed by the anal-
ysis. Experimental results show that our pruning technique results
in a significant scalability gain in our blended escape analysis. We
defer a full discussion of these results to Section 3.4.1.

3. METRICS AND FINDINGS
In this section, we first present an overview of the metrics we

define, and the sources of imprecision in measurement on blended
analyses. We next describe the four benchmarks used in our em-
pirical data gathering. Finally, we define each metric, discuss what
it illustrates on the benchmark suite, and present our findings and
interpretations. We illustrate key points with an actual example so-
lution, obtained from one of the applications.

3.1 Metrics - Overview
Our blended analyses uncover as yet unexplained characteris-

tics of framework-intensive applications. Therefore, new metrics
needed to be defined to measure the effectiveness of the analysis
and the data usages observed.

There were three major measurement goals for our new met-
rics: (i) to determine the effectiveness of the pruning technique
on the blended analysis algorithm, (ii) to characterize the usage
of temporary data structures in our ’typical’ framework-intensive
benchmarks, and (iii) to characterize these temporary data struc-
tures themselves. Each metric addresses one or more of these goals.
Metrics covering goal (i) are comparative measures of the original
versus the pruned blended algorithm. For example, we measure
improvements in execution time and in the size of the program rep-
resentations used for analysis; these are improvements in analysis
scalability. Measuring the categorization of objects as captured
or escaping allows estimation of precision improvements. Metrics
covering goal (ii) capture properties of the execution related to the
usage of temporaries. These include the escape categorization of
an object, which can be mapped to its corresponding dynamic in-
stances, and the distance from allocation to capture for each object.
Metrics covering goal (iii) quantify the complexity of temporary
data structures in terms of the numbers of instances contained, the
number of types contained, the complexity of the object intercon-
nections, etc.

3.2 Sources of imprecision
Ideally, the results of a blended analysis would perfectly capture

the properties of an execution. In practice, however, there are two
sources of imprecision that affect its results: static and dynamic.

Static analysis is often required to make conservative assump-
tions to ensure a safe solution. For example, in escape analysis
objects may be conservatively classified as escaping when they are
in fact captured, but the analysis is not precise enough to see this.
Similarly, objects may appear to be reachable from a reference in
a connection graph, when this can not occur during program exe-
cution. This imprecision in static analysis stems from the fact that
it is impossible to determine in general the infeasibility of an ar-
bitrary path in a static program representation [18]. We term this
static imprecision.

Dynamic analysis also contributes imprecision to the analysis
results. Dynamic imprecision occurs because either the level of

detail found in the execution trace adversely affects the precision
of the analysis, or the aggregation of the program trace into a more
scalable program representation results in loss of precision about
the calling context of the data.

In the first case, as explained in Section 2, Jinsight does not in-
clude allocation site or call site information in the traces it gener-
ates. This requires conservative assumptions to be made when map-
ping target invocations to potential call sites and instances to possi-
ble allocation sites. Moreover, because multidimensional arrays in
Java are represented as arrays of arrays, Jinsight only reports allo-
cations of single dimension array types. Without information about
allocation sites, it is therefore not possible to disambiguate between
two instances of type Object[] when, for example, a given method
can allocate both char[][] instances and int[][] instances. Fi-
nally, Jinsight is sometimes unable to resolve array types correctly;
such allocations are then reported as arrays of a special unknown
type. Our analysis must therefore conservatively assume that any
array type matches an array of unknown type.

In the second case, in blended analysis the execution trace is
aggregated into a call graph (or a CCT), before being used by the
static analysis. This aggregation can conflate some behaviors that
never occur together in practice, by making some unexecuted call
paths appear to be feasible. We term either of these cases dynamic
imprecision.

3.3 Experimental Setup
For our experiments, we used two well-known framework-intensive

applications: Trade and Eclipse. Our escape analysis is built using
the WALA analysis framework.4 To obtain complete call graphs
from the trace, all experiments were performed with an IBM JVM
version 1.4.2 with the JIT disabled in order prevent method inlin-
ing at runtime. Note that different JIT implementations may pro-
vide more fine-grained control over the specific optimizations per-
formed by the JIT, and may allow inlining to be disabled without
requiring the JIT to be turned off completely.5 Our test machine is
a Pentium 4 2.8 GHz machine with 2 GB of memory running the
Linux kernel version 2.6.12.

Trade 6. We used version 6.0.1 of the Trade benchmark run-
ning on WebSphere 6.0.0.1 and DB2 8.2.0. 6 The way in which the
Trade benchmark interfaces with the WebSphere middleware can be
configured through parameters. We experimented with three con-
figurations of Trade by varying two of its parameters: the run-time
mode and the access mode. The run-time mode parameter con-
trols how the benchmark accesses its backing database: the Direct
configuration uses the Java Database Connectivity (JDBC) low-
level API, while in the EJB configuration database operations are
performed via Enterprise Java Beans (EJBs).7 The access mode
parameter was set to either Standard or WebServices. The latter
setting causes the benchmark to use the WebSphere implementa-
tion of web services (e.g., SOAP) to access transaction results. All
other parameters retained their default values.

