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Abstract
The first interprocedural modification side-effects analysis for C (MODC ) that obtains better

than worst-case precision on programs with general-purpose pointer usage is presented with
empirical results.1 The analysis consists of an algorithm schema corresponding to a family of
MODC algorithms with two independent phases: one for determining pointer-induced aliases
and a subsequent one for propagating interprocedural side effects. These MODC algorithms
are parameterized by the aliasing method used. The empirical results compare the performance
of two dissimilar MODC algorithms: MODC(FSAlias) uses a flow-sensitive, calling-context-
sensitive interprocedural alias analysis [LR92]; MODC(FIAlias) uses a flow-insensitive, calling-
context-insensitive alias analysis which is much faster, but less accurate. These two algorithms
were profiled on 45 programs ranging in size from 250 to 30,000 lines of C code, and the
results demonstrate dramatically the possible cost-precision tradeoffs. This first comparative
implementation of MODC analyses offers insight into the differences between flow-/context-
sensitive and flow-/context-insensitive analyses. The analysis cost versus precision tradeoffs in
side-effect information obtained is reported. The results show surprisingly that the precision
of flow-sensitive side-effect analysis is not always prohibitive in cost, and that the precision of
flow-insensitive analysis is substantially better than worst-case estimates and seems sufficient
for certain applications. On average MODC(FSAlias) for procedures and calls is in the range
of 20% more precise than MODC(FIAlias); however, the performance was found to be at least
an order of magnitude slower than MODC(FIAlias).

1 Introduction

Accurate compile-time calculation of possible interprocedural side effects is crucial for aggres-
sive compiler optimization [ASU86], practical dependence analysis in programs with procedure

∗The research reported here was supported, in part, by Siemens Corporate Research and NSF grants CISE-CCR-
9208632, CCR-9501761, GER-9023628.

1This is a presentation of the algorithm schema for MODC and describes new and extensive empirical results with
two of the algorithms. The first MODC algorithm in the schema was discussed in [LRZ93].
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calls [Ban88, Pol88, Wol89], data-flow based testing [HS91, BH93, HFGO94, Ost90, Wey94, CR99,
FW93, FI98], incremental semantic change analysis of software [Bur90, BR90, CR88, CK84, MR90a,
MR91, PS89, Ryd83, RP88], interprocedural def-use relations [PLR94, HS94, GH98, CR99, Cha99]
and effective static interprocedural program slicing [GL91, HRB90, OO84, RR95, GS96, LH96,
HC98, SHR99, TCFR96, Tip96, Ven91, Wei84, TAFM97, AG96, AG98]. Many of these key appli-
cations in parallel and sequential programming environments need interprocedural def-use infor-
mation which can be approximated using side-effect information. The utility of tools that address
these problems can depend directly on the accuracy of the data-flow information available to them.
Some problems may not need highly accurate data-flow information to solve them; in contrast,
some applications may need to use all the information in a highly accurate solution. The latter
applications need an efficient method to report program-point-specific side-effect information in the
presence of pointers in order to handle modern languages such as C, C++, FORTRAN90 and Java;2
this requires practical interprocedural side-effect analysis with pointers, something that previous
techniques for FORTRAN cannot supply [Ban79, Bur90, Coo85, CK88, CK87].

In the past, it has been suggested that one could do intraprocedural analyses of C codes, by
using worst-case estimates of variables which could possibly experience a side effect at a call site.
This yields a safe approximation of side-effect information, but almost surely overestimates the
side effects in a program. To validate that program transformations preserve program semantics,
however, more accurate side-effect information is needed.

This paper presents the first design and implementation of a schema for practical interproce-
dural modification side effects (i.e., MODC) for languages with general-purpose pointers (e.g., C).
Since determination of pointer-induced aliasing occurs in the schema as a separable phase, the
schema actually represents a family of MODC algorithms. The empirical experiments reported in-
volve two MODC methods with different component aliasing algorithms. MODC(FSAlias) uses a
flow-sensitive, calling-context-sensitive approximation algorithm for pointer-induced aliasing, called
FSAlias [LR92]; MODC(FIAlias) uses a flow-insensitive, calling-context-insensitive approxima-
tion algorithm for pointer-induced aliasing, called FIAlias, which is similar to the algorithm de-
scribed in [ZRL96, Zha98]. The actual implemented algorithm handles unions and casting in C
programs. The MODC schema is independent of the aliasing algorithm chosen and can use any
aliasing algorithm, given a suitable interface. These MODC algorithms have extensive implementa-
tion results reported; these experiments are the first investigations of the cost-precision trade-offs
of flow- and context-sensitivity as measured with respect to interprocedural side-effect analysis.

MODC(FSAlias) reports program-point-specific possible modification side effects; the results
are more precise than information derivable using the same alias summary for all statements of a
procedure. After aliases are computed, they are used to gather procedure summary modification
information categorized by calling context, with subsequent propagation of modifications through
the program call multigraph. Finally, call site modification information is calculated using the
results of the procedure side-effects summary. MODC(FIAlias) also reports program-point-specific
possible modification side effects, but it uses alias information that is assumed to be valid globally
throughout the program. Thus, more spurious side effects may be reported locally and propagated
on the call multigraph (in a context-insensitive manner).

The empirical tests of these algorithms used 45 C programs, most of which are publicly available.3

2Value-flow analysis for Java references is similar to pointer alias analysis.
3Visit http://www.prolangs.rutgers.edu/ to obtain the public programs in this data set.
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Measurements of average and maximum number of side effects found per assignment statement,
per assignment through pointer dereference (i.e., a through-dereference assignment statement such
as *p=), per procedure and per call have been recorded for both algorithms. Significantly, better
precision is obtained by MODC(FSAlias) at greater time cost than MODC(FIAlias). This preci-
sion is necessary for some compiler transformations. MODC(FSAlias) shows surprising scalability
on programs up to 10,000 lines of code at compile-time cost in the prototype. Extensive use of
recursive data structures is a key factor that limits the scalability of MODC(FSAlias). Accord-
ingly, MODC(FSAlias) successfully analyses a 25,000 line program that doesn’t use recursive data
structures. Unexpectedly, MODC(FIAlias) is much more accurate than a coarse worst-case esti-
mate and costs at least an order of magnitude less than MODC(FSAlias), so it may be sufficient
and practical for program understanding applications on large codes. The decreased cost is pri-
marily due to the cost of the FIAlias phase relative to FSAlias. In addition, several suggested
improvements may augment the precision of MODC(FIAlias).

Specifically, the results for MODC(FSAlias) show that procedures modify on average 11 lo-
cations, while MODC(FIAlias) reports that procedures modify on average 17 locations, approxi-
mately 50% more side effects on average reported by the insensitive algorithm.4 A crude measure of
the accuracy of MODC(FIAlias) versus MODC(FSAlias) can be obtained by examining the dif-
ference in their solutions on the data admitting both kinds of analysis, since both are safe estimates
of side effects that can occur. Normalized differences at calls and for procedures are presented and
discussed in Section 4.

The empirical results show the utility of both analyses for specific applications and demonstrate
the precision gains from sensitivity for certain data-flow information. Recent work in partitioning
programs for analyses [ZRL98, ZRL96, Ruf97] yields hope that analyses of varying cost and precision
can be applied to different parts of a program to obtain desired data-flow information at practical
cost. The experiments reported here can be viewed as the initial investigation into the cost-precision
tradeoffs involved when using data-flow analyses of varying degrees of flow- and context-sensitivity.

This paper is organized as follows. Section 2 discusses issues of accurate interprocedural data-
flow analysis and pointer aliasing algorithms. Section 3 presents the MODC algorithm schema, its
worst-case complexity and an example of both of the MODC algorithms used in the empirical tests.
Section 4 reports the empirical results and derived observations. Section 5 details related work in
data-flow analysis. Section 6 summarizes the contributions of the work. Appendix A presents a
comparison of the MOD decomposition for C to that for FORTRAN. In Appendix B, an extended
MOD algorithm based on our decomposition that approximately bounds the precision of side-effect
solutions is explained. Finally, Appendix C presents the raw data from the empirical measurements
discussed in Section 4.

2 Interprocedural Data-Flow Analysis

All interprocedural data-flow analyses for C-like languages encounter issues of problem formulation:
how to obtain good static estimates of the possible execution paths through the program (including
the possible calling patterns), how to treat variables created dynamically on the heap and aggregates

4If data for moria, a statistical outlier, is removed, the average total for MODC(FIAlias) becomes 14. By contrast,
removal of moria from the average total for MODC(FSAlias) has no effect.
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(i.e., arrays, structs), and how to obtain good approximations to the possible aliasing induced by
pointer usage in the program.

2.1 Program Representation

A program is represented by a common directed graph structure, an ICFG or interprocedural control
flow graph. This is no more than the control flow graph of each procedure connected together at
call sites, each of which has been split into a call node and a return node. Procedures are made to
have a single entry node and single exit node, if they do not already, by inserting extra (dummy)
nodes and edges as required. Each call node is connected to the called procedure’s entry node;
each return node is connected to the called procedure’s exit node. Figure 9 of Section 3.2 shows
the ICFG representation of a small example program.

Iterative data-flow analysis is a fixed point calculation for recursive equations defined on a graph
representing a program, that safely approximates the meet over all paths solution of a data-flow
problem [Kil73, MR90b]. For interprocedural data-flow analysis, not all paths in the usual graph
representation correspond to real program executions. A realizable path is a path on which every
procedure returns to the call site which invoked it [JM82b, LR92, RHS95, SP81]. Paths on which
a procedure does not return to the call site which invoked it are unrealizable and can never happen
in an actual execution. (setjump and longjump are not allowed in the C programs analyzed.) A
fundamental problem of interprocedural analysis is how to restrict the propagation of data-flow
information to realizable paths, especially when the data-flow functions are monotone rather than
distributive so that the fixed point solution need not be the meet-over-all-paths solution [KU77,
MR90b].

2.2 Issues Involving Variables

The MODC schema defines a family of algorithms which determine modification side effects to
fixed locations at program points. A fixed location is either an user-defined variable or a heap
storage creation site. Each individual dynamically allocated fixed location is identified by the
site that created it [JM82b, RM88]; therefore, whereas two fixed locations created at the same
allocation site are not distinguishable, those created at different sites are. Fixed locations are so
named because the relation between a fixed location and the storage location to which it refers, is
unchanging during execution. Fixed locations do not contain any dereferences. For example in C
syntax, x and x.f are fixed locations. By contrast, for other C names which include dereferences
(e.g., *p, p->f), the relation between the name and the storage to which it refers can (and often
does) change during execution. The term object name will be used to refer all C names in general,
with or without dereferences; thus fixed location will delineate a subset of those names. Side effect
information is obtained only for fixed locations.

All data-flow algorithms must deal with the a priori unbounded nature of recursive data struc-
tures. Many follow the approach of Jones and Muchnick [JM82a] which limits by truncation,
the set of possible object names obtainable by following links in a recursive data structure, only
maintaining the first k dereferences, a process known as k-limiting. Others have suggested less
naive ways of restricting the namespace while obtaining more accurate aliases of heap-stored ob-
jects [CWZ90, Deu94, HPR89, LH88, HN90, HHN92, GH96a, GH96b, SRW98].
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One difficulty with k-limiting is that it loses information about the suffix of an object name.
With 2-limiting, the alias 〈p->f->g->h, x〉 is represented by 〈p->f->g#, x〉. However this k-
limited object name also represents a set of object names, (e.g., p->f->g->hi for all i that make
sense, *(p->f->g), p->f->g->h->j). If no casting is allowed, then type information can rule
out most erroneous cases. However, in the presence of casting, especially when an algorithm (like
FSAlias) attempts to handle the most aggressive instances (e.g., casting a pointer value to an
integer and back again to pointer type), an algorithm using this kind of k-limiting will experience
much imprecision.

The FSAlias algorithm uses k-limiting of names in recursive data structures, based on Jones
and Muchnick’s original k-limiting definition, combined with a naming scheme that identifies a
dynamically created fixed location by its creation site. FIAlias needs no k-limiting because it only
reports aliases involving those object names that explicitly appear in a program.

As in most pointer-aliasing algorithms, arrays are treated as single variables by FSAlias
and FIAlias. Some algorithms distinguish the independent fields of a structure (e.g., FSAlias,
FIAlias, [EGH94, ZRL96, Ste96a]) while others do not (e.g., [SH97b, Ste96b]).

An added complication is presented by non-visible object names. The non-visibles are local
variables of procedures live at the call site (or in an earlier invocation of the current procedure)
which are accessible through an alias, although not visible directly in the current scope. Possible
side effects to these object names must be accounted for [LR92, LRZ93, EGH94].

2.3 Alias Representation

The MODC schema requires knowledge of aliases, that is, object names that may refer to the same
storage location at some point in the execution. In programming languages such as C, explicit
addressing operators render alias analysis more difficult than in FORTRAN, where aliases are
introduced only through call-by-reference parameter passing. But the need for alias analysis still
exists in modern programming languages whose pointer usage is more constrained (e.g., Java and
FORTRAN90).5

Alias algorithms can be distinguished by their representation of the alias relations and the degree
to which they preserve program-point-specific information. Aliases are either represented explicitly
as pairs of object names or implicitly embedded in a points-to relation.6 Hendren et al. represent
aliases as a set of simultaneous points-to relations at a particular program point [HN90, EGH94]
(e.g.,〈x,y〉) means x points to the object name y). Choi et al. use an implicit representation which
stores all aliases as pairs consisting of a fixed location and the object name (containing a single
dereference) which points to it (e.g., 〈∗p,x〉 means the dereferenced value of p is x). This repre-
sentation, like a points-to representation, requires a closure step to obtain object names containing
multiple levels of dereferences [CBC93, MLR+93, BCCH94, BCCH97]. For example, 〈∗p,∗q〉 and
〈∗q,r〉 must be combined to yield 〈∗∗p,r〉. FSAlias [LR92], the flow-/context-sensitive alias ap-
proximation algorithm uses an explicit representation of aliases as pairs of object names possibly
containing dereferences (e.g., 〈∗∗p,∗q〉). Redundant aliases obtained through dereferences applied

5The MODC schema would be largely unchanged for these languages although the alias phase would probably be
more efficient by being specialized to their simpler pointer usages.

6Differences between points-to analysis notation and the explicit pointer alias representation were also discussed
in [EGH94].
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to both elements of an alias pair are not stored explicitly but are inferred (e.g., 〈∗p,∗q〉 implies
〈∗∗p,∗∗q〉). These two representations will be referred to by the terms explicit and implicit.

Essentially, the implicit representation is the same as that in the points-to relation, except
the points-to has the ”*” implied for the first element, making the order of the relation relevant.
By explicitly requiring the ”*” to appear, the implicit representation can also directly represent
reference parameter and structural aliases between object names, but not general aliasing (e.g.,
〈∗∗p,∗q〉); all of these are directly representable with the explicit representation.