Each of the three benchmarks was warmed up with 5000 steps of
the built-in scenario before tracing a single transaction that retrieves
a user’s portfolio information from a back-end database into Java
objects. Our analysis was applied to the portion of that transaction
that retrieves nine holdings from a database. The warm-up phase
is necessary to allow all necessary classes to be loaded and caches

4http://wala.sourceforge.net/
5Instrumentation-based profiling techniques generate accurate call
graphs even in the presence of inlining.
6Trade, WebSphere and DB2 are available to academic researchers
through the IBM Academic Initiative.
7Trade 6 uses the EJB 2 framework.

63

Benchmark Alloc’ed Alloc’ed Methods Calls Max
Types Instances Stack

Depth
Direct/Std 30 186 710 4,484 26
Direct/WS 166 5,522 3,308 127,794 53
EJB/Std 82 1,751 1,978 60,936 62
Eclipse 168 53,191 1,411 1,081,927 53

Table 1: Benchmark characteristics

Benchmark Pruned Running time (h:m:s) Speed-
BBs Orig Pruned up

Trade Direct/Std 38.8% 0:00:22 0:00:11 2.0
Trade Direct/WS 36.0% 3:01:52 0:19:31 9.3
Trade EJB/Std 41.0% 6:49:54 0:13:50 29.6
Eclipse JDT 30.9% 43:13:20 2:01:39 21.3
Average 36.7% 15.6

Table 2: Pruning effects

to be populated. Tracing the benchmark in a steady state is more
representative of the behavior of real Web applications.

Eclipse JDT Compiler. We experimented with the Eclipse JDT
compiler by tracing a single regression test from the XLarge test
suite. We ran the XLarge suite using JUnit and traced the execution
of the eighth test in the suite, which compiles a complete Java file.
Because a new compiler is instantiated before each test is executed,
the Eclipse JDT trace does not correspond to a steady state of the
application. For example, required classes were loaded during the
execution of the test.

Because the Trade application consists of a relatively small user
code that interacts with a large amount of framework and library
code, the three configurations of the same application have very
different properties and behavior in practice. Therefore, we use
these three configurations as different benchmarks, as have other
researchers [27]. These differences are confirmed by the data in
Table 1 that presents benchmark characteristics. Columns 2 and
3 show the total number of distinct types that were allocated and
the total number of instances (i.e., observed object allocations), re-
spectively. The last three columns show the total number of distinct
methods executed, the total number of method invocations and the
maximum depth of the call stack during execution. The results
clearly show a large variation in the characteristics of each bench-
mark, illustrating the differences between the libraries used by the
three Trade benchmarks. The results also attest to the complexity
of these framework-intensive benchmarks. Note that when the ob-
served scenario in Trade Direct/WS runs, it allocates 166 types of
objects and experiences call stack depths of over 50.

3.4 Empirical Results and Interpretation
In this section we define new metrics that are useful for comput-

ing the effects of our algorithm optimizations, identifying tempo-
rary objects and data structures, and characterizing them and their
uses. For each metric, we present empirical data from our bench-
mark suite, and discuss specific findings and observations based on
the results. We believe these to be the first such descriptive metrics
for temporaries in framework-intensive Java applications.

3.4.1 Pruning Effects
In order to measure the impact of the pruning technique on the

scalability of the analysis, we compute two metrics:

Metric 1: Pruned basic blocks
The percentage of basic blocks in the entire application that were
marked as unexecuted and therefore pruned away.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Direct/Std Direct/WS EJB/Std Eclipse

P
e

rc
e

n
ta

g
e

 o
f

In
s

ta
n

c
e

s
 i

n
 e

a
c

h
 e

s
c

a
p

e
 s

ta
te

captured mixed escaped

Figure 2: Disposition breakdown (by instances)

Metric 2: Execution time
The amount of time required to compute the escape analysis re-
sults. To show improvements between algorithms and make the
results comparable across different benchmarks, this metric only
includes the analysis phase of the algorithm (i.e., excludes the
time required to perform common operations such as reading the
dynamic call graph from a file or outputting the analysis results).

Table 2 shows the percentage of pruned basic blocks for all bench-
marks. Our technique pruned on average 37% of all basic blocks
in an application. Since most flow-sensitive analyses need to as-
sociate state with each basic block, this pruning directly translates
into a significant reduction of the memory footprint of the represen-
tation of the application. Also, removing basic blocks implies that
the algorithm has less code to analyze, and thus can be expected to
run faster.

In order to study the effect of pruning on the overall scalability
of our blended escape analysis, we recorded the total time required
to perform the analysis for each benchmark. Table 2 shows the
running times for both the original and pruned analyses. Pruning
has a clear impact on the analysis time for all benchmarks, and
achieves speedups (i.e., with respect to the original algorithm) of
between 2 and 29, with an average speedup of 15.6.8 Note that
in the remaining sections, for metrics whose specific purpose is
characterization, we only report the results of the pruned algorithm.