The implicit representation is claimed to be a space savings over the explicit representation,
but no empirical or theoretical comparison has yet been made. The observed memory needs of
the explicit representation used in FSAlias, are bounded by the memory measurements in Section
4. While it is true that the implicit representation is more compact,7 the explicit representation
allows for optimizations that interprocedurally enable the alias analysis only to pass a part of the
solution from the caller’s context into the called procedure, which can result in significant space
savings, especially on larger programs. Thus, the memory tradeoffs in choice of representation are
not clear.

The implicit and explicit representations can be shown incomparable in terms of the resulting
accuracy they exhibit as illustrated in Figure 1. In Figure 1(a), an algorithm using the implicit
representation will result in the 〈∗x,z〉 alias replacing incoming alias 〈∗x,y〉 at statement S3; thus
no aliases involving y will be reported at S4. By contrast, an algorithm using the explicit represen-
tation will have formed the alias 〈∗∗p,y〉 at statement S2 and it will remain in the alias set (as a
spurious alias) reported at statement S4. In Figure 1(b), an algorithm using the implicit representa-
tion will combine the aliases 〈∗p,q〉 and 〈∗q,y〉 from opposite arms of the if statement and obtain
the spurious alias 〈∗∗p,y〉 at S5, since this representation implies combination of any alias pairs at
a program point when aliases are needed. An algorithm using the explicit representation will not
find this spurious alias because no transitive combination of alias pairs is required. In Figure 1(c),
an algorithm using either the implicit or explicit representation will wrongly combine incoming
aliases at statement S5 〈∗p,q〉 and 〈∗r,s〉 with the unconditional alias created at that statement,
〈∗q,r〉, obtaining the spurious alias 〈∗∗∗p,s〉. This occurs because neither representation encodes
enough information to remember that the two incoming aliases do not exist concurrently on a path
in the program. These examples are simple instances of the general problem.

S1: x = &y;
S2: p = &x;
S3: x = &z;
S4: **p =

S1: q = &z;
S2: if ()
S3: p = &q;

else
S4: q = &y;
S5: **p =

S1: if ()
S2: p = &q;

else
S3: r = &s;
S4: q = &r;
S5: ***p =

(a) Implicit representation
more precise

(b) Explicit representation
more precise (c) Both imprecise

Figure 1: Comparison of implicit and explicit representations of aliases.

7The implicit representation is called compact in [HP98].
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2.4 Analysis Precision and Sensitivity

Since the basic problem of determining pointer-induced aliases is intractable for programs with
multiple levels of indirection [LR91, Lan92b, Ram94], practical pointer-aliasing algorithms are ap-
proximate. Many algorithms use intraprocedural propagation of aliases through pointer-assignment
statements in a manner conceptually similar to the single-level pointer aliasing algorithm in Chap-
ter 10 of [ASU86] with extensions to handle multiple-level pointers. Intraprocedural algorithms
can make worst-case assumptions about the effects of call sites and determine a “first-cut” alias
solution.

Most pointer aliasing algorithms now in the literature do some form of interprocedural anal-
ysis. They are distinguishable by the amount and type of calling context they preserve with the
derived alias information. Some algorithms obtain differentiated program-point-specific alias infor-
mation, because in these algorithms statement order of execution is significant. They are called
flow-sensitive methods. When flow of control of execution is ignored, a flow-insensitive method
is obtained. Algorithms which propagate alias information across calls, along paths in the called
procedure and then back again into the calling procedure, keeping approximate calling-context
information with each alias pair, are termed context-sensitive, in that they distinguish back prop-
agation of information between different call sites. Program-wide alias information is obtained by
techniques which upon identifying an alias, presume it holds throughout the program. This can be
done in a context-sensitive or insensitive manner (e.g., by replicating fixed-location names).

2.5 Maintaining Calling Context

There are many methods proposed for distinguishing calling contexts (i.e., the state of the call stack)
in data-flow algorithms. Sharir and Pnueli [SP81] advocate the use of a call-string list of open and
not yet closed procedure activations to label data-flow information precisely with the calling context
in which it was obtained. They also suggest use of an approximate call-string consisting of the last
j calls on the call stack. The call-string list is close to the approach used in the points-to algorithm
developed at McGill University, where every procedure activation is analyzed separately [HN90,
EGH94]; optimizations to reduce computation by reusing the results for similar calling contexts were
suggested by Emami [Ema93], and have been subsequently developed by Wilson and Lam [WL95]
for points-to analysis and Ghiya and Hendren for connection analysis [GH96a]. Empirical data
seems to suggest that such optimizations can dramatically reduce the number of contexts actually
analyzed. Jones and Muchnick [JM82b] describe the use of an abstraction of the calling context
at a dynamic creation site for a variable; the precision of this abstraction plus the approximation
lattice for the data-flow problem in question determine the precision of the solution. Choi et al.
use the immediate past call site as their encoding of the calling context in their flow-sensitive
aliasing algorithm [CBC93, MLR+93, BCCH97]. They also describe an algorithm variant that uses
alias sets of unrestricted size at the call site, called source alias sets, as additional call site encoding
information. Their use of the previous call site name is the same as approximations suggested earlier
by [JM82b, SP81]. It also resonates with later work in the functional programming community on
higher-order functions, Shivers’ control flow analyses (CFA) [Shi88] in which a suffix of the call stack
contents is used to approximate calling context (e.g., 0CFA - no call sites distinguished, 1CFA -
last call site distinguished, etc.).

The calling context approximation used in the MODC schema is inherited from the alias analysis
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used. For MODC(FSAlias), this is the same as that of the FSAlias algorithm [LR91, LR92]. The
data-flow fact that x and y are aliased at program point n is represented by an unordered pair
〈x,y〉 at n. The encoding of calling context is the set of reaching aliases8 (RAs) that exists at
entry of procedure p containing n when p is invoked from a particular call site. When an alias
exists independently of calling context, any reaching alias is an appropriate context to use, but for
convenience the special reaching alias φ is used. The RA set can be used to determine to which call
sites, aliases at the exit of a called procedure should be propagated, namely only to those call sites
which induce that RA set. Essentially the RA set induced by a call corresponds to a source alias set
to which a namespace mapping is applied that includes the parameter bindings as well as scoping
transformations. Using a single alias pair from the RA set to determine calling context, yields a safe
approximate solution of realizable paths for programs containing multiple levels of dereferencing;
this is the approximation used for calling context in MODC(FSAlias) at procedure entry. For
aliasing in programs restricted to one level of dereferencing, the RA sets are of cardinality one and
can be used to obtain a precise solution [LR91]. The empirical results in Section 4 indicate that
this is also a good approximation in practice. RA is used in the description of the MODC schema
to represent some approximation of calling context.

Figures 2 and 3 show that the reaching alias encoding of calling context is incomparable to
using the last call site (i.e.,1CFA). For comparison purposes, these examples have been coded
using the Landi-Ryder representation of aliases. In these examples aliases created independently
of calling context are labeled with call site ⊥ and spurious aliases are underlined. In Figure 2,
the approximation arises because before n3, an algorithm using reaching aliases for calling context
cannot determine that 〈∗p,q〉 and 〈∗x,y〉 never occur on the same path; since different reaching
aliases might correspond to the same call site, the safe approximation is to assume this does occur,
which causes a spurious alias to be created. By using last call site information, however, an
algorithm can see that each alias is labeled by a different call site.

In Figure 3, the approximation in using last call site arises because on the return of B to A, the
algorithm has lost all information differentiating the call sites in the main program, whereas in this
case, the reaching aliases distinguish the call sites; unlike in Figure 2, there is no approximation
since no aliases are created involving their possible interaction. Thus, these two calling context
approximations are incomparable.

2.6 The FSAlias and FIAlias Algorithms

The MODC schema inherits its calling-context sensitivity and flow sensitivity from the pointer-
aliasing algorithm used. The empirical tests have exercised two specific choices of MODC algorithms
at opposite ends of the sensitivity spectrum, namely MODC(FSAlias) which is flow-/context-
sensitive, and MODC(FIAlias) which is flow-/context-insensitive. MODC(FSAlias) is more costly
and more accurate, in general, than MODC(FIAlias) because of the differences in cost and accuracy
of the aliasing algorithms used. These techniques allow exploration of the precision/cost tradeoffs
of side-effects analysis and the scalability of these approaches applied to real programs. While the
results obtained are specific to the two algorithms used, it seems likely that similar results will
be obtainable from any pair of algorithms which vary similarly in sensitivity. More general claims
would require additional experimentation.

8Reaching aliases were referred to by the term assumed aliases in [LR92].
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reaching alias last call site
int ∗∗p, ∗q, ∗r;
int ∗x, y;
void main ()
{

p = &r; { [φ,〈∗p, r〉] } { [⊥,〈∗p, r〉] }
if () {

p = &q;
{

[φ, 〈∗p, q〉]
} {

[⊥, 〈∗p, q〉]
}

n1 : A ();

{
[φ, 〈∗p, q〉], [φ, 〈∗∗p, ∗x〉],
[φ, 〈∗q, ∗x〉], [φ, 〈∗q, y〉]

} {
[⊥, 〈∗p, q〉], [⊥, 〈∗∗p, ∗x〉],
[⊥, 〈∗q, ∗x〉]

}

} else {
x = &y;

{
[φ, 〈∗x, y〉], [φ, 〈∗p, r〉]

} {
[⊥, 〈∗x, y〉], [⊥, 〈∗p, r〉]

}

n2 : A ();






[φ, 〈∗x, y〉], [φ, 〈∗∗p, ∗x〉],
[φ, 〈∗∗p, y〉], [φ, 〈∗r, ∗x〉],
[φ, 〈∗r, y〉], [φ, 〈∗p, r〉]











[⊥, 〈∗x, y〉], [⊥, 〈∗∗p, ∗x〉],
[⊥, 〈∗∗p, y〉], [⊥, 〈∗p, r〉]
[⊥, 〈∗r, ∗x〉], [⊥, 〈∗r, y〉]






}
}

void A ()

{
{

[〈∗p, q〉, 〈∗p, q〉], [〈∗x, y〉, 〈∗x, y〉],
[〈∗p, r〉, 〈∗p, r〉]

} {
[n1, 〈∗p, q〉], [n2, 〈∗x, y〉],
[n2, 〈∗p, r〉]

}

n3 : ∗p = x;

}






[〈∗p, q〉, 〈∗p, q〉], [〈∗x, y〉, 〈∗x, y〉],
[φ, 〈∗∗p, ∗x〉], [〈∗p, q〉, 〈∗q, ∗x〉],
[〈∗x, y〉, 〈∗∗p, y〉], [〈∗p, r〉, 〈∗r, ∗x〉],
[〈∗p, r〉, 〈∗r, y〉], [〈∗p, r〉, 〈∗p, r〉],
[〈∗p, q〉, 〈∗q, y〉]











[n1, 〈∗p, q〉], [n2, 〈∗x, y〉],
[n2, 〈∗p, r〉], [⊥, 〈∗∗p, ∗x〉],
[n1, 〈∗q, ∗x〉], [n2, 〈∗∗p, y〉],
[n2, 〈∗r, ∗x〉], [n2, 〈∗r, y〉]






Figure 2: An example in which last call site is more precise than reaching alias.
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reaching alias last call site
int ∗p, q, r;
void main ()
{

p = &q;
{

[φ, 〈∗p, q〉]
} {

[⊥, 〈∗p, q〉]
}

n1 : A ();
{

[φ, 〈∗p, q〉]
} {

[⊥, 〈∗p, q〉], [⊥, 〈∗p, r〉]
}

p = &r;
{

[φ, 〈∗p, r〉]
} {

[⊥, 〈∗p, r〉]
}

n2 : A ();
{

[φ, 〈∗p, r〉]
} {

[⊥, 〈∗p, q〉], [⊥, 〈∗p, r〉]
}

}

void A ()
{

[〈 ∗p, q 〉, 〈∗p, q〉], [〈∗p, r 〉, 〈∗p, r〉]
} {

[n1, 〈∗p, q〉], [n2, 〈∗p, r〉]
}

{
n3 : B ();

}
{

[〈 ∗p, q 〉, 〈∗p, q〉], [〈∗p, r 〉, 〈∗p, r〉]
} {

[⊥, 〈∗p, q〉], [⊥, 〈∗p, r〉]
}

void B ()
{

[〈 ∗p, q 〉, 〈∗p, q〉], [〈∗p, r 〉, 〈∗p, r〉]
} {

[n3, 〈∗p, q〉], [n3, 〈∗p, r〉]
}

{
}

{
[〈 ∗p, q 〉, 〈∗p, q〉], [〈∗p, r 〉, 〈∗p, r〉]

} {
[n3, 〈∗p, q〉], [n3, 〈∗p, r〉]

}

Figure 3: An example in which reaching alias is more precise than last call site.

The following alias algorithm descriptions are explained on an intuitive level to stress key con-
cepts, with an example following to show the differences between FSAlias and FIAlias. Detailed
comprehension of these algorithms is not necessary for understanding this paper.

2.6.1 FSAlias

Figure 4 gives an overview of the FSAlias algorithm, which relies on a flow-/context-sensitive fixed
point iteration on the ICFG, using a standard worklist approach. In FSAlias, alias information is
propagated along the static paths in each procedure for a specific calling context (i.e., a reaching
alias) in a manner which preserves statement order; during this propagation, aliases are created
or destroyed depending on the semantics of the program statements encountered on the path.
Therefore, a full description of the algorithm requires a description of the transfer functions at
intraprocedural nodes (i.e., pointer assignments) and at interprocedural nodes (i.e., call sites).

The initialization phase of the algorithm (step 1) populates the initial worklist with the ini-
tial set of aliases, either those created intraprocedurally by a pointer assignment (1.1) or in-
terprocedurally by parameter-argument associations at calls (1.2). This is done by procedures
alias intro by assignment and aliases intro by call respectively. Aliases that are created regard-
less of any reaching alias can legitimately be associated with any reaching alias, but for practicality
are only associated with a special reaching alias, φ.

Step 2 performs the data-flow information propagation both intraprocedurally and interproce-
durally. During one step in the iteration, a (node, [calling context, alias]) entry is removed from
the worklist, and propagated to successor nodes by invoking appropriate handling procedures. (n,
[RA, PA]) represents the fact that alias PA holds at node n in calling context RA. The term alias
tuple will be used to refer to an alias pair with its corresponding calling context (e.g., [RA, PA]).
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The intraprocedural propagation of aliases through pointer assignment statements is described by
transfer functions associated with each node in a standard extension of [ASU86] (i.e., performed
by procedure alias implies thru assign in step 2.4.1). If an intraprocedural node has no effect
on pointer aliasing then the tuple is preserved through that node (i.e., performed by procedure
preserve in step 2.4.2).

For example, in Figure 7 at the exit of statement 8 (p = q) in main, the alias tuple [φ,〈∗p, ∗q〉] is
generated under all calling contexts. The alias tuple [φ,〈∗q, a〉] reaches (and is preserved through)
statement 8 after having been created at statement 7. This alias is combined with the semantics of
the pointer assignment at 8 to create alias [φ,〈∗p, a〉] at the exit of statement 8. This fully describes
the transfer function associated with the pointer assignment at statement 8. Similar functions
are used at all pointer assignments [LR92]. Essentially, an alias is created regardless of calling
context by the assignment itself, current aliases of the left-hand-side object name (assuming it can
be dereferenced) are killed by this assignment, and aliases of the right-hand-side object name (if
any) become new aliases of the dereferenced left-hand-side object name.

Intuitively, the processing in step 2 for propagation of aliases across procedure boundaries occurs
as follows. Interprocedurally, a call to procedure Q, callQ, creates reaching aliases at the entry of Q.
If the algorithm is analyzing the calling procedure under calling context RA, contexts of(callQ, RA)
denotes the set of reaching aliases induced by both the parameter bindings (handled by step 1.2)
and the aliases associated with RAs which reach the call. The special reaching alias φ and reaching
aliases created solely by the parameter bindings are included in the set contexts of(callQ, φ).9
Calias(n, RA) represents the set of aliases at program point n under the calling context RA which
reaches the entry of the procedure containing n.10 The mapping of Calias(n, RA) into the called
procedure is handled by procedure alias at call implies in step 2.2.

At the exit of Q, aliases associated with reaching alias RA
′ are propagated to any call site callQ,

where RA
′ ∈ contexts of(callQ, RA), and thereafter are associated with RA in the procedure

containing that call site. This mapping is performed by procedure alias at exit implies in step 2.3.
Aliases associated with reaching alias φ are valid at every call site. The details of the algorithm
include the namespace mappings between the calling and called procedures [LR92].

For example, in Figure 7 the set of alias tuples which reach the call at statement 10 is
([φ,〈∗p, ∗q〉], [φ,〈∗q, a〉], [φ,〈∗p, a〉]). The transfer function at the call maps each of these aliases
into proc1 as a reaching alias, so that the alias tuples at exit of statement 3 in proc1 are:
([〈∗p,∗q〉,〈∗p, ∗q〉], [〈∗q,a〉,〈∗q, a〉], [〈∗p,a〉,〈∗p, a〉]). At the exit of statement 4 in proc1, we pre-
serve all of these incoming alias tuples and generate new alias tuples: ([φ,〈∗r, ∗q〉], [〈∗q,a〉,〈∗r, a〉]).
Now, at the return from the call at statement 10 (recall that the ICFG breaks all call statements
into two nodes, a call and a return), step 2.3 of the algorithm in Figure 4 propagates the alias tu-
ples ([φ,〈∗p, ∗q〉], [φ,〈∗q, a〉], [φ,〈∗p, a〉], [φ,〈∗r, ∗q〉], [φ,〈∗r, a〉]), back to the return at statement 10.
Note that with respect to the last tuple, RA is φ in the previous discussion and RA

′ is 〈∗q,a〉. This
examplifies the mapping of corresponding reaching aliases at call sites during alias propagation.

9The correspondence between the non-visibles and non-addressable object names is memoized at the called pro-
cedure entry so that a local of a (possibly transitive) calling procedure is mapped to the representative object name
nv which is used throughout the alias propagation on paths from that procedure entry. Upon return from a call, any
aliases involving nv are expanded using the memoized information into the actual alias relations at the appropriate
call sites.

10In [LR92], may-holds were used to represent conditional aliasing information. Calias(n, RA) =
{PA | may-holds(n, RA, PA)}.
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begin
1. for each node n in ICFG

1.1 if n is a pointer assignment
aliases intro by assignment(n);

1.2 else if n is a call node
aliases intro by call(n);

2. while worklist is not empty
2.1 remove (n, [RA, PA]) from worklist;
/* interprocedural propagation */
2.2 if n is a call node

alias at call implies(n, RA, PA);
2.3 else if n is an exit node

alias at exit implies(n, RA, PA);
2.4 else /* intraprocedural propagation */

for each m ∈ successor(n)
2.4.1 if m is a pointer assignment

alias implies thru assign(m, RA, PA);
2.4.2 else

preserve(m, RA, PA);
end

Figure 4: FSAlias algorithm

The main approximation which can occur in FSAlias is that sometimes two incoming aliases
at a pointer assignment that are needed to create an alias as a side effect of that statement, can
never actually occur on the same execution path from program start to this assignment. There
is an example of this in Figure 1(c). At the exit of statement S4, the existence of aliases 〈∗p,q〉
and 〈∗r,s〉 combined with the assignment at S4 seem to imply that 〈∗∗∗p,s〉, but there is no
execution path through the if statement on which both 〈∗p,q〉 and 〈∗r,s〉 hold. The assumption
about incoming alias information is that sets of aliases can hold simultaneously on some path to
this program point; this assumption may lead to safe but possibly imprecise aliases being created.

FSAlias has worst-case polynomial time complexity.

2.6.2 FIAlias

FIAlias is a fast, coarse-grained alternative to FSAlias, and is similar to various other flow-
/context-insensitive algorithms [Cou86, Gua88, BCCH94, And94, SH97b, Ste96b, ZRL96, Zha98,
Wei80, HP98]. Aliasing is expressed as a relation between pairs of object names, which is symmet-
ric and reflexive, but not transitive; however, it is a common (though not universal) practice to
approximate this relation with transitive solutions. FIAlias forms a partition of the object names
which is a transitive representation of aliasing, and clearly can be represented with space linear in
the number of object names in the program.

For simplicity of explication, assume (i) there are no structure assignments (These can be broken
into multiple non-structure assignments.), (ii) all functions are of type void (There are many ways
to handle returned values; for example, a function can be made to assign its return value to some
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new global and that global can be used to retrieve the returned value at the call site.), and (iii) there
is no casting and no union types. (The handling of casting and union types is simply a matter of
encoding the relationship of fields within object names [YHR99].) Either fields can be represented
by offsets from the start of the structure [WL95, EGH94] or by symbolic names [Ste96b, ZRL96].
FIAlias uses the first approach.

The basic idea of FIAlias is that for the assignment a = b, ∗a and ∗b become aliased (this is
called a type 1 alias effect) and so do *ia and *ib for all i ≥ 2, assuming those object names make
sense (this is called a type 2 alias effect). The type 2 alias effect induces the right-regular property
discussed in [Deu92, ZRL96].

The FIAlias algorithm partitions the program’s object names using a union/find data struc-
ture [ASU86]. An overview of the steps of FIAlias is:

1. Consider each object name to be in its own partition element.

2. Perform unions of partition elements to account for type 1 alias effects at all assignments,
with formal/actual bindings at call sites considered to be assignments.

3. Perform unions of partition elements to account for type 2 alias effects.

4. Perform some additional unions to ensure that actuals for function pointer call sites are
unioned with the formals of the called procedure. When handling functions that are non-void,
the returned value must be unioned with the name to which the value is assigned.

Typically the only alias information of interest concerns object names that physically appear
in the program and their fixed-location aliases. The set of interesting object names is defined to be
those object names needed to get an explicit alias solution for all object names that appear in the
program and all fixed locations (i.e., including heap storage creation site names). If an object name
n appears in the program, then n, ∗n, and any prefix of n are interesting; thus, if p->m appears
in the program, then ∗(p->m), p->m and the prefixes ∗p and p are all interesting. Extending the
interesting object names by one dereference is necessary to compute the aliases of ∗p given p=q,
since the aliases of ∗q must be known.

The FIAlias algorithm is presented in Figure 5. In Phase 1, an object name name is plausible if
there is any possibility that ∗name can have aliases; thus, constants are not plausible object names,
and assignments like i=5 and p=NULL generate no plausible left-hand-side or right-hand-side pairs.
An assignment i=j where i and j are integers is a more complicated case; this statement can
generate the plausible pair i/j if pointer-valued data is assumed to be transferable through integer
object names using casts, as in the C program in Figure 6. Similarly, for p=q+i where p and q are
pointers and i is an integer, p/q must be considered as a plausible left-hand-side/right-hand-side
pair, but p/i may not be considered as such. The assignment function pointer = function is
treated as function pointer = &function for this analysis; that is, ∗function pointer must be
unioned to function and not to ∗function.

Phase 2 simply makes sure that for all pairs namei, namej in a partition, that ∗namei and
∗namej are also in the same partition (i.e., type 2 alias effects). Phase 2 defines map so that for
all object names n, map[find(n)][op] = find(op(n)) assuming op(n) is interesting. For example,
map[find(n)][∗] = find(∗n) if ∗n is interesting. The type signature of map is
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begin
/* Phase 1: Creating initial partitions */

for each plausible left-hand-side (lhs), right-hand-side (rhs) pair in the program
union(find(∗lhs),find(∗rhs))

/* Phase 2: Refining partitions for Type 2 alias effects */

for each partition part
map[part] = λx.NULL (everything maps to NULL)

for each interesting name X which is an operation op applied to a name Y
/* For example: X=∗p, Y = p, and op = ∗; */

/* The outermost find is needed because a partition */
/* is represented by a representative element. Since union can change */
/* which element is the representative element, a find */
/* is needed here. For simplicity, find(NULL) is NULL. */

if find(X) '= find(map[find(Y)][op])
then

if map[find(Y)][op] is NULL
then redefine map[find(Y)][op] to be find(X)
else merge(find(X),find(map[find(Y)][op]))

/* Phase 3: Accounting for calls through function pointers */

repeat
for each call through a function pointer which has arguments (fp(arg1,...,argn))

for each function func in the partition of fp
merge(find(∗argi),find(∗formi)) for all 1 ≤ i ≤ n
where formi is the ith formal of func

until no changes in the partitions involving function pointers.

end
/* merge function used in Phases 2,3 */

function merge(part1,part2)
begin if find(part1) '= find(part2)

let old1 = map[find(part1)] and old2 = map[find(part2)]
union(part1,part2)

map[find(part1)] = λx.





NULL if old1[x] = old2[x] = NULL
old1[x] if old2[x] = NULL
old2[x] if old1[x] = NULL
merge(old1[x],old2[x]) otherwise





return find(part1)
end

Figure 5: FIAlias algorithm
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int ∗p, i, j, k;
j = (int)&k;
i = j;
p = (int *)i;

Figure 6: Unsafe use of casting

map : partition → (operation → partition).

Map is built incrementally by iterating through all interesting object names. The merge function,
also presented in Figure 5, unions two partitions and updates map.

Phase 3 is straightforward, accounting for calls through function pointers. fp can be an arbitrary
object name; for example, var1, ∗var1, or ∗∗var2. Care must be taken in C because the calls
var(...) and (*var)() are semantically equivalent and should be be treated as such.

2.6.3 Example.

Figure 7 demonstrates the differences in precision between FSAlias and FIAlias through a small
example involving two procedures, main and proc1. First, consider the solution obtained by
FIAlias. Since q is assigned both the address of a and b in main, FIAlias will assume that
the aliases 〈∗q,a〉 and 〈∗q,b〉 hold globally throughout the program. Because FSAlias prop-
agates alias information through statements 7-14 in order, the alias 〈∗q,a〉 holds on exit from
statement 7, through statements 8-9, and is killed by statement 11; therefore, FSAlias can tell
that b is the only fixed location aliased to ∗q at statement 12, not both a and b which would be
reported by FIAlias. Similarly, at statement 9, FSAlias can tell that only fixed location a is
aliased to ∗p whereas FIAlias cannot and reports ∗p aliased to both a and b.

To illustrate the interprocedural propagation of aliases, proc1 is called by main at statements 10
and 14. The alias tuple [φ,〈∗q, a〉] reaches the exit of statement 9. This is propagated into proc1 as
alias tuple [〈∗q,a〉,〈∗q, a〉] and reaches the exit of statement 3. Then, alias tuple [〈∗q,a〉,〈∗r, a〉] is
created on exit of statement 4 and it and the alias tuple [〈∗q,a〉,〈∗q, a〉] reach the exit of statement
5. Finally, the alias tuples ([φ,〈∗q, a〉], [φ,〈∗r, a〉]) reach the exit of the call statement 10.

Statement 11 then kills alias tuple [φ,〈∗q, a〉], and creates the alias tuple [φ,〈∗q, b〉] which
reaches the call at statement 14. Alias tuple [φ,〈∗r, a〉] is preserved through statements 11-13
and reaches the call at statement 14. Alias tuple [φ,〈∗r, a〉] will result in [〈∗r,a〉,〈∗r, a〉] being
propagated to the exit of statement 3. Then this is killed by statement 4. Alias tuple [φ,〈∗q, b〉]
will result in [〈∗q,b〉,〈∗q, b〉] being propagated to the exit of statement 3. This results in alias
tuple [〈∗q,b〉,〈∗r, b〉] at the exit of statement 4, which reaches the exit of statement 5 as does
[〈∗q,b〉,〈∗q, b〉]. Finally, alias tuples ([φ,〈∗q, b〉], [φ,〈∗r, b〉]) reach the exit of the call statement 14.

Although alias tuples [〈∗q,a〉,〈∗r, a〉] and [〈∗q,b〉,〈∗r, b〉] both reach the exit of statement 5
in proc1, the reaching alias abstraction ensures that these aliases are mapped back only to the
corresponding calling contexts; therefore, alias tuple [φ,〈∗r, a〉] will be mapped back to the exit of
statement 10, and alias tuple [φ,〈∗r, b〉] will be mapped back to the exit of statement 14. Thus, the
only fixed location aliased to ∗r at statement 13 is a with FSAlias, but FIAlias will find both a
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1. int *p,*q,*r;
2. int a, b;

3. void proc1()
{

4. r = q;
5. *r = 1;

}

6. void main()
{

7. q = &a;
8. p = q;
9. *p = 1;
10. proc1();
11. q = &b;
12. *q = 1;
13. *r = 2;
14. proc1();

}

Figure 7: Example of differences between FIAlias and FSAlias

and b aliased to ∗r, since it combines all calling contexts. Note that ∗r is reported aliased to both
a and b at statement 5 using either alias algorithm.

3 MODC Schema

The MODC schema defines a family of algorithms which solve for modification side effects to fixed
locations at program points, parameterized by the type of aliasing algorithm used. Side effects
reported are differentiated by fixed-location type: global, local, dynamically-created, and non-visible.
In solving for modification side effects, the MODC problem is decomposed into subproblems that are
individually easier to solve than the monolithic problem. The problem decomposition assumes that
context-sensitive alias information is available; it preserves calling-context information with the side
effects for as long as possible. The MODC schema is described for FSAlias, but any approximation
of calling context may be used instead. If the pointer alias algorithm used is context-insensitive,
then conceptually all calling contexts are mapped to one context; that is, there is no differentiation
in side effects returned from a procedure to any individual call site and the multiple subproblems
distinguished by RA shown in Figure 8 become a single subproblem.

As mentioned previously, the first pass of the algorithm solves for aliasing information, Alias.
Given the results of this analysis, two related problems are calculated: (i.) PMOD, a procedure-
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level summary of context-sensitive modification side effects which can occur to fixed locations, and
(ii.) CMOD, a set of modified fixed locations at each program point corresponding to a specific
context. CMOD solutions can then be used to derive MOD information for program points, while
PMOD solutions can be used to derive a procedure-level summary of modification side effects.