3.4.2 Disposition
Recall from Section 2 that our blended escape analysis assigns

an escape state to each object at every node in the call graph. Every
object also receives a disposition, or final escape state. The dis-
position of an object induces the disposition of its corresponding
instances (i.e., as determined by the postprocessing). Without dy-
namic imprecision, every instance would either globally escape or
be captured. However, dynamic imprecision sometimes introduces
ambiguity regarding the path in the dynamic CCT traversed by an
instance. In such cases, the postprocessing algorithm is forced to
label some instances as both escaping and captured, a state hence-
forth referred to as mixed.

We compute two metrics that relate to disposition:

Metric 3: Disposition breakdown (by instances)
The percentage of instances whose disposition is globally escap-

8We are working on optimizing our implementation, and expect to
reduce both the unpruned and pruned analysis times significantly.

64

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

Direct/Std Direct/WS EJB/Std Eclipse

P
e

rc
e

n
ta

g
e

 o
f

o
b

je
c

ts
 (

i.
e

.
a

ll
o

c
a

ti
o

n
 s

it
e

s
)

Otherwise Improved

Pruned

Figure 3: Disposition improvement (by objects)

ing, captured or mixed. This metric is used to characterize the
usage of temporaries.

Figure 2 shows disposition breakdown results for all the bench-
marks for both algorithm versions. Less than 5% of instances fall
in the mixed category across all benchmarks, showing that a vast
majority of objects can be categorized as either captured or glob-
ally escaping, even in the presence of dynamic imprecision. More
importantly, Figure 2 also shows that about 43% of all instances
never escape globally, thus indicating that temporaries account for
a significant portion of all instances.

Metric 4: Disposition improvement (by objects)
The percentage of objects whose disposition is improved by the
pruning algorithm. The disposition of an object is considered to
be improved (i) if its corresponding allocation site is found to be
unexecuted and is pruned away, or (ii) if the object is assigned a
more precise disposition. Note that an object that was labeled as
globally escaping by the original algorithm may have its dispo-
sition improved to mixed, if it is shown to be captured on at least
one path in the calling structure. This metric is used to show
precision improvements due to CFG pruning.

Figure 3 displays the disposition improvement results tallied by
objects. For each benchmark, the bottom portion of the bar repre-
sents objects corresponding to allocation sites that the pruning tech-
nique marked as unexecuted that were therefore pruned away. The
top portion of the bar shows the percentage of objects for which the
pruned analysis computed a more precise disposition. The results
show that between 5% and 17.7% of the objects benefit from the
pruning algorithm. Identification of unexecuted allocation sites is
responsible for 86% to 100% of the improvements, and it is clearly
the most effective aspect of the pruning algorithm. However, Fig-
ure 3 also shows that a small number of objects are assigned a more
precise disposition, up to 2% in the case of the Trade Direct/WS
benchmark.

3.4.3 Capturing depth
The capturing depth metric is a measure of the nature of the indi-

vidual regions in the program calling structure that use temporaries.

Metric 5: Capturing depth
The capturing depth of an instance is the length of the shortest
acyclic path from its allocating context to its capturing context.
An instance may have multiple capturing depths if it is captured
by more than one context; in this case, the instance contributes

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5 6 7-14

Capturing depth (in calls)

%
 o

f
c

a
p

tu
re

d
 i

n
s

ta
n

c
e

s

Direct/Std

Direct/WS

EJB/Std

Eclipse

Figure 4: Capturing depth histogram

to the overall capturing depth distribution once for each depth.
This metric is used to characterize the usage of temporaries.

In essence, capturing depth denotes a lower bound on the number
of method calls during which an instance is live; as such, it helps to
describe the program region that uses the instance. Deeper regions
define larger subtrees in the calling structure (i.e., each subtree has
at least d + 1 contexts for a capturing depth d). Temporaries that
are constrained to small regions may be easier targets for compiler
optimizations. Temporaries that belong to deep regions are likely to
cross framework boundaries and may require interprocedural code
specialization optimizations. Deeper regions also make it more dif-
ficult for developers to identify the source of potential performance
problems. For these reasons, we are interested in knowing how the
use of temporaries is distributed in a given application.

Figure 4 shows the distribution of capturing depths for all bench-
marks (i.e., depth of 1 means 1 call). For the Trade benchmarks,
between 25% and 64% of instances are captured more than 1 call
away from their allocating method. Therefore, a local escape anal-
ysis (i.e., within a single method) is likely to be ineffective at iden-
tifying temporaries, even if one level of inlining is used. An inter-
procedural escape analysis is necessary.

The capturing depth metric also shows that, for some bench-
marks temporary usage is very complex. For example, in the Trade
EJB/Std benchmark, more than 26% of instances are captured 7 or
more calls away from their allocating method. Note that tempo-
raries can also be passed down transitively to callees, so the captur-
ing depth only represents a lower bound on the number of methods
involved in manipulating a particular instance.