The decomposition of the MOD problem is pictured in Figure 8, where P is a procedure,
RA is a calling context (i.e., a reaching alias) and n is a program point. The following brief
description of each subproblem will be augmented in the next section by the corresponding data-
flow equations. Alias(n, RA) is the pointer-alias solution at statement n under calling context
RA. DIRMOD(n) captures all object names which occur on the left-hand-side of the assignment at
program point n (e.g., *p=, v=). At an assignment n, CondLMOD widens DIRMOD(n) to include
the effects of aliasing; CondLMOD contains only fixed locations. CondIMOD(P , RA) summarizes
CondLMOD information for each calling context RA over all assignment statements in procedure
P . PMOD(P ,RA) is formed from local CondIMOD information for P and PMOD information
propagated from procedures called by P all under context RA, thus calculating both direct and
indirect side effects of P . CMOD at a call site is constructed from PMOD of the called procedure,
and at an assignment, from CondLMOD of that statement. Finally, MOD at a statement is
constructed from CMOD by summarizing over all contexts, as is MOD for a procedure.

A comparison of our MODC decomposition to that for FORTRAN is given in Appendix A.
Recall that although the MODC schema is described with calling-context information available,
an easy transformation (i.e., folding all contexts together) yields a MODC algorithm for use with
context-insensitive alias methods.

Figure 8: Decomposition of the MODC problem
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3.1 Data-Flow Equations

The following discussion makes these assumptions.

• Assignment is synonymous with value-setting statement; thus, scanf is considered an assign-
ment.

• All object names are unique; thus the issue of name hiding is avoided. This can easily be met
by appending object names with the function and file in which they are defined.

• On bottom data-flow information is computed (i.e., information at a statement incorporates
the effects of that statement). Since a call statement is split into a call node and a return node
in the internal representation, the information computed at the return node is “on bottom”
information for the call statement, while the information computed at the call node is “on
top” information for the call statement.

• The modification side-effects sets are associated with some representation of calling context
to restrict attention to realizable paths; note that the MODC schema is independent of the
choice of calling-context abstraction.

• Predecessors(n) represents the set of predecessors of n in the ICFG.
• Trivial, reflexive aliases (e.g., <∗p,∗p> ) are associated with the special reaching alias φ at

all program points; this assumption simplifies the equation for CondLMOD. In the actual
implementation these trivial aliases are not stored.

DIRMOD(n) is defined as the visible direct side effects at a statement; therefore, it requires no
data-flow equation. CondLMOD(n,RA) is the set of fixed locations modified by the assignment at
n because of aliases that occur on bottom of any of the predecessors of n under calling context RA
for the procedure containing n:

CondLMOD(n, RA) =
⋃

pred ∈ Predecessors(n)





obj1

∣∣∣∣∣∣∣

obj2 = DIRMOD(n) and
〈obj1, obj2〉 ∈ Calias(pred, RA)

and obj1 is a fixed location





(1)

If DIRMOD(n) is a fixed location, it is included in CondLMOD(n,φ) because reflexive aliases
are associated with the special reaching alias φ.

For a procedure P and each calling context RA, CondIMOD(P , RA) contains the fixed locations
modified by assignments in procedure P .

CondIMOD(P, RA) =
⋃

n an assignment in P

CondLMOD(n, RA) (2)

PMOD(P , RA) is the set of fixed locations modified by procedure P , including the effects of
calls from within P , considering only aliases corresponding to calling context RA. The PMOD sets
for a procedure summarize its modification side effects for a given reaching alias. They are specified
by the following, possibly recursive, system of data-flow equations which can be solved iteratively.
The fixed point iteration used in the implementation is an optimistic lattice framework, which has
been highly optimized with respect to the interprocedural transfer functions.

PMOD(P, RA) = CondIMOD(P, RA)
⋃ ⋃

callQ in P and

RA
′
∈ contexts of(callQ, RA)

(
bcallQ(PMOD(Q, RA

′))
)

(3)
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In equation (3), callQ is a call site in P at which P calls Q. RA
′ represents the calling context

induced by callQ during data-flow propagation in P under calling context RA of P. The function
bcallQ, specific to callQ, maps object names from the called procedure (Q) to the calling proce-
dure (P ) according to scoping rules [CK87] and only returns fixed locations. Specifically, bcallQ
factors out all local fixed locations of Q (including formal parameters of Q), maps global fixed
locations (including heap storage creation sites) to themselves, and maps non visibles in Q to their
corresponding fixed locations in P , which are either locals of P or non visibles in P [LR92].11

It is possible with the MODC schema to derive side effects at specific interesting statements,
namely calls and assignments.

CMOD(n, RA) =






CondLMOD(n, RA) if n is an assignment
⋃

RA′ ∈ contexts of(n,RA)

bn(PMOD(Q, RA
′
)) if n is a call of Q

∅ otherwise

(4)

Finally, MOD(n) summarizes the side effects over all executions of n in procedure P and
MOD(P ) summarizes the side effects over all calls of P . Both are obtained by considering all
contexts for P .

MOD(n) =
⋃

context RA for P

CMOD(n, RA)

MOD(P ) =
⋃

context RA for P

PMOD(P, RA)

3.2 Example

The example in Figures 9, 10 and 11 shows a small C program analyzed by both the MODC(FSAlias)
and MODC(FIAlias) algorithms.

For MODC(FSAlias), both main and R are analyzed with reaching alias φ at their entries. The
first call to R (shown by the solid line) creates the alias 〈∗b,x〉 at the entry of R. The second call
to R (shown by the dashed line) creates the alias 〈∗b,y〉 at the entry of R. Procedure R is analyzed
for each of these calling contexts. Note there are no aliases in main. The FSAlias solution for R
is shown in Figure 10; the PMOD and CMOD solutions computed are shown in the same figure.
Empty entries in these tables mean either no alias or no side effect. Note that the entries in the
tables indicate additions to the solution at a program point under a calling context. The whole
solution at a point under a given context is the union of the entry in the table and the solution
under calling context φ. Fixed location b is not in the solution for main because it’s a local of R.

For MODC(FIAlias), the FIAlias solution is shown in Figure 11. The PMOD solutions for
main and R are shown as well. The CMOD solution does differentiate side effects at program points
within main and R, but notice that calling contexts are not differentiated.

11If context-insensitive aliases are used, there are no non visibles.
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Figure 9: An example program and its ICFG
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Reaching Alias Solutions for R
Alias n7 n8 n9 n10 n11 n12

φ <∗b,k> <∗b,k> <∗b,k> <∗b,k>
<∗b,x> <∗b,x> <∗b,x> <∗b,x> <∗b,x>
<∗b,y> <∗b,y> <∗b,y> <∗b,y> <∗b,y>

Reaching Alias PMOD Solutions for main
φ { x, k, y }

Reaching Alias PMOD Solutions for R
φ { k, b }

<∗b,x> { x }
<∗b,y> { y }

Reaching CMOD Solutions for main
Alias n1 n2 n3 n4 n5 n6

φ { x, k } { y, k }

Reaching CMOD Solutions for R
Alias n7 n8 n9 n10 n11 n12

φ { b } { k } { k }
<∗b,x> { x }
<∗b,y> { y }

Figure 10: MODC(FSAlias) solution for the example program of Figure 9

FIAlias solution for entire program
<∗b,k>
<∗b,x>
<∗b,y>

PMOD Solution for main PMOD Solution for R
{ x, y, k} { x, y, k, b}

CMOD Solutions for main CMOD Solutions for R
n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12

{k, x, y } {k, x, y } { b } { k, x, y } { k, x, y}

Figure 11: MODC(FIAlias) solution for the example program of Figure 9
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3.3 Handling Call-by-reference Parameters

If a language uses call-by-reference parameter passing rather than the call-by-value parameter
passing as in C, programs can be transformed into equivalent call-by-value programs by adding an
additional level of indirection using the following transformation:

• For every call-by-reference formal r of type tr

1. make r a call-by-value formal of type tr*
2. replace r everywhere in the procedure with (*r)

• For every actual a corresponding to a call-by-reference formal

3. replace a with &(a); note that a is an arbitrary object name (e.g., a[10], p->next)

When 2 and 3 above are both applicable, apply both. This means that a reference formal r′ passed
as an actual to another reference formal is transformed into &(*r′). Since semantically, dereference
(*) and address (&) are effectively inverse operations12 (&*r′ ≡ *&r′ ≡ r′), in the above case r′

will be unchanged. This transformation is essentially the inverse of refizing as developed in [Car88];
for programs with single-level pointers it is equivalent to the transformation in [Lan92a] (p.50).

3.4 Worst-case complexity

The following definitions are useful in arguing the worst-case complexity of the MODC schema.

• Nalias is the total number of aliases in the program.
• Nassign is the number of assignments in the program.
• Nfixed is the number of fixed locations.
• NICFG is number of nodes in the ICFG. This is roughly equivalent to number of program

points.
• Nproc is the number of procedures in the program.
• Ccopy is the cost of copying a set of fixed locations [Ω(Nfixed)].
• Cunion is the cost of the union operation over sets of fixed locations [Ω(Nfixed)].
• EICFG is number of edges in the ICFG.
• Mcall is the maximum number of calls for any one procedure.
• Mpred is the maximum number of predecessors of any assignment.
• MRA is the maximum number of reaching aliases at the entry of any procedure.

The worst-case time complexity of a MODC calculation is

O(Nproc ∗Mcall ∗M2
RA ∗N 2

fixed + Nassign ∗MRA ∗Mpred ∗Cunion + Nalias + NICFG ∗MRA ∗Cunion)

Nevertheless, as for most static analyses, the worst-case time has little correlation with the observed
behavior of the algorithm in practice.

To understand the sources of complexity in an algorithm, examine worst-case time complexity
of each calculation in turn.

12In C, there is an exception: &*(&x) ≡ &x but *&(&x) is illegal. The transformation will never cause this kind of
translation.
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• DIRMOD: O(NICFG)

• Predecessors: O(EICFG)

• CondLMOD: O(Nalias + Nassign ∗ MRA ∗Mpred ∗ Cunion)
Access to the alias solution is necessary to compute CondLMOD, but each alias need only
be considered once [O(Nalias)]. There are at most (Nassign ∗ MRA) CondLMOD sets and for
each one at most (Mpred + 1) unions are performed.

• CondIMOD: O(Nassign ∗ MRA ∗Cunion)
Each CondLMOD(n, RA), with n an assignment statement and RA a reaching alias, is con-
joined into exactly one CondIMOD. Thus at most (Nassign ∗ MRA) unions are performed.

• PMOD: O(Nproc ∗ Mcall ∗ M2
RA ∗N 2

fixed)
PMOD requires a fixed point calculation. There are at most (Nproc ∗ MRA) PMOD sets.
PMOD(P, RA) is first initialized to CondIMOD(P, RA). For all procedures P and reaching
aliases RA, this costs

O(Nproc ∗ MRA ∗ Ccopy) (5)

Secondly, PMOD is computed once for all procedures P and contexts RA using equation (3);
this cost will be amortized over all calls in the program. There are O(Nproc ∗ Mcall) calls.
For a call to procedure Q, each set PMOD(Q, RA

′) will be considered at most MRA times
per union operation. There are at most MRA such PMOD sets for Q. Therefore the cost of
unions at a call is at most (MRA ∗ MRA) ∗ (Nfixed + Cunion). The second term is the cost
of the union as well as applying bcallQ to each element. The cost of contexts of and bcallQ
is negligible as these functions are already calculated by the alias calculation, and for the
second pass are implemented as a simple (hash) table lookup. Including the cost of a union
with CondIMOD in equation (3), the total cost of computing PMOD once is

O([number of calls] * [cost of unions per call] + [number of PMODs] * [cost of one union])

Taking into account that Cunion = Ω(Nfixed) and the first term dominates, this is equal to

O([Nproc ∗ Mcall] ∗ [MRA ∗ MRA ∗Nfixed]) (6)

Finally the cost of the iteration must be counted. Each PMOD can change its value at most
Nfixed times. Thus there are at most Nproc ∗ MRA ∗ Nfixed changes over all PMODs. When
PMOD(Q, RA

′) changes, PMOD(P, RA) of all the procedures P that contain a callQ such
that RA

′ ∈ contexts of(callQ, RA) must be recomputed. There are at most Mcall ∗MRA such
PMODs. Thus, the cost of changing PMOD(P, RA) is O(Cunion + Nfixed): one union (we
do not recompute equation (3) from scratch) plus the cost of applying bcallP to each element
of PMOD(Q, RA

′). The cost of the fixed-point iteration phase is O([number of changes] *
[recomputations per change] * [cost of one recomputation]) =

O([Nproc ∗ MRA ∗ Nfixed] ∗ [Mcall ∗ MRA] ∗ Nfixed) = O(Nproc ∗Mcall ∗M2
RA ∗ N 2

fixed) (7)

Thus, the total cost for computing PMOD is the sum of equations (5), (6), and (7), which is
O(Nproc ∗ Mcall ∗ M2

RA ∗ N 2
fixed).
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• CMOD: O(Nassign ∗ MRA ∗ Ccopy + Nproc ∗ Mcall ∗ M2
RA ∗ Nfixed)

For each assignment statement and each reaching alias, the cost is Ccopy. For each call, callP ,
(there are O(Nproc ∗ Mcall) of them in the program) and each reaching alias, RA, bcallP is
applied to PMOD(P, RA) and the results are conjoined. Thus, the cost for each (callP , RA)
pair is O(MRA ∗Nfixed).

• MOD: O(NICFG ∗MRA ∗ Cunion)

3.5 Counting Side Effects

An important issue in measuring the effectiveness of a data-flow analysis is the choice of an em-
pirically observable metric by which to judge performance. The number of fixed locations reported
experiencing side effects at an assignment, at a call, and for a procedure is the metric used in these
experiments. This seems reasonable since it is of clear use in program understanding and compiling
applications; if the number of measured side effects is too large at a program point, the analysis is
not of practical use.

Some assignment statements in C involve aggregate types such as structs or unions. An aggregate
is a fixed location whose fields can be simultaneously modified through one assignment. Arrays in
C are not aggregates, because an array itself cannot be modified as one entity; all modifications
occur through individual array elements.

Aggregates in MODC solutions present problems in counting the numbers of fixed locations
modified.

Suppose s is a struct type with fields a, b and c. It is possible that s, s.a, s.b and s.c all
are modified by individual assignment statements and therefore all are found in a MODC solution
for a particular procedure. For example, in main in Figure 12 there are assignments to every field
of struct s3. In procedure p, there is a struct assignment which simultaneously assigns to all three
fields of struct s1. If struct fields are counted as fixed locations, then 3 side effects will be reported
for main (one for each assignment); otherwise, 1 side effect to struct s3 will be reported. Similar
questions determine if 1 or 3 fixed locations will be reported as side effects for procedure p or if 1
or 3 fixed locations will be reported for procedure r. Note that the difference between q and r is
that r has a struct assignment and a field assignment to the same struct, whereas q has a struct
assignment and a field assignment to a different struct.

The MODC implementation supports two counting schemes, called Fields and NoFields, re-
spectively. To explain how aggregates are handled in the two counting schemes, refer to Figure 12.
First an appropriate MODC algorithm is applied to a program and sets of fixed locations collected
at each assignment statement. For procedures like r both the entire struct and an individual field
may occur in MOD(r) as a fixed-location side effect.

Counting fixed locations modified for an assignment statement is straightforward. For NoFields
counting, any field name or struct name counts as 1 fixed location. For Fields counting, a struct
assignment statement affects m fixed locations for a struct with m fields; the effect would be the
same for an indirect access to the entire struct through a pointer to it. Each assignment to one
field of a struct counts as 1 fixed location as well. These counts are illustrated in the Fields column
in the code in Figure 12 for procedure q.

Counting becomes more complicated at a call when both a struct name and one of its field
names are reported; this corresponds to the call of r in main in Figure 12. Intuitively, if Fields
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Number of Fixed Locations Reported Modified

With Fields With NoFields

struct s {int a, b, c;} s1, s2, s3;

/* s1: struct-assignments only */
/* s2: field-assignments only */
/* s3: mixed assignments */

void p(){ 3 1
s1 = s2; 3 1

}

void q(){ 4 2
s2.a = 4; 1 1
s3 = s1; 3 1

}

void r(){ 3 1
s3 = s2; 3 1
s3.a = 4; 1 1

}

main(){ 7 3
s3.a = 2; 1 1
s3.b = 3; 1 1
s3.c = 4; 1 1
p(); 3 1
q(); 4 2
r(); 3 1

}

Figure 12: Side effects counting example
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counting is used, each distinct field is counted separately; thus the struct assignment statement
in r finds 3 fixed locations experiencing side effects whereas the assignment to s3.a finds only
1. If NoFields counting is used, when a field name experiences a side effect it is as if the entire
struct experienced the effect, so that the call to r reports 1 side effect (to struct s3), and the three
assignments in main all are counted as causing a side effect to struct s3, rather than to its fields.
Notice for the call of q in main only 2 fixed locations are reported as experiencing a side effect in
NoFields counting, structs s3 and s2. The same counting is used for MOD(P ) sets.

Unions are handled in much the same manner as structs. If any member of a union appears
in a MODC set, under Fields counting it will be expanded to all of its members. The actual
internal representation of fields/members for structs and unions in FSAlias and FIAlias uses a
start position and length; this sometimes allows recognition of exact overlap of two struct fields (or
members) and results in better precision in counting.

There is also a problem with Fields counting of dynamically created structs if a user creates
their own malloc. Recall that a unique heap creation site name is created for all cells corresponding
to a single allocation statement in the code. In Figure 13, procedure a only stores into struct *s and
procedure b only stores into struct *t, yet 5 fixed locations are reported in MOD(a) and MOD(b),
because the naming mechanism does not remember that the 5 fields come from two different structs.
The problem is that the same heap creation site name for the malloc site in procedure my-malloc
is used for all calling contexts. That name becomes associated with the sum of all the fields of
all structs allocated using this procedure; effectively, encapsulation of the heap allocation within a
procedure hides what’s really going on from the aliasing algorithm.

NoFields counting is preferred and the results in Section 4 are reported using this scheme,
though Figure 22 offers results using Fields counting and shows how this choice can influence the
results reported.

4 Empirical Results

This section describes and discusses execution results of the MODC analyses. The MODC, FSAlias,
and FIAlias analysis code is implemented in C and analyzes a reduced version of C that excludes
pointers to functions, exception handling, setjump and longjump, but allows type casting and unions.
These results were gathered on a 75Mz processor Sun Sparcstation 20 with 348 Mb of RAM and
527Mb swap space.

Table 1 shows information about the 45 C programs that were analyzed. The programs are
ordered by the number of ICFG nodes; this order is maintained in subsequent figures. The num-
bers of procedures, call statements, and assignment statements in each data program are shown.
For MOD(n), the relevant statements in a program are assignments and call statements. Assign-
ments through a pointer dereference are distinguished because these assignments have non-trivial
solutions, whereas other assignments (e.g., i = 0;) have trivial solutions. For MODC(P ) the
procedures are the relevant program constructs.

The last column of Table 1 indicates whether or not FSAlias succeeds in calculating an alias
solution for the program. FSAlias is unable to calculate a solution for 8 of the programs because
it runs out of virtual memory; FIAlias can calculate a solution for all the programs. This raises
the question of what characteristics of a program affect the availability of a flow-/context-sensitive
alias solution. Certainly program size is a factor because of the relationship between size of solution
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Program LOC ICFG Nodes # Procs # Calls # Assigns Flow-sens.
All Thru-deref Alias Soln

allroots 215 422 8 20 72 3
√

fixoutput 401 617 7 13 123 5
√

diffh 1708 646 15 50 80 4
√

travel 862 698 16 24 170 3
√

ul 548 1027 15 36 168 6
√

plot2fig 1495 1077 27 78 159 16
√

lex315 719 1297 18 103 137 6
√

compress 1490 1319 16 29 274 11
√

clinpack 1226 1429 14 80 267 30
√

loader 1219 1563 31 80 242 78
√

mway 705 1576 22 43 406 71
√

ansitape 1596 1747 36 110 274 21
√

stanford 887 1771 48 80 369 42
√

pokerd 1243 1895 27 86 296 59
√

zipship 1283 1955 14 53 332 59
√

dixie 2109 2341 36 83 394 73
√

zipnote 3155 2407 20 71 348 86
√

learn 1483 2626 36 80 432 59
√

xmodem 1712 2672 28 156 447 97
√

compiler 2232 3008 39 350 304 2
√

zipcloak 3644 3033 30 93 424 104
√

sim 1439 3034 17 29 818 130
√

cdecl 1015 3196 33 204 448 25
√

diff 1708 3300 43 129 569 100
√

unzip 4106 3416 40 99 731 52
√

assembler 2673 3601 53 248 533 233
√

gnugo 2901 3651 29 89 650 109
√

livc 1886 4101 87 204 885 243
√

lharc 3303 4250 87 198 791 123
√

patch 2672 4608 56 271 750 135
√

simulator 3733 5574 100 409 666 107
√

arc 7507 5856 96 237 1105 160
√

triangle 1930 6119 19 43 1072 241
√

tbl 2511 6162 85 316 907 279
√

football 2222 7313 59 258 847 225
√

flex 6970 7376 86 307 1505 248
√

zip 7427 9288 109 324 1554 331
072.sc 8087 13690 154 698 1826 201
spim 19032 16740 168 974 1566 374
larn 9546 21184 264 2218 2536 158
tsl 14646 27302 450 2109 2350 587
008.espresso 13567 30510 308 1830 5054 1524
moria 24596 38572 432 3708 5893 1493

√

TWMC 23833 51627 204 796 10669 3949
nethack 28735 58317 474 2837 4268 900

Table 1: Program data set
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struct S { int a, b, c; } x, ∗s;
struct T { float f, g; } y, ∗t;
/* x and y are initialized elsewhere in the program */

void a()
{ s = (struct S ∗ ) my-malloc(sizeof(struct S));

∗s = x;
}

void b()
{ t = (struct T ∗ ) my-malloc(sizeof(struct T));

∗t = y;
}

char ∗ my-malloc(int size)
{ char ∗p = malloc(size);

return p;
}

Figure 13: Problem with fields counting involving user-defined malloc.

and size of program, but it can not be the only factor as the contrasting results for moria and zip
show. Moria is a “large” program with a FSAlias solution. Nor do the size differences between
zip and flex seem vast enough to indicate a threshold on the power of FSAlias. The root of the
problem is caused by recursive data structures. The FSAlias algorithm uses the somewhat naive
k-limiting approximation to handle recursive data structures; however, in the cases of these larger
programs that make excessive use of recursive data structures, the analysis gets bogged down in
the generation and propagation of k-limited aliases. Moria has no recursive data structures. Zip
uses recursive data structures much more heavily than flex.

MODC precision is reported in terms of the average number of fixed locations reported modified
per kind of statement. The MODC(FSAlias) solution is always a subset of the MODC(FIAlias)
solution, and both are safe, so that extra modifications reported by the MODC(FIAlias) solution
are spurious. The raw data used to produce the figures in the following sections can be found in
Appendix C.

4.1 Precision at Procedures and Call Statements

Figures 14(a) and 14(b) report the average numbers of fixed locations modified by procedures for
both MODC(FSAlias) and MODC(FIAlias). The MODC(FIAlias) result for moria is elided
because it skews the figure; the raw numbers are presented instead. The bars for each program are
divided into the kind of location being modified. Each segment of the average bar is the average
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Figure 14: Average fixed locations modified by procedures.
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Figure 15: Average fixed locations modified by call statements.

over the numbers in Figure 14 for that kind of location. Formal parameters are reported as locals.
Notice the enhanced precision of flow and context sensitivity (especially for the large program
moria); MODC(FSAlias) reports 11 fixed locations modified on average by procedures, against
the 17 fixed locations reported by MODC(FIAlias)13. Also notice that the average number of
fixed locations modified is not closely correlated to program size.

Figure 14(c) shows the same results for the programs with only a flow-/context-insensitive
MODC solution. Figure 14(d) compares the average totals from Figures 14(a) and 14(b) in a more
visually apparent manner. Programs are plotted by their sizes in ICFG nodes, along the x-axis.
Again, moria is excluded from this comparison because it skews the figure.

Figures 15(a) and 15(b) present the same information as Figures 14(a) and 14(b) for fixed
locations modified by call statements. The conclusions to be drawn are similar.

Figure 16 shows the standard deviations for the MODC(FSAlias) results previously reported
in Figure 14, (i.e., the number of fixed locations possibly modified).

Figure 17 addresses the comparative difference between the MODC(FSAlias) and MODC(FIAlias)
solutions. If sens is the number of fixed locations reported modified at a program point by
MODC(FSAlias), and insens is the number reported by MODC(FIAlias) at that same point,
then the relative mean is the average of the calculation (insens − sens)/insens over relevant pro-
gram points in a program. Figure 17 shows the relative means for procedure side effects (Figure
17(a)) and call statement side effects (Figure 17(b)). These measurements indicate the propor-
tion of the MODC(FIAlias) solution that must be in error. Low numbers here mean that the

13Excluding moria’s result, MODC(FIAlias) reports 14 fixed locations modified on average.
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Figure 17: Relative means for procedures and call statements.
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Figure 18: MODC(FIAlias) Solution as percentage of worst-case solution.

MODC(FIAlias) solution is nearly as precise as the MODC(FSAlias) solution. Zero means that
the solutions are the same. The average bars are calculated by treating all the program points in all
programs as one set and averaging over all of them, rather than taking the average of the averages for
each program. Also note that summing the relative means at each program point and averaging is
substantially different from using the relative means calculation on the average total fixed locations
modified results from Figures 14 and 15. For example, consider a procedure with two statements,
where for the first statement MODC(FSAlias) reports 1 location modified and MODC(FIAlias)
reports 2 locations modified, and for the second statement MODC(FSAlias) reports 99 locations
modified and MODC(FIAlias) reports 100 locations modified. The average total locations modi-
fied by the procedure as reported by MODC(FSAlias) is 50, and by MODC(FIAlias) is 51. The
relative mean for the first statement is .5, and the relative mean for the second is .01. The relative
mean for the whole procedure is then .255, but the relative mean calculation using the average
total numbers is 1/51 (a little less than .02). The numbers in Figure 17 are calculated using the
former approach. These results give an indication of the trade-off in precision involved in using the
flow-/context-insensitive analysis.

Even so, the precision of the MODC(FIAlias) analysis is not to be understated. Figure 18
shows the average proportion of reported fixed locations modified by procedures and calls to the
number of fixed locations potentially modified. The number of fixed locations potentially modified
at a call or assignment statement is the sum of the number of globals in the program, the number
of dynamic allocation sites in the program, the number of locals in the enclosing procedure, and
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the number of accessible non-visibles. The number of fixed locations potentially modified by a
procedure is the sum of the numbers of potentially modified locations for each assignment and
call statement in the procedure. Figure 18 shows what percentage the average totals reported
by MODC(FIAlias) are of this worst-case. In parentheses after each bar is the average total
number of fixed locations reported modified by MODC(FIAlias). Very low percentages indicate
that the worst-case MODC solution is very much larger than what can be calculated using even
flow-/context-insensitive data-flow analysis and indicate the significant advantages that inexpensive
data-flow analysis can offer.

Table 2 presents another view comparing MODC(FSAlias) and MODC(FIAlias) that shows
a frequency table of the numbers of procedures that modify a certain number of fixed locations.
All the procedures in all the programs are considered together when constructing these frequency
tables.14 The frequency tables are broken down by fixed-location kind. For example, Table 2 (a)
says that 367 of the procedures in all the programs modify 0 globals. The Percent Below column
shows what percentage of the procedures have that many total side effects or more. Gaps in
the sequence indicate that there are no procedures with that many side effects. The reports of
procedures modifying 0 total fixed locations are not erroneous, but arise from simple procedures
which have no local variables and no side effects (e.g., absolute value function).

The frequency tables for each kind of fixed location and for the totals seem to approximate a half
normal distribution. For MODC(FSAlias), the frequency table for globals is the most spread out.
This is probably an artifact of how globals are used in the data programs. For MODC(FIAlias), the
frequency table for non-visibles is the most spread out. The MODC(FIAlias) frequency tables for
all types of fixed locations apart from non-visibles appear to be close to the shape of the frequency
tables for MODC(FSAlias), albeit flatter and longer, but the MODC(FIAlias) frequency table
for non-visibles is much worse. Since MODC(FSAlias) is safe, this cannot be an artifact of the
real solution. It appears that when the MODC(FIAlias) solution gets overly approximate, it is
with regard to non-visibles. Why this is so, and what methods should be adopted to remedy the
situation, are open questions.

4.2 Precision at Through-dereference Statements

Figures 19(a) and 19(b) show the average numbers of fixed locations modified by through-dereference
assignment statements, similarly to Figure 14. These results are not discussed at length here because
they are more related to the choice of aliasing algorithm than the MODC algorithm. Nevertheless,
their precision is interesting.