3.4.4 Illustrative Example
Figure 5 shows an example of a CCT context that captures in-

stances allocated at many different calling depths. The figure shows
the escape behavior of a single call to the getConnection method
of the J2EE data source layer. Data sources are an abstraction
above the database access layer, enabling such features as connec-
tion pooling and precompiled query caching. This example is typi-
cal of how the layering of frameworks can cause a simple function,
in this case obtaining the use of a locally cached connection, to lead
to the costly initialization of complex temporary structures.

In order to access the connection, a Subject authentication struc-
ture is built, using Java’s standard security framework. The figure
shows that this is a temporary structure, not visible beyond get-
Connection. The Subject object is allocated five calling levels

65

WSJdbcDataSource.getConnection(...)

CAPTURED ARG_ESCAPED

1 char[]1 WSPrincipalImpl

3 LinkedList

3 LinkedList$Entry

2 LinkedList$Entry

1 PasswordCredential

1 Subject

3 Subject$SecureSet
 (3 possible alloc sites)

2 Object[]

1 WSJccSQLJConnection

1 ArrayList 1 ArrayList

Figure 5: From Trade Direct/Std: two data structures created when obtaining a data source connection.

away from getConnection. Its internal infrastructure is allocated
even further away, the result of additional division of labor. For
example, the Subject constructor allocates three instances of an
internal set class, each of which delegates its storage to a Linked-
List. Each of these always allocates a sentinel LinkedList$-
Entry, now eight call levels from where the structure creation was
initiated. Note that such low-level library objects may appear in
other contexts as well, thus illustrating the importance of maintain-
ing distinct escape behavior for a given object at different contexts.

3.4.5 Concentration
The previous metric, capturing depth, is a descriptive measure

of the individual program regions that use temporaries. Here we
look at how the object churn costs are distributed across such re-
gions in the application scenarios we are analyzing. We would like
to understand whether object churn behavior is typically concen-
trated in a few regions, or is spread out across many regions. This
information can guide us toward solutions, for example, showing
whether diagnosis tools that help a user find a few hot regions of
object churn would be sufficient, or if problems are so widespread
they can only be handled by automated optimizations or better API
design practices.

Metric 6: Concentration
The concentration metric reports the percentage of captured in-
stances that are explained by X% of the top capturing methods.
This metric uses percentages in order to be comparable across
benchmarks. This metric is used to characterize the usage of
temporaries.

Figure 6 shows the results for each of the benchmarks, reporting
concentration using 5%, 10% and 20% for X . The results indicate
that about half of the temporaries (on average) are explained by the
top 5% of the capturing methods. In the case of the Eclipse JDT
Compiler, the top two capturing methods account for over 92%
of the captured instances! This is largely due to the fact that this
benchmark first populates a cache by loading and parsing classes
from the disk. Other benchmarks show a different concentration of
temporaries. For example, in the case of Trade EJB/Std, 34% of the
instances are explained by the top 5% of the capturing methods, or
2 out of the 44 capturing methods. Note that our analysis already

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Direct/Std Direct/WS EJB/Std Eclipse

P
e
rc

e
n

ta
g

e
 o

f
in

s
ta

n
c
e
s
 e

x
p

la
in

e
d

b

y
 x

%
 o

f
m

e
th

o
d

s

x = 5% x = 10% x = 20%

Figure 6: Concentration

focuses attention from 1979 observed methods down to just 44 cap-
turing methods. In all benchmarks, the top 20% of methods ex-
plain the majority of captured instances (between 50.5% and 98.7%
for Trade Direct/Std and Eclipse JDT Compiler, respectively). In
Trade EJB/Std, the top 20% of capturing methods explain 68% of
the instances.

3.4.6 Complexity of Data Structures
Temporaries often are organized into complex data structures in

order to perform a given task. Such structures can be expensive
to create because they involve both the cost of allocation and ini-
tialization of constituent instances and the cost of linking instances
together into a data structure. For this reason, we are interested
in characterizing the complexity of temporary data structures in a
given application, using the reduced connection graphs to identify
these temporary structures. By calculating the number of instances
in a data structure, we can estimate the savings possible through
optimization of its usage. Certain optimizations may be aimed at
temporary structures as a whole, such as pulling constant structures

66

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7-12

of Types

%
 o

f
D

a
ta

 S
tr

u
c
tu

re
s

Direct/Std

Direct/WS

EJB/Std

Eclipse

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5-10

of Allocating Methods

%
 o

f
D

a
ta

 S
tr

u
c

tu
re

s

Direct/Std

Direct/WS

EJB/Std

Eclipse

a) # of types b) # of allocating methods

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5

Height of Data Structure

%
 o

f
D

a
ta

 S
tr

u
c
tu

re
s

Direct/Std

Direct/WS

EJB/Std

Eclipse

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 3 4 5 6 7-14

Max distance

%
 o

f
D

a
ta

 S
tr

u
c
tu

re
s

Direct/Std

Direct/WS

EJB/Std

Eclipse

c) Height of data structure d) Maximum capturing distance

Figure 7: Complexity of data structures (by occurrences)

out of a loop, pooling similar structures that have expensive con-
struction for reuse, or specializing structures for a specific usage
pattern.