Any executable assignment in a normally terminating program will modify at least one fixed
location. Thus, 1 is a lower bound of total fixed locations modified per assignment statement (the
dotted lines in Figures 19(a) and 19(b) show the line x = 1). The precision of these results for
MODC(FSAlias) is very encouraging, and highlights the precision of the flow-/context-sensitive
algorithm. The totals are all close to 1 with a maximum value of 2 and an average of 1.3. In
contrast, MODC(FIAlias) is more imprecise, averaging 5.1, and sometimes being wildly inaccurate
as in such cases as moria.15 Moria is a large program with very many large (though non-recursive)
data structures with several aliases. Perhaps the inability of the MODC(FIAlias) algorithm to

14The programs with no FSAlias solution are omitted when calculating the MODC(FIAlias) frequency table.
15Without moria the average total for MODC (FIAlias) is 2.6.
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# Side
Effects

Glob Dyn Loc Nv Total Percent
Below

0 367 1389 577 1624 132 100.00
1 422 117 348 87 224 92.77
2 175 119 239 32 181 80.49
3 181 66 160 25 133 70.58
4 133 31 132 19 139 63.29
5 51 9 79 4 104 55.67
6 64 5 60 9 120 49.97
7 34 12 48 1 65 43.40
8 50 9 37 3 58 39.84
9 21 2 29 3 69 36.66

10-12 53 28 57 6 123 32.88
13-15 28 7 27 2 98 26.14
16-18 38 18 14 2 54 20.77
19-21 35 3 8 1 43 17.81
22-24 22 2 5 2 35 15.45
25-27 14 1 0 3 27 13.53
28-30 14 1 1 0 34 12.05
31-33 10 0 0 0 27 10.19
34-36 12 0 2 0 12 8.71
37-39 4 2 0 1 18 8.05
40-42 3 0 2 0 12 7.07
43-45 12 0 0 0 12 6.41
46-48 38 0 0 0 17 5.75
49-51 1 0 0 0 11 4.82
52-54 6 0 0 0 10 4.22
55-57 1 1 0 0 8 3.67
58-60 5 0 0 0 7 3.23
61-63 2 0 0 0 5 2.85
64-66 5 0 0 1 9 2.58
67-69 3 0 0 0 9 2.08
70-72 0 0 0 0 3 1.59
73-75 2 3 0 0 1 1.42
76-78 6 0 0 0 3 1.37
79-81 2 0 0 0 3 1.21
82-84 2 0 0 0 0 1.04
85-87 3 0 0 0 6 1.04
88-90 0 0 0 0 2 0.71

94-96 0 0 0 0 1 0.60

106-108 2 0 0 0 0 0.55
109-111 1 0 0 0 0 0.55

115-117 0 0 0 0 1 0.55
118-120 0 0 0 0 1 0.49
121-123 0 0 0 0 1 0.44
124-126 0 0 0 0 2 0.38
127-129 0 0 0 0 1 0.27

145-147 0 0 0 0 1 0.22

151-153 3 0 0 0 0 0.16

226-228 0 0 0 0 3 0.16

# Side
Effects

Glob Dyn Loc Nv Total Percent
Below

0 351 1344 577 935 113 100.00
1 375 92 348 117 216 93.81
2 143 96 239 76 172 81.97
3 172 101 160 71 87 72.55
4 121 59 132 33 84 67.78
5 48 12 78 29 69 63.18
6 59 9 60 44 64 59.40
7 30 17 49 33 34 55.89
8 35 9 37 45 36 54.03
9 32 5 29 19 44 52.05

10-19 132 66 100 83 278 49.64
20-29 151 8 12 117 164 34.41
30-39 74 1 2 20 110 25.42
40-49 19 2 2 21 63 19.40
50-59 12 1 0 1 44 15.95
60-69 44 0 0 6 21 13.53
70-79 10 3 0 7 19 12.38
80-89 8 0 0 5 18 11.34
90-99 0 0 0 0 10 10.36

100-109 5 0 0 3 4 9.81
110-119 1 0 0 2 5 9.59
120-129 0 0 0 2 3 9.32
130-139 0 0 0 0 3 9.15
140-149 0 0 0 28 4 8.99
150-159 3 0 0 5 1 8.77
160-169 0 0 0 1 0 8.71
170-179 0 0 0 36 21 8.71
180-189 0 0 0 7 10 7.56
190-199 0 0 0 3 1 7.01
200-209 0 0 0 7 21 6.96
210-219 0 0 0 3 18 5.81
220-229 0 0 0 3 6 4.82
230-239 0 0 0 2 7 4.49
240-249 0 0 0 3 6 4.11
250-259 0 0 0 4 6 3.78
260-269 0 0 0 2 0 3.45
270-279 0 0 0 1 2 3.45
280-289 0 0 0 1 4 3.34
290-299 0 0 0 0 2 3.12
300-309 0 0 0 0 2 3.01
310-319 0 0 0 6 2 2.90
320-329 0 0 0 2 1 2.79

340-349 0 0 0 1 0 2.74
350-359 0 0 0 18 3 2.74
360-369 0 0 0 6 3 2.58
370-379 0 0 0 4 2 2.41
380-389 0 0 0 5 0 2.30
390-399 0 0 0 2 0 2.30
400-409 0 0 0 3 0 2.30
410-419 0 0 0 3 16 2.30
420-429 0 0 0 0 1 1.42
430-439 0 0 0 0 3 1.37
440-449 0 0 0 0 6 1.21
450-459 0 0 0 0 8 0.88

470-479 0 0 0 0 2 0.44
480-489 0 0 0 0 2 0.33
490-499 0 0 0 0 1 0.22

510-519 0 0 0 0 3 0.16

MODC (FSAlias) MODC(FIAlias)
(a) (b)

Table 2: Procedure frequency tables.
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Figure 19: Average fixed locations modified by through-dereference assignments.

distinguish calling context and its inability to kill aliases explains the massive distortion between
the MODC(FSAlias) and MODC(FIAlias) solutions for moria.

4.3 Discussion of Precision

A safe MODC solution is traditionally defined to be a point-wise superset of the precise solution.
In other words, any fixed location that can be modified by some execution is guaranteed to be
in the computed solution. The equations in Section 3.1 produce a safe solution. A reverse-safe
solution is one that is point-wise a subset of the precise solution. In [Bar78], Barth defines the
concept precise up to symbolic execution to mean precise assuming that all program branches are
executable; effectively, this means that all intraprocedural paths are considered to be executable. It
is possible to define reverse-safe up to symbolic execution. This is done by ensuring the approximate
solution is a point-wise subset of the precise-up-to-symbolic-execution solution.

There are two major sources of imprecision. The first is due to intraprocedural paths that
cannot be executed. The second is due to various interactions of aliases that do not occur on the
same execution. We bound the latter type of imprecision but ignore the former, as it is very difficult
to bound.

The equations in Section 3.1 can be extended to associate with each element of the MODC(FSAlias)
either yes or maybe so that the part of the solution associated with yes is reverse-safe up to sym-
bolic execution and the entire solution (i.e., the solution ignoring the yes/maybe information) is
safe. Appendix B extends the equations in Section 3.1 in this manner. The safe solution implied
by the modified equations is identical to the solution implied by the original equations.
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Figure 20: Percentage of average number of modifications that are maybes

The equations in Appendix B allow a bound on the imprecisions to be computed. All MODC(FSAlias)
information not in the precise-up-to-symbolic-execution solutionmust be labeled with maybe. Thus,
if P percent of the solution is labeled with maybe then at most P percent of the solution can be
imprecise. Figure 20 is a bar chart of the percentage of MODC(FSAlias) labeled with maybe for
results for procedures, whose data imply that a majority of solutions on this data set are precise
up to symbolic execution as none of the solution is associated with maybe. Even for the programs
that have some of their solution associated with maybe, that part of the solution is small (16%
maximum). The charts for through-dereference assignments and calls are similar in appearance
to Figure 20 with averages of 4.1% and 2.4%, respectively. Computing MODC(FSAlias) with
yes/maybe information is more costly and could not be done for moria.

4.4 Cost of keeping calling contexts

The equations in Section 3.1 are context-sensitive in that they keep track of calling contexts in
order to increase precision. This, of course, has a cost and that cost is maintaining the same
MODC information for different contexts. The ratio of the size of CMOD plus the size of PMOD
to the size of MOD indicates the percent of the MOD solution that is represented redundantly
under various calling contexts. Figure 21 gives this ratio for the programs in the data set for which
the MODC(FSAlias) algorithm finds a solution. A ratio of 1.05 means that 5% of the solution is
redundant. The average for these programs is around 1.01. Given the nature of Equations (3) and
(4), this ratio should also be a good predictor of the extra time required to maintain the calling

36



1 1.05 1.1

moria    
flex     

football 
tbl      

triangle 
arc      

simulator
patch    
lharc    
livc     

gnugo    
assembler

unzip    
diff     

cdecl    
sim      

zipcloak 
compiler 

xmodem   
learn    

zipnote  
dixie    

zipship  
pokerd   
stanford 
ansitape 
mway     
loader   
clinpack 

compress 
lex315   
plot2fig 

ul       
travel   
diffh    

fixoutput
allroots 

avg      (1.0138)

(|CMOD|+|PMOD|) / |MOD| for MODc(FSAlias)

Comparison of size of CMOD and PMOD with MOD: Procedures

Figure 21: Cost of keeping calling contexts

contexts.

4.5 Effects of Counting

Section 3.5 explains the issues in determining the size of the MOD solution. Figure 22 compares
the two methods of counting aggregates presented in that section for the MODC(FSAlias) solution
at procedures. Let base be the number of modifications determined in the manner used throughout
this paper (i.e., NoFields counting). The sum of base and extra is the number of modifications that
would be determined by counting each part of an aggregate separately. What is important about
this figure is that the numbers are very different depending on how modifications are counted. In
order to compare work by different research groups, minimally the assumptions used while counting
must be documented. It would be even more useful if the same method of counting was used by
all research groups.

4.6 Lines of best fit (Regressions)

Regressions on the data in this paper are potentially interesting as they can indicate how various
factors are related (e.g., how the size of the program correlates to the number of modifications).
However, there are two major potential problems:

1. the data set in this paper is too small to make strong conclusions, and

2. the regressions might not be good.
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Figure 22: Different methods of counting

The former point can only be dealt with by expanding the data set vastly (at least an order of
magnitude). Regressions of many of the figures in this paper look reasonable. The regression in
Figure 23 (a) is one that appears good and is fairly typical. Given a line of best fit y = mx +b for
the data {(xi, yi)} where xi is program size in ICFG nodes and yi is the program property being
measured, an error factor ei can be determined for each i such that ei = yi −mxi + b. For example
in Figure 14, yi is the number of fixed locations reported on average per procedure.

The regression line indicates that there is a slight correlation between program size and the
number of modifications. An additional 886 ICFG nodes (i.e., program statements) increases the
expected number of modifications by 1 at each call site. However, the error factor seems to be
a more important factor than the program size. This indicates that while size plays a role there
are other, probably more significant, factors involved. For the data in this paper, this is what the
regressions typically indicate. The regression in Figure 23 (a) is fairly good in that the plot of the
errors (residuals) in Figure 23 (b) yields a fairly random pattern (although the magnitude of the
error might get larger as program size gets larger) and the histogram of the errors in Figure 23 (c)
is roughly normal.

4.7 Timing Results

Timing results are reported for the analysis times of the MODC calculation, broken into its two
passes, and for simple compilations of the programs in the data set using GNU’s gcc compiler version
2.7.2 with no optimizations enabled and no linking. (All compile times reported in this section used
this GNU compiler.) These numbers are as reported by the UNIX time utility, averaged over 5
executions. The notation MODC(FS) refers to the phase of the MODC(FSAlias) algorithm after
the alias solution has been computed; similarly for MODC(FI). Thus, these times do not include
the alias analysis times, but are simply the time taken to calculate the MODC solution given the
alias solution. The total analysis time for, say, the flow-/context-sensitive analysis is the sum of
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Figure 24: MODC(FSAlias)time, MODC(FIAlias)time, and compile time.

the FSAlias time and the MODC(FS) time. The MODC analysis time is dominated by the alias
calculation.

Figure 24 (a) contrasts the MODC(FSAlias) and MODC(FIAlias) analysis times versus the
compile times for the data programs, using a logarithmic scale for the time axis (x-axis). Figure
24 (b) plots the same data, but uses the program sizes (in ICFG nodes) as the x-axis showing the
times on log scale on the y-axis. These figures demonstrate the dramatic difference between the
sensitive and insensitive analyses, showing at least an order of magnitude difference between the
two. The good news is that in most cases, the FSAlias analysis time is comparable to the compile
time. This is an important feature for any analysis destined for compiler optimization.

Figure 25 shows the times for the MODC(FS) and MODC(FI) phases of the MODC calculation.
MODC(FS) and MODC(FI) are both very fast, and are comparably fast, except in the case of
moria. Notice that seemingly large differences are not large because the scale of the time axis is so
small. The only explanation so far for moria is that the FIAlias solution is sufficiently imprecise to
cause the second pass of the MODC algorithm to do significantly more work. Table 3 in Appendix
C shows the raw data from which these figures are constructed.

4.8 Measurement of Memory Needed

The maximum memory needed by the two MODC analyses was measured empirically by an external
process while each analysis was running on each program in the data set. The memory needs of each
algorithm include (i) a fixed-size of overhead space for algorithm data structures, (ii) the program
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Figure 25: MODC(FS) and MODC(FI) analysis times.

representation, whose size varies linearly with program size and was the same for both analyses,
and (iii) the analysis results. The maximum memory reported as used for each program in Figure
26 includes all three of these factors.

Figure 26(a) shows the absolute space needed, which varies for MODC(FIAlias) from about
40Mb to almost 160Mb. The maximum space needed for MODC(FSAlias), which runs out of
virtual memory on the large programs, was about 90 Mb on moria. Note that the ratio of program
size between flex and moria (as measured by number of ICFG nodes - see Table 1) is about 1:5.5
whereas the difference in maximum space needed for MODC(FSAlias) is only about 50%. The
maximum space needs of MODC(FIAlias) seem to be growing precipitously; however, another way
to view these results is shown in Figure 26(b), where the maximum space needed by each analysis
is normalized by the number of ICFG nodes (i.e., approximately the number of C statements in
the program). Here it is clear that the memory needs of MODC(FIAlias) per statement of code
are fairly stable for the larger programs (i.e., more than 20K LOC). Since no attempt has been
made to optimize for memory usage in either analysis, these measurements are a “first cut” at what
memory needs limit these analyses.

5 Related Work

Interprocedural Side-Effects Analysis. Interprocedural modification side effects were first
handled by Allen for acyclic call multigraphs in FORTRAN programs [All74, Spi71]. Later, Barth
explored the use of relations to capture side effects in recursive programs [Bar78]. Banning [Ban79]
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Figure 26: Memory usage of MODC(FSAlias) and MODC(FIAlias)
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first accomplished the decomposition of the MOD problem for FORTRAN (and other languages
where aliasing is imposed only by call-by-reference parameter passing); he separated out two flow-
insensitive calculations on the call multigraph: one for side effects and a separate one for aliases.
The interprocedural side-effects problem for FORTRAN is flow-insensitive, but context-sensitive.
Cooper and Kennedy [Coo85, CK88, CK87] further decomposed the problem into side effects on
global variables and side effects accomplished through parameter passing. Burke showed that
these two subproblems on globals and formals can be solved by a similar problem decomposi-
tion [Bur90]. All of this work targeted the programming model of FORTRAN77, a language
without pointers. Choi, Burke, and Carini mention an interprocedural modification side-effects
algorithm for languages with pointers based on their flow-sensitive pointer-aliasing analysis tech-
nique [CBC93, MLR+93]; it is difficult to compare their work to this work, because they give no
description of their algorithm and offer no implementation results.

Another approach to side-effect analysis is to perform an interprocedural pointer aliasing algo-
rithm and then identify all variables experiencing side effects at indirect stores through a pointer
(i.e., at through-dereference statements) using the aliases found [EGH94, GH98, Ruf95, HP98,
SH97a, ZRL98, ZRL96]. This is often used as an empirical test of the precision of the alias solution
obtained.