In order to characterize temporary data structures, we need a
clear definition of what constitutes a data structure in the reduced
connection graph of a calling context. A data structure in the re-
duced connection graph of a calling context in the CCT consists of
a root (i.e., an object with no incoming edges)9 and those nodes
reachable from it that have the same escape state. Because we are
interested in characterizing temporaries, we compute metrics only
over captured data structures.

Given the dynamic imprecision in the profiling data about ex-
ecuted allocation sites of the same type within the same method,
we chose to merge objects in the reduced connection graph that are
indistinguishable dynamically. This means that a set of objects rep-
resenting allocation sites of the same type in the same method with
the same connectivity in the reduced connection graph are merged.
This transformation prevents many of the issues of double-counting
instances when they cannot be mapped to a unique allocation site.
In all our discussions that follow, we use the term object to refer to

9For strongly connected components in the connection graph, we
select a node with no back edges as the root.

an object in the reduced connection graph after this merging trans-
formation has been applied.

Because every object has a corresponding set of associated in-
stances, we can compute of the number of occurrences of a data
structure (i.e., the number of instances of its root) as well as the to-
tal number of instances comprising the data structure (i.e., the sum
of the number of instances for each object in the data structure).

Note that a given object may appear as part of multiple data
structures. For instance, a char[] array that is created as part of a
String may, at a later time, become part of a StringBuffer object
as a result of a toString() operation.

We investigate the complexity of data structures and characterize
them by computing the following four metrics:

Metric 7: # of types
The number of distinct object types in each data structure. The
more types a data structure contains, the more complex it is.

Metric 8: # of allocating methods
For each data structure, the number of distinct methods that allo-
cate instances that are part of this data structure. The complexity
of a data structure increases with the number of allocating meth-
ods.

67

Metric 9: Height of data structure
The length of the longest acyclic path in the reduced connection
graph from a given data structure root to any other object in the
data structure. The complexity of a data structure increases with
its height.

Metric 10: Maximum capturing distance
The maximum capturing depth of any instance in the data struc-
ture. This metric calculates the longest capturing call chain cor-
responding to an instance contained in the data structure. Note
that the capturing distance (like the capturing depth metric) com-
putes a lower bound on the number of calls traversed during the
use of the data structure, since data structures may be passed
down to callees as well during execution.

All four metrics can be reported in aggregate form over all data
structures (i.e., by occurrences) or, alternatively, over all instances
in data structures (i.e., by instances). Intuitively, metrics computed
by occurrences capture properties of the data structures themselves.
Metrics computed by instances aim to answer questions regarding
the importance of certain data structures weighted by the number
of the instances they explain. For example, metrics computed by
instances could be useful to determine how profitable a specific
compiler optimization could be.

Figure 7 (a-d) presents the results for all the data structure met-
rics. The figure shows that there is a strong similarity between the
number of types (a), the number of allocating methods (b), and the
height of data structures (c). This correlation suggests that most
methods creating part of a data structure allocate instances of a
single type during execution. Figure 7 also shows that the Trade
EJB/Std benchmark uses more complex temporary structures than
the other benchmarks. For example, more than 12% of its tempo-
rary data structures have 3 or more types, as compared to at most
5% for the other benchmarks.

These results might at first suggest that most data structures are
relatively simple in structure; however, the instance-weighted met-
rics (not shown) reveal a more nuanced picture. For Trade EJB/Std,
28% of captured instances occur in data structures containing 6 or
more types. Even in the simplest benchmark, Trade Direct/Std,
25% of the instances are from temporary structures with at least
3 types. Finally, Figure 7 d) reveals a complex pattern of usage
of temporary structures. For example, in Trade EJB/Std, 49% of
structure occurrences (with 73% of the instances) contain at least
one instance allocated at least 2 calls away from the data structure’s
capturing context. Even the smaller Trade Direct/Std shows simi-
lar usage, with 23% of data structure occurrences (with 43% of the
instances) containing instances allocated at least 2 calls away from
their use.

The example in Figure 5 shows a captured Subject structure
that has a height of six and consists of instances of seven distinct
types, allocated by six different methods. (In the figure, the in-
ferred root of each structure is drawn with a white background).
A temporary structure this complex points to an expensive initial-
ization process. The trace indeed shows that initialization of this
structure requires 109 method calls. Looking beyond the region
we analyzed, the trace also shows that each transaction calls get-
Connection five times, thus initializing and throwing away five
occurrances of this same Subject structure, all representing the
same user and password information. This suggests the possible
optimization of saving the Subject structure within each transac-
tion, or perhaps even across transactions for the same user. It may
also suggest that the Java authentication infrastructure consider us-
ing a simpler data structure, for example one specialized for the
common case of a single user id and password. These are pos-

sibilities that would not be apparent by looking at each object in
isolation.

Figure 5 reveals an additional cost of accessing a connection:
the creation of an occurrence of WsJccSQLJConnection, a wrap-
per structure introduced by the data source layer. The reduced con-
nection graph of a higher-level CCT context (not shown) reveals
that this structure is temporary as well, and that this context addi-
tionally makes use of a similar temporary structure for wrapping
compiled queries. Note that one purpose of the data source layer
is to amortize the cost of using database resources. Yet it is often
the case that additional resources are expended just to make use of
such an abstraction layer. The data structure metrics point to costly
initialization for these wrapper structures, since each is the result of
three or more allocating methods. This suggests that a higher-level
optimization is possible, saving the data source connection within
each transaction (since the data source is fixed). This would avoid
the construction of the Subject and wrapper structures.

Finally, from a program understanding standpoint, viewing WS-
JccSQLJConnection and its infrastructure as a single data struc-
ture, as in Figure 5, helped reveal another anomaly. Upon exami-
nation of the role of the two ArrayLists within a connection wrap-
per, it was discovered that the same field was erroneously populated
with a new ArrayList twice: once by the concrete class, and once
by its superclass.

4. RELATED WORK
The blended analysis paradigm clearly is related to all existing

static and dynamic analyses. Given space limitations, this sec-
tion will focus only on the most relevant areas of related research:
(i) studies of framework-intensive software, (ii) previous combina-
tions of static and dynamic analyses, and (iii) previous characteri-
zations of the use of temporaries in large Java codes.

Studies of framework-intensive systems. Previous analyses of
framework-intensive applications used dynamic analysis to diag-
nose and optimize performance problems and to aid in understand-
ing the data structures used.

Ammons et al. [3], built the dynamic analysis tool Bottlenecks to
explore execution profiles to find performance bottlenecks. Exper-
iments with Bottlenecks on Trade 3, the SPECjAppServer2002 and
XML, demonstrated the complexity of these frameworks in terms
of their calling structure, by measuring the maximum and mean
depths of call paths (i.e., 77 max, 34 mean depth) and out-degree
of method nodes in the dynamic call graph (i.e., 74 max, 1.89 mean
degree).

Srinivas et al. [27] designed a dynamic analysis technique that
identifies ‘interesting method invocations’, that is, those that ac-
count for a specified cumulative percentage of execution cost, in
components selected by the user. The technique was tested suc-
cessfully on e-commerce applications built on Websphere and on
parts of the Eclipse IDE.

Mitchell et al. [21], constructed a characterization of the run-
time behavior of framework-intensive systems, by combining dy-
namic analysis with manual inspection of source code. This charac-
terization was used to organize the aggregation of operation costs in
terms of method calls and object creations. The emphasis was on
developing high-level abstractions of behavior that allow the rec-
ognizable grouping of observed method calls to better understand
their function and their cost.

Each of the above works introduces a novel way to summarize a
complex execution, in order to highlight a small number of regions
to study. In our work we use object lifetime information to identify
expensive regions of temporary usage. Recent work by Shankar et
al. [26] also employs object lifetime information to address regions

68

of object churn. This work uses dynamic sampling to identify re-
gions where it is profitable for JIT compilers to target aggressive
inlining, and thus widen the scope of stack allocation and related
optimizations.

Combined static and dynamic analyses. Static and dynamic
analyses have been combined to solve a wide range of problems,
including an early overview paper [12]. Typically, the static anal-
ysis results direct where the dynamic analysis should be applied
(e.g., the placement of code instrumentation by a compiler). In
contrast, the blended analysis paradigm uses dynamic analysis re-
sults to guide a subsequent static analysis, that may itself use dy-
namic information to achieve greater precision. Here, we will only
discuss examples of the latter combination (i.e., dynamic analysis
followed by static). Another difference in combined analyses is
seen in the close or loose coupling between the different types of
analyses used. Blended analysis is closely coupled; other analysis
combinations work in a more pipelined or loosely coupled fash-
ion, with the results of one analysis providing the input to the next
analysis phase.

Gupta et al. [16] used dynamic information – observed break-
points at branches and procedure calls/returns – to prune infeasible
control flow while calculating a static slice to explain program be-
havior for a specific execution. Similarly, in model checking C pro-
grams, Groce et al. interpreted failure traces by identifying a subset
of executions consistent with the trace, and then slicing the code
while eliminating portions that were inconsistent with the trace,
thus potentially increasing the precision of the slice [15]. These
uses of dynamic analysis to enhance the precision of a subsequent
static analysis are similar to the approach of blended analysis.

Mock et al. [22] designed a static slicing algorithm for C pro-
grams which used observed dynamic points-to relations instead of
computed static points-to relations when forming the slices. Their
findings were disappointing as they only improved the static slices
for programs with function pointer references which could thereby
be exactly resolved. In this case, the dynamic information didn’t
improve the precision of the static slicing of C programs.

Orso et al. [23] designed a change impact analysis algorithm that
given a program change at c, (i) calculates the set of tests which ex-
ecute c (i.e., dynamic information) and (ii) calculates the forward
slice using c as the slicing criterion. The results of (i) and (ii) are
intersected to form the ’impact set’, the set of nodes which are af-
fected by the program change at c. Here, the static analysis im-
proves the relevance of the dynamic analysis information reported,
but the combined result is better than either result viewed singly.