Related Analyses Related interprocedural analyses include compile-time interprocedural pro-
gram slicing [GL91, HRB90, OO84, RR95, GS96, LH96, HC98, SHR99, TCFR96, Tip96, Ven91,
Wei84, TAFM97, AG96, AG98], interprocedural def-use associations [PLR94, HS94, GH98, CR99]
and, demand analyses [HRS95, DGS95, DGS96]. Slicing determines the data and control depen-
dent parts of a program which correspond to a particular computation. Def-use associations trace
value flow on static paths in a program; they are useful for various machine-independent optimiza-
tions and data-flow testing methods. Demand data-flow analysis seeks to efficiently answer queries
about individual data-flow facts at a program point; a partial calculation is performed to derive
the data-flow information, rather than a whole program analysis.

Interprocedural distributive finite subset problems can be solved using a graph reachability
technique on an “exploded” call graph of the program [RHS95]. Capture of calling context is not
an issue here since the problems being solved are of a form such that reachability in each procedure
can be analyzed once for each parameter, regardless of calling context. The solution at a call site is
obtained by using the parameter binding functions to identify incoming information with outgoing
information at the corresponding return site. These relations between incoming and outgoing in-
formation are then memoized to avoid re-analysis. The underlying ideas of this analysis are related
to notions expressed in the conditional analysis for aliasing due to single-level pointers [LR91]. Sev-
eral solutions to MODC with different flow-insensitive, context-insensitive points-to approximation
algorithms have been obtained by this method, since using program-wide aliases yields an approx-
imate problem for MODC that yields the same side effects regardless of calling context [SH97a].
This Horwitz and Shapiro study shares the philosophy of the empirical results presented here, in
that the effects of pointer aliasing on applications are reported. However, there are no flow- and/or
context-sensitive analyses performed and direct comparison with MODC(FIAlias) is difficult, since
only a flow-/context-insensitive MOD(P ) is defined with no per-statement side effects, and indirect
side effects to structure fields and union members are not distinguished.

Ruf [Ruf95] compared the effect of context sensitivity (or its lack) on a flow-sensitive points-to
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algorithm. Most of his reported data is with respect to the difference in precision of the points-to
solution, with and without context information. Although his results were based on a possibly
nonrepresentative benchmark suite (a fact observed by him), they indicated that no precision
improvement was observed for his flow-sensitive algorithm on these programs by adding context
sensitivity. For many reasons this study is difficult to compare with the results presented here.
First, his VDG program representation is incomparable to the ICFG, not being a statement-level
representation. Secondly, several independent structure field references may be merged, so that
data on “average” number of side effects at a write statement may not be comparable to data at
through-dereference statements. Thirdly, there is no flow-insensitive method in his paper.

Newer studies of the affect of flow sensitivity on points-to analysis [HP98, HP99] carefully
track the performance of several flow-insensitive algorithms versus that of a flow-sensitive algo-
rithm [BCCH94, BCCH97, CBC93, MLR+93]. Comprehensive measurements of comparative pre-
cision at through-dereference statements (as well as precision on dereferenced reads), algorithm
timings and memory usage are reported. These experiments on this data set showed that the pre-
cision of their flow-insensitive analysis was identical to that of their flow-sensitive analysis on 12 of
their 21 benchmark programs [HP98]. Further work [Pio99] studies the affect of analysis precision
on constant propagation. It is difficult to compare Hind and Pioli’s results with those reported
here, since all of their algorithms are context-insensitive and a different alias representation is used,
which may alter the fixed location counts.

A recent technique uses SSA-form to transform the program in a way that effectively adds
“adjustable” flow sensitivity to a flow-insensitive pointer-alias analysis [HH98]. No empirical results
are given and it is not clear if this technique is scalable.

Pointer May Alias Algorithms. This paper discusses a schema for finding side effects in C
codes that is parameterized by the type of pointer aliasing technique used. Since the focus of
this paper is the MODC schema, the recent work in pointer analysis is merely summerized here.
Recently, there have been many investigations of pointer aliasing algorithms which vary in cost
and precision. Several concentrate on aliases in heap storage [HPR89, CWZ90, Deu94, HN90,
EGH94, GH96a, GH96b, JM82a, LH88, SRW98]. Others calculate program-wide (flow-insensitive)
aliases [Cou86, Gua88, BCCH94, And94, SH97b, Ste96b, Wei80, ZRL96, HP98]. There are flow-
sensitive techniques as well which calculate program-point-specific aliases [Coo89, LR92, CBC93,
MLR+93, EGH94, GH98, WL95, Ruf95, HA90, SFRW90, CRL99]. Other work concentrates on
aliases in higher order functional languages [Deu90, NPD87]. Newer work calculates pointer aliasing
in programs with explicit concurrency achieved with co-begin, co-end constructs [RR99]. Another
new paper offers a framework for normalizing the representation of structure fields, for use in
determining aliasing in the presence of unions and casting [YHR99].

6 OBSERVATIONS

Recall that the empirical experiments refer to two specific implemented MODC algorithms, MODC(FSAlias)
and MODC(FIAlias). These observations are obtained from examination of these results and are
specific to them. The obvious conclusion of the empirical results is that MODC(FSAlias) yields
significantly more precise solutions at far greater computation cost. Nevertheless, this is a complex
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and interesting trade-off.

6.1 Flow-/context-sensitive analysis

Flow-/context-sensitive data-flow analysis is capable of providing very accurate results for small,
real world applications (10K LOC). As expensive as it is, the cost of sensitive analysis is still not
prohibitive for a large subset of the data programs, being on the order of the time to compile the
program. Thus, the MODC(FSAlias) algorithm achieves scalability up to a certain point. Recall
that previously published results were only up to 4700 lines of code. In particular, substantially
larger programs that don’t use certain program constructs heavily can be analysed; moria and zip
vividly show the effects on the MODC analyses presented here of heavy use of (large) recursive
data structures. This level of scalability is rather surprising for a program-point-specific analysis.
Further, note that users of software-engineering tools such as data-flow testers or off-line program
understanding databases which gather def-use information about a large program in order to query
it later, may be willing to accept analysis costs of several times that of the compilation time
and/or large memory needs. Nevertheless, it seems apparent that flow-/context-sensitive analysis
is not going to scale to the next order of magnitude without a major innovation; whole-program
flow-/context-sensitive analysis of large systems seems unattainable.

6.2 Flow-/context-insensitive analysis

The flow-/context-insensitive analysis presented here is a very fast and scalable analysis. Whole
program analysis of large software, such as today’s commercial applications, seems feasible. The
loss of precision is a strong concern, however. Most applications of the modification side-effects
solution need quite precise results (e.g., data-flow based testing). Nevertheless, it is interesting
that the flow-/context-insensitive solutions are much more precise than the worst-case estimate,
meaning that there is still significant gain to be had from using this inexpensive analysis. Software-
engineering tools such as smart semantic browsers which trace approximate def-use information or
debuggers which use run-time traces augmented by compile-time knowledge are possible consumers
of insensitive side-effect information. So, flow-insensitive analysis can be very effective, being
inexpensive and acceptably accurate for certain applications.

6.3 Comparison of sensitivity

One claim being disputed in the analysis community is that flow-/context-sensitive analysis will
obtain much better precision than flow-/context-insensitive analysis on important problems, such
as modification side effects. The empirical results confirm the belief that sensitivity provides dis-
cernably increased precision in the solution obtained; for program transformation or validation
applications, this accuracy may be required.

6.4 Where to now?

This study raises three topics for further exploration. The first is how to incorporate flow sensitivity
into analysis of very large programs. Zhang et al. [ZRL98, ZRL96] report on a program decomposi-
tion strategy where the alias relation induces a partitioning of the assignment statements involving
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pointer variables. This in turn can be used to decompose the program into sections for which analy-
ses of differing precision and cost can be applied; this is especially beneficial if an expensive analysis
can be avoided where much greater accuracy will not be achieved. Initial experiments targeted re-
cursive data structures as subjects for a flow-/context-insensitive alias analysis with appealing
results. More experimentation is needed to comprehend the possibilities in this approach, both
in terms of choice of analyses to apply to groups of program sections and of varying the program
decomposition itself. Recent work focuses on reorganization and redesign of flow-/context-sensitive
analysis to reduce memory costs of points-to analysis in C++ and Java; preliminary empirical
findings are encouraging [CRL99, Cha99].

The second topic is how to make flow-/context-insensitive analysis more effective without in-
creasing the cost. An interesting idea stems from the observation that safe analyses produce
supersets of the precise solution. The intersection of the solutions generated by different, safe
analyses for the same problem must also be safe, and may be closer to the precise solution. Re-
cently, Shapiro and Horwitz used this idea with several flow-/context-insensitive points-to analysis
algorithms [SH97b]. This approach needs more exploratory experimentation.

The final topic is to discern more fully the kind of program construct and programming style that
foils data-flow analysis. Perhaps the availability of precise, flow-/context-sensitive data-flow analysis
would be sufficient motivation to change programming practice, language design and programmers’
habits. For instance, references in Java are a restricted form of pointers, and might be substantially
easier to deal with under static analysis than C’s general-purpose pointers.

7 CONCLUSION

This is the first interprocedural modification side-effects analysis for C (MODC) that obtains rea-
sonable precision on programs with general-purpose pointer usage. The algorithm schema is pa-
rameterized by choice of pointer-aliasing method used as the first pass. Two MODC algorithms at
opposite ends of the spectrum in terms of flow and context sensitivity were empirically profiled,
with data collected for key statements (i.e., through-dereference assignments and calls) as well as for
procedures (i.e., MOD(P)). This is the first empirical comparative study of the effects of both flow
and context sensitivity in the context of an important data-flow problem. It is especially significant
that the utility of the data-flow solution obtained is studied in an application context, because the
hypothesis is that different applications will select different trade-offs in cost versus precision. A
significant precision advantage was established for the flow-/context-sensitive side-effects analysis
over that of the flow-/context-insensitive analysis; but, this performance was at a severe cost in
analysis execution time usually of at least an order of magnitude. Maximum memory usage was
tracked for these types of analyses but no meaningful comparison can be made with regard to
memory usage until analyses have been optimized to save space.
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A Comparison with the MOD Decomposition for FORTRAN

The decomposition of the MOD problem for C in Figure 8 is similar in structure to the original
decomposition for FORTRAN by Banning [Ban79], in the sense that both calculate local side
effects in each procedure first, and then set up data-flow equations on call graphs to compute
procedure-level side effects (i.e., a flow-insensitive interprocedural calculation).

The two decompositions are also similar in what is included in the MOD sets. In FORTRAN
programs, variables are the only fixed locations and therefore various MOD sets in the decom-
position for FORTRAN include just variable names. In C, pointers and dynamic allocation are
allowed.

The two decompositions differ in their treatment of aliases. In the FORTRAN decomposition,
aliases are computed at procedure calls. This is possible because for FORTRAN programs, only
procedure calls can create aliases and aliases created by a call hold throughout execution of the
procedure being called. In the MOD decomposition in Figure 8, aliases are computed at pointer
assignments and procedure calls (i.e., at program points), because aliases vary intraprocedurally.
An alias at a program point is associated with a reaching alias for the procedure containing that
program point. These reaching aliases differentiate side effects caused by different calls of the same
procedure.

The MOD problem for FORTRAN was further decomposed by Cooper and Kennedy [Coo85,
CK88, CK87] into two subproblems, one on global variables and another on reference formals.
The first subproblem is provably rapid [MR90b] while the second one is not. Similarly, for the C
language, side effects on global fixed locations (including heap storage creation site names) can be
separated from side effects on locals and non visibles.

This can be done by introducing a new set CondIMOD+(P, RA) to the decomposition of
Figure 8. This new set is the set of fixed locations either modified directly in procedure P or
modified as non visibles in procedures called by P , considering only aliases in P that are conditioned
on RA. The non visibles modified by procedures called in P are local variables of either P or
other procedures that have called P , directly or indirectly. The system of data-flow equations
for CondIMOD+ sets is as follows, where b′callQ

is the function bcallQ in Section 3.1 restricted to
mapping of non visibles in Q to either locals or non visibles in P .

CondIMOD+(P, RA) = CondIMOD(P, RA)
⋃ ⋃

callQ ∈ P and

RA
′
∈ contexts of(callQ, RA)

(
b′callQ

(CondIMOD+(Q, RA
′))

)

After obtaining CondIMOD+(P, RA) solutions, the PMOD sets can be computed by solving
the following data-flow equations.

PMOD(P, RA) = CondIMOD+(P, RA)
⋃

⋃

callQ in P and

RA
′
∈ contexts of(callQ, RA)

{
obj

∣∣∣obj ∈ PMOD(Q, RA
′) and obj is global

}

Figure 27 compares various MOD sets defined in this MOD decomposition for C and those in
the decomposition for FORTRAN as presented in [CK87].
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MOD Decomposition MOD Decomposition for C
for FORTRAN [CK87] n is either an assignment or a call.
s is a statement. P is a procedure.
P is a procedure. RA is a reaching alias.
LMOD(s) CondLMOD(n, RA)
the set of variables modified by an n is an assignment.
execution of s, excluding any the set of fixed locations modified by an execution of
procedure calls in s n considering aliases that are associated with RA

and hold on entry n.
IMOD(P ) CondIMOD(P, RA)
the set of variables modified by an the set of fixed locations modified by an invocation of
invocation of P , excluding any P , considering only assignments in P and aliases
procedure calls in P associated with RA in P
IMOD+(P ) CondIMOD+(P, RA)
the set of variables either modified the set of fixed locations either modified directly in
directly in P or modified as P or modified as non visibles in procedures called by P ,
reference formals in procedures called considering only aliases associated with RA in P
in P
GMOD(P ) PMOD(P, RA)
the set of variables modified by an the set of fixed locations modified by an invocation of
invocation of P , including procedure P , considering both assignments and procedure calls in P ,
calls in P and ignoring any aliases and aliases associated with RA in P
in P
DMOD(s) CMOD(n, RA)
the set of variables modified by an n is either an assignment or a call.
execution of s, including procedure the set of fixed locations modified by an execution of
calls in s and ignoring any aliases n, considering aliases that are associated with RA
in the procedure containing s and hold on entry n, and parameter bindings if n is a call
MOD(s) MOD(n)
the set of variables modified by an n is either an assignment or a call.
an execution of s, considering all the set of fixed locations modified by an execution of
aliases in the procedure containing s n, considering all possible aliases true on entry n

in the procedure containing n

Figure 27: Comparison of MOD decompositions for FORTRAN and C
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B Calculation of MOD with maybes

In order to incorporate maybe information from the alias solution into the MOD solution, the
following definitions are needed:

• L1 is the lattice ({maybe, yes},.1,/1,01,11,⊥1) implied by the relation maybe .1 yes.
• F is the set of fixed locations of the program being analyzed.
• L is (S,.,/,0,1,⊥)

– S = powerset(F × {maybe, yes})
– a . b iff [(∀s)[s = (f, d1) ∈ a] ⇒ [(∃d2) such that (f, d2) ∈ b and d1 .1 d2]]

– a / b =
⋃

f∈F





{(f, d)}






[(∃d1) such that (f, d1) ∈ a] ∧
[(∃d2) such that (f, d2) ∈ b] ∧
d = d1 /1 d2

{(f, d)}
{

(f, d) ∈ a ∧
[( ' ∃d1) such that (f, d1) ∈ b]

{(f, d)}
{

(f, d) ∈ b ∧
[( ' ∃d1) such that (f, d1) ∈ a]

∅ otherwise





– 0 is analogous to / but is not needed
– 1 = F × {yes}
– ⊥ = ∅

• DIRMOD, Predecessors, and bcallQ as in Section 3.
• For all program points n and all reaching aliases RA

– (〈x, y〉 , yes) ∈ Calias′(n, RA) if x and y are definitely aliases on some path to n given
RA reaches the entry of the procedure containing n. Notice, this is not must alias but
simply a guarantee that 〈x, y〉 is in the precise up to symbol execution alias solution.