Godefroid et al. performed a symbolic execution (i.e., static anal-
ysis) on a test execution path (i.e., dynamic analysis), in order to
use the path condition constraints to generate test cases that would
explore alternative paths [14]. If the path condition constraint prob-
lem is not solvable, random concrete values are substituted for sym-
bolic values to allow solution. This main idea has been expanded by
Sen et al. to form a basis for concolic testing methodologies which
use both symbolic execution and substitution of concrete values
when necessary [25]. The similarity to blended analysis is that a
dynamic execution path is being explored by a static analysis (i.e.,
symbolic execution).

Recently there have been several explorations of loosely coupled
combined analyses. The Check ’n’ Crash tool [8] provides dynamic
testing of the errors/warnings reported by ESC/Java [13], in order
to filter out false positives. This process consists of a static anal-
ysis whose results are checked by a subsequent dynamic analysis.
Similarly, DSD-Crasher [9] runs Daikon, a dynamic analysis tool
that finds program invariants, to provide additional assumptions to
Check ’n’ Crash to help it generate the tests to check the errors

reported by ESC/Java. This newer process consists of: dynamic
analysis, static analysis, dynamic analysis.

Tomb et al. [28] try to find errors in programs similarly through
a combination of loosely coupled static and dynamic analyses. A
variably interprocedural symbolic execution analysis is used to ex-
plore Java program state on interprocedural paths expanded to a
specific max call depth associated with each method. For program
states that might result in a run-time exception, the associated con-
straints gathered by this analysis are then solved to find test inputs
that will expose the possible error on a program execution. Empir-
ical experiments demonstrate the utility of this approach.

Artzi et al. described various pipelined combinations of static
and dynamic mutability analyses for Java method parameters [4].
Empirical results obtained showed that a pipelined combination
analysis can exceed the accuracy of a more complex static analysis.

Characterizations of data structures in Java codes.
A key contribution of blended escape analysis is its ability to

characterize the use of temporaries in framework-intensive systems.
Mitchell [19] developed a set of graph transformations that allow
identification of the most important data structures of a framework-
intensive system from an execution heap snapshot. Clever graph
reductions were applied repeatedly to obtain the key data structure
relations, in terms of the nodes in a backbone of a graph that rep-
resents thousands of actual object instantiations. Mitchell and Se-
vitsky further classified the data structures in these applications as
healthy or not, depending on the amount of actual data contained
and the structural overhead of storing that data [20]. In this work
the summarization mechanism used is based on object ownership
and structural properties, deduced from the results of a dynamic
analysis. In contrast, in our work data structures are summarized
by their lifetime as reflected by their escape state, and their connec-
tivity, both derived from a blended escape analysis.

Blackburn et al. compute dynamic metrics about objects and
their lifetimes to validate the diversity of the DaCapo benchmark
suite of Java programs, as compared to the SPEC Java benchmarks [5].
Object lifetimes in the benchmarks are measured by heap examina-
tion during garbage collections. The unit of ‘distance’ in a data
structure here is heap cross-generational distance between objects
in the same data structure, whereas the distances associated with
data structures in our studies correspond to the levels of calling
context separating allocation and capture.

Buytaert et al. [6] estimated the possible payoff of avoiding ob-
ject creation in Java programs, by eschewing the need for tempo-
raries through refactoring. Temporaries were identified by instru-
menting the JVM to keep information about each object’s alloca-
tion site and its last use. The VM-specific methodology was only
tested on small benchmarks, so its utility on complex, framework-
intensive codes is not clear.

5. CONCLUSIONS
The growing popularity of framework-intensive applications has

led to a new kind of performance problem associated with the cre-
ation, initialization and use of temporary data structures. Under-
standing the contributing factors to excessive use of temporaries is
critical to being able ultimately to fix these performance problems.
Addressing this issue, we have presented an optimized blended es-
cape analysis with improved precision and increased scalability,
demonstrated by our empirical data. We have defined new metrics
that specifically characterize both the usage and complexity of tem-
porary data structures; we have applied them to four framework-
intensive benchmarks and reported our findings. Further, we have
demonstrated the effectiveness of our approach by explaining a
problematic scenario from one of our benchmarks.

69

6. REFERENCES
[1] W. Alexander, R. Berry, F. Levine, and R. Urquhart. A

unifying approach to performance analysis in the Java
environment. IBM Systems Journal, 1:118–134, 2000.

[2] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware
performance counters with flow and context sensitive
profiling. In Proc. of the ACM SIGPLAN Conf. on Prog.
Lang. Design and Impl. (PLDI), pages 85–96. ACM Press,
1997.

[3] G. Ammons, J.-D. Choi, M. Gupta, and N. Swamy. Finding
and removing performance bottlenecks in large systems. In
Proc. of the European Conf. on Object-oriented Prog.
(ECOOP), 2004.

[4] S. Artzi, M. D. Ernst, D. Glasser, and A. Kiezun. Combined
static and dynamic mutability analysis. In Proc. of the 22nd
IEEE/ACM Intl. Conf. on Automated Soft. Eng., pages
104–113, 2007.

[5] S. Blackburn, R. Garner, C. Hoffmann, A. Khan,
K. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. Moss, A. Phansalkar, D. Stefanovic,
T. VanDrunen, D. V. Dincklage, and B. Wiedermann. The
DaCapo benchmarks: Java benchmarking development and
analysis. In Proc. of the ACM SIGPLAN Conf. on
Object-Oriented Prog. Syst., Langs, and Appls (OOPSLA),
pages 169–190, Oct. 2006.

[6] D. Buytaert, K. Beyls, and K. D. Bosschere. Hinting
refactorings to reduce object creation in Java. In Proceedings
of the fifth ACES Symposium, pages 73–76, 1 2005.

[7] J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P.
Midkiff. Stack allocation and synchronization optimizations
for Java using escape analysis. ACM Trans. on Prog. Lang.
and Sys., 25(6):876–910, 2003.

[8] C. Csallner and Y. Smaragdakis. Check ’n’ Crash:
Combining static checking and testing. In Proc. of the 27th
Intl Conf. on Soft. Eng. (ICSE), 2005.

[9] C. Csallner and Y. Smaragdakis. DSD-crasher: A hybrid
analysis tool for bug finding. In Proc. of ACM SIGSOFT Intl
Symp. on Soft. Test. and Anal. (ISSTA), pages 245–254, 2006.

[10] W. DePauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides,
and J. Yang. Software visualization: State of the art survey.
In LNCS 2269, 2002.

[11] B. Dufour, B. G. Ryder, and G. Sevitsky. Blended analysis
for performance understanding of framework-based
applications. In ISSTA ’07: Proc. of the Intl Symp. on Soft.
Test. and Anal., pages 118–128, 2007.

[12] M. Ernst. Static and dynamic analysis: Synergy and duality.
In Proc. of the Wksp on Dyn. Anal., 2003.

[13] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. Saxe,
and R. Stata. Extended static checking for Java. In Proc. of
the ACM SIGPLAN Conf. on Prog. Lang. Design and Impl.,
pages 234–245, 2002.

[14] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In Proc. of the ACM SIGPLAN
Conf. on Prog. Lang. Design and Impl., 2005.

[15] A. Groce and R. Joshi. Exploiting traces in program analysis.
In Proc. of Intl Conf. on Tools and Algs for the Constr. and
Anal. of Sys. (TACAS), 2006.

[16] R. Gupta, M. L. Soffa, and J. Howard. Hybrid slicing:
Integrating dynamic information with static analysis. ACM
Trans. on Soft. Eng. and Meth., 6(4), Oct. 1997.

[17] O. Lhoták and L. Hendren. Scaling Java points-to analysis

using Spark. In G. Hedin, editor, 12th Intl Conf. on Comp.
Const. (CC’03), volume 2622 of LNCS, pages 153–169,
April 2003.

[18] T. J. Marlowe and B. G. Ryder. Properties of data flow
frameworks: A unified model. Acta Informatica,
28:121–163, 1990.

[19] N. Mitchell. The runtime structure of object ownership. In
Proc. of the European Conf. on Object-oriented Prog.
(ECOOP), 2006.

[20] N. Mitchell and G. Sevitsky. The causes of bloat, the limits
of health. In Proc. of the ACM SIGPLAN Conf. on
Object-Oriented Prog. Syst., Langs, and Appls (OOPSLA),
pages 245–260, Oct. 2007.

[21] N. Mitchell, G. Sevitsky, and H. Srinivasan. Modeling
runtime behavior in framework-based applications. In Proc.
of the European Conf. on Object-oriented Prog. (ECOOP),
2006.

[22] M. Mock, D. Atkinson, C. Chambers, and S. Eggars.
Improving program slicing with dynamic points-to data. In
Proc. of the 10th Symp. on the Found. of Soft. Eng., 2002.

[23] A. Orso, T. Apiwattanapong, and M. J. Harrold. Leveraging
field data for impact analysis and regression testing. In Proc.
of European Soft. Eng. Conf. and ACM SIGSOFT Symp. on
the Found. of Soft. Eng. (ESEC/FSE’03), Helsinki, Finland,
September 2003.

[24] B. G. Ryder. Dimensions of precision in reference analysis
of object-oriented programming languages. In invited paper
in the Proc. of the Twelfth Intl Conf. on Comp. Constr., pages
126–137, April 2003.

[25] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. In Proc. of the Conf. on the Found. of
Soft. Eng., 2005.

[26] A. Shankar, M. Arnold, and R. Bodik. JOLT: Lightweight
dynamic analysis and removal of object churn. In Proc. of
the ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA). ACM Press, 2008. (To appear).

[27] K. Srinivas and H. Srinivasan. Summarizing application
performance from a components perspective. In Proc. of the
ACM SIGSOFT Conf. on Found. of Soft. Eng., pages
136–145, September 2005.

[28] A. Tomb, G. Brat, and W. Visser. Variably interprocedural
program analysis for runtime error detection. In Proc. of the
ACM SIGSOFT Intl Symp. on Soft. Test. and Anal. (ISSTA),
pages 97–107, Jul. 2007.

70