– (〈x, y〉 , maybe) ∈ Calias′(n, RA) if x and y may be aliases on some path to n given RA
reaches the entry of the procedure containing n and the alias algorithm assumes it is for
safety.

• For all program points n, (〈x, x〉 , yes) ∈ Calias′(n, φ) where 〈x, x〉 is any trivial, reflexive
alias.

• contexts of ′ is identical to contexts of in Section 3.1 with yes or maybe associated with each
alias as above.

The MOD problem can be decomposed when yes and maybe are to be associated with the
solution in a manner similar to that in Figure 8.

First, notice that obj ∈ CondLMOD(n, RA) should be associated with yes (maybe) iff the alias
responsible for it is associated with yes (maybe).
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CondLMOD′(n, RA) =
⋃

pred ∈ Predecessors(n)





(obj1, b)

∣∣∣∣∣∣∣

obj2 = DIRMOD(n) and
(〈obj1, obj2〉 , b) ∈ Calias′(pred, RA)

and obj1 is a fixed location






For a procedure P and reaching alias RA, CondIMOD’(P , RA) contains the fixed locations
modified by assignments in procedure P :

CondIMOD′(P, RA) =
⋃

n an assignment in P

CondLMOD ′(n, RA)

A fixed location in PMOD’(P, RA) is definitely modified if it is definitely modified (associated
with yes) in a called procedure and the alias at the call site which triggers that modification is also
associated with yes:

PMOD ′(P, RA) = CondIMOD′(P, RA) ∪
⋃

callQ in P and

(RA
′
, b′) ∈ contexts of ′(callQ, RA)

{

(obj, b)

∣∣∣∣∣
(obj ′, b′′) ∈ PMOD ′(Q, RA

′)∧
obj ∈ bcallQ({obj ′}) ∧ b = b′ 01 b′′

}

CMOD′ is simple for assignments and for procedure calls is analogous to PMOD ′.

CMOD ′(n, RA) =






CondLMOD′(n, RA) if n is an assignment
S(n,RA) if n is a call of Q
∅ otherwise

where S(n,RA) =
⋃

(RA′ ,b′)∈ contexts of ′(n,RA)

{

(obj, b)
∣∣∣∣∣

(obj ′, b′′) ∈ PMOD ′(Q, RA
′)∧

obj ∈ bn({obj ′}) ∧ b = b′ 01 b′′

}

Finally, MOD ′ is (n is in procedure P )

MOD ′(n) =
⋃

reaching alias RA for P

CMOD ′(n, RA)

MOD ′(P ) =
⋃

reaching alias RA for P

PMOD ′(P, RA)
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Program ICFG Compile FSAlias FIAlias MODC(FS) MODC (FI)
Nodes time (s) time (s) time (s) time (s) time (s)

allroots 422 2.42 2.34 0.08 0.02 0.02
fixoutput 617 1.98 1.18 0.07 0.03 0.03
diffh 646 1.62 1.70 0.11 0.04 0.03
travel 698 2.04 3.34 0.12 0.04 0.05
ul 1027 1.72 3.15 0.13 0.08 0.05
plot2fig 1077 15.68 3.80 0.18 0.06 0.07
lex315 1297 2.10 3.64 0.14 0.08 0.07
compress 1319 2.10 3.16 0.18 0.08 0.08
clinpack 1429 2.42 7.34 0.23 0.12 0.09
loader 1563 5.42 6.18 0.29 0.12 0.15
mway 1576 3.12 4.59 0.21 0.10 0.11
ansitape 1747 3.24 5.13 0.39 0.11 0.12
stanford 1771 2.46 2.53 0.22 0.10 0.09
pokerd 1895 7.90 26.52 0.29 0.14 0.11
zipship 1955 2.66 4.33 0.27 0.20 0.13
dixie 2341 10.64 8.09 0.30 0.18 0.23
zipnote 2407 9.50 19.40 0.53 0.64 0.16
learn 2626 8.24 6.27 0.37 0.18 0.21
xmodem 2672 6.00 4.81 0.31 0.21 0.19
compiler 3008 7.84 3.06 0.19 0.36 0.35
zipcloak 3033 7.50 20.42 0.64 0.67 0.19
sim 3034 3.00 8.24 0.35 0.31 0.20
cdecl 3196 4.60 21.08 0.33 0.34 0.25
diff 3300 4.36 11.17 0.50 0.32 0.21
unzip 3416 9.88 10.57 0.40 0.27 0.29
assembler 3601 11.54 26.06 0.55 0.57 0.56
gnugo 3651 14.24 3.25 0.32 0.19 0.19
livc 4101 4.50 7.98 0.57 0.26 0.37
lharc 4250 4.62 12.72 0.79 0.34 0.36
patch 4608 6.94 18.80 0.51 0.35 0.40
simulator 5574 14.70 11.31 0.60 0.34 0.53
arc 5856 19.02 15.00 0.91 0.44 0.53
triangle 6119 8.42 8.88 0.64 0.72 0.31
tbl 6162 14.00 27.16 0.54 0.67 0.43
football 7313 10.22 9.86 0.83 0.37 0.46
flex 7376 11.46 116.82 0.74 0.82 0.67
zip 9288 18.12 1.80 1.01
072.sc 13690 16.52 2.05 2.08
spim 16740 25.38 2.23 3.78
larn 21184 37.78 2.36 8.03
tsl 27302 21.72 10.86 14.69
008.espresso 30510 40.72 6.17 6.09
moria 38572 45.84 77.89 7.02 3.02 52.07
TWMC 51627 152.22 11.06 9.47
nethack 58317 71.38 124.32 355.41

Table 3: Timing Data

C Raw Data

Table 3 shows the analysis times for the MODC calculations broken into two passes, and for a simple
compilation using Gnu’s gcc compiler version 2.7.2 with no optimizations enabled. The numbers
are as reported by the UNIX time utility, averaged over 5 executions on a Sun Sparcstation 20 .
The MODC(FS) and MODC(FI) times do not include the alias analysis times, but are simply
the time taken to calculate the MODC solution given the alias solution. The total analysis time
is the sum of the two columns (columns 4 and 6 for MODC(FSAlias) and columns 5 and 7 for
MODC(FIAlias)).

Tables 4 to 11 contain summary statistics for the MOD solution. These statistics are subdivided
with respect to the type of fixed locations being modified. There are five types:

• glo: MOD information for global variables.
• dyn: MOD information for dynamic storage locations (heap storage creation sites).
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Average # Locations Modified Average Percent of Worst Case Maximum # Locations Modified
program glob dyn loc nv tot glob dyn loc nv tot glob dyn loc nv tot

allroots 0.00 1.00 0.00 0.00 1.00 0% 100% 0% 0% 14% 0 1 0 0 1
fixoutput 0.00 1.80 0.00 0.00 1.80 0% 60% 0% 0% 15% 0 2 0 0 2
diffh 0.50 0.25 0.25 0.00 1.00 6% 25% 4% 0% 7% 1 1 1 0 1
travel 0.00 1.00 0.00 0.00 1.00 0% 33% 0% 0% 4% 0 1 0 0 1
ul 0.33 0.00 0.67 0.00 1.00 1% 0% 19% 0% 4% 1 0 1 0 1
plot2fig 0.62 0.25 0.00 0.25 1.12 3% 13% 0% 6% 4% 1 2 0 1 2
lex315 0.00 1.83 0.00 0.00 1.83 0% 61% 0% 0% 16% 0 2 0 0 2
compress 0.73 0.27 0.00 0.00 1.00 2% 27% 0% 0% 3% 1 1 0 0 1
clinpack 1.30 0.00 0.00 0.07 1.37 9% 0% 0% 7% 7% 3 0 0 1 3
loader 0.53 0.27 0.00 0.76 1.55 7% 4% 0% 17% 7% 1 2 0 9 9
mway 0.51 0.00 0.00 0.52 1.03 1% 0% 0% 14% 2% 1 0 0 2 2
ansitape 0.95 0.57 0.00 0.10 1.62 3% 14% 0% 10% 5% 7 2 0 1 7
stanford 0.64 0.19 0.00 0.24 1.07 2% 10% 0% 5% 3% 2 2 0 1 2
pokerd 0.61 0.32 0.00 0.34 1.27 6% 8% 0% 24% 6% 1 3 0 3 3
zipship 0.41 0.63 0.03 0.00 1.07 2% 21% <1% 0% 4% 2 1 1 0 2
dixie 0.07 1.07 0.00 0.58 1.71 <1% 10% 0% 10% 4% 1 4 0 6 7
zipnote 0.22 0.93 0.00 0.01 1.16 2% 6% 0% 1% 3% 1 4 0 1 4
learn 1.00 0.12 0.02 0.08 1.22 2% 3% <1% 5% 2% 2 3 1 2 3
xmodem 1.02 0.00 0.00 0.03 1.05 4% 0% 0% 2% 3% 2 0 0 1 2
compiler 1.00 0.00 0.00 0.00 1.00 3% 0% 0% 0% 3% 1 0 0 0 1
zipcloak 0.34 0.73 0.00 0.02 1.09 2% 6% 0% 2% 3% 1 2 0 1 2
sim 0.08 0.92 0.00 0.00 1.00 <1% 5% 0% 0% 1% 1 1 0 0 1
cdecl 0.40 0.84 0.04 0.00 1.28 1% 44% <1% 0% 3% 1 2 1 0 2
diff 0.43 0.98 0.00 0.00 1.41 1% 8% 0% 0% 2% 2 3 0 0 3
unzip 0.83 0.54 0.04 0.23 1.63 1% 14% <1% 15% 2% 5 2 1 3 7
assembler 0.55 0.22 0.00 0.74 1.51 3% 1% 0% 16% 3% 2 2 0 9 9
gnugo 0.11 0.00 0.00 1.07 1.18 1% 0% 0% 33% 4% 1 0 0 2 2
livc 1.32 0.00 0.00 0.00 1.32 2% 0% 0% 0% 2% 54 0 0 0 54
lharc 0.42 0.06 0.01 1.36 1.85 1% 2% <1% 44% 3% 1 2 1 4 4
patch 0.39 0.81 0.03 0.00 1.23 1% 8% <1% 0% 1% 1 2 1 0 2
simulator 0.14 0.42 0.00 1.44 2.00 1% 11% 0% 40% 6% 1 2 0 13 13
arc 0.56 0.31 0.01 0.81 1.69 1% 2% <1% 29% 1% 3 2 1 8 8
triangle 0.07 0.27 0.00 0.67 1.01 7% 2% 0% 14% 2% 1 1 0 2 2
tbl 0.97 0.09 0.00 0.05 1.12 2% 5% 0% 1% 2% 8 1 1 4 8
football 1.04 0.00 0.00 0.00 1.05 2% 0% 0% <1% 2% 3 0 0 1 3
flex 0.43 1.23 0.01 0.12 1.79 <1% 2% <1% 5% 1% 3 7 1 2 7
moria 0.86 0.00 0.00 0.62 1.48 1% <1% 0% 12% 2% 3 1 0 33 33

Table 4: Statistics for MODC(FSAlias) (through-dereference assignments)

• loc: MOD information for local variables of the enclosing procedure (including formal pa-
rameters).

• nv: (non visible) MOD information for local variables of other procedures or of an earlier
recursive instantiation of the enclosing procedure. Section 2.2 discusses non visibles in more
detail.

• tot: MOD information for all fixed locations.

There are three different summary statistics. Average # Location Modified (Maximum #
Location Modified) is the average (maximum) number of fixed locations modified by statements
(possibly procedures) of the type indicated by the tables. Average Percent of Worst Case is
more complicated. The number of fixed locations potentially modified by an assignment is the sum
of

• the number of globals in the program,
• the number of dynamic allocation sites,
• the number of locals in the enclosing procedure, and
• the number of locals of other procedures (including locals of earlier recursive

instantiations of this procedure) accessible through globals and formals at the entry of
the enclosing procedure.
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Average # Locations Modified Average Percent of Worst Case Maximum # Locations Modified
program glob dyn loc nv tot glob dyn loc nv tot glob dyn loc nv tot

allroots 0.43 0.06 0.51 0.00 1.00 22% 6% 16% 0% 16% 1 1 1 0 1
fixoutput 0.83 0.10 0.11 0.00 1.03 10% 3% 3% 0% 7% 1 2 1 0 2
diffh 0.31 0.03 0.66 0.00 1.00 4% 3% 18% 0% 7% 1 1 1 0 1
travel 0.26 0.04 0.70 0.00 1.00 2% 1% 14% 0% 4% 1 1 1 0 1
ul 0.63 0.00 0.37 0.00 1.00 2% 0% 18% 0% 4% 1 0 1 0 1
plot2fig 0.50 0.04 0.45 0.03 1.01 2% 2% 13% 1% 4% 1 2 1 1 2
lex315 0.42 0.10 0.51 0.00 1.04 6% 3% 6% 0% 7% 1 2 1 0 2
compress 0.59 0.01 0.40 0.00 1.00 2% 2% 10% 0% 3% 1 1 1 0 1
clinpack 0.48 0.00 0.56 0.01 1.04 3% 0% 13% 1% 5% 3 0 1 1 3
loader 0.34 0.12 0.48 0.24 1.18 4% 2% 11% 5% 5% 1 2 1 9 9
mway 0.35 0.00 0.56 0.09 1.00 1% 0% 8% 3% 2% 1 0 1 2 2
ansitape 0.65 0.06 0.33 0.01 1.05 2% 2% 18% 1% 3% 7 2 1 1 7
stanford 0.35 0.03 0.60 0.03 1.01 1% 1% 25% 1% 3% 2 2 1 1 2
pokerd 0.25 0.08 0.66 0.07 1.05 3% 2% 15% 5% 5% 1 3 1 3 3
zipship 0.41 0.12 0.48 0.00 1.01 2% 4% 10% 0% 4% 2 1 1 0 2
dixie 0.25 0.23 0.55 0.11 1.13 1% 2% 15% 2% 3% 1 4 1 6 7
zipnote 0.43 0.27 0.33 0.00 1.04 3% 2% 8% <1% 3% 1 4 1 1 4
learn 0.62 0.03 0.37 0.01 1.03 1% 1% 9% 1% 2% 2 3 1 2 3
xmodem 0.49 0.00 0.51 0.01 1.01 2% 0% 8% <1% 3% 2 0 1 1 2
compiler 0.74 0.00 0.26 0.00 1.00 2% 0% 13% 0% 3% 1 0 1 0 1
zipcloak 0.48 0.21 0.33 0.00 1.02 3% 2% 9% 1% 3% 1 2 1 1 2
sim 0.21 0.17 0.62 0.00 1.00 1% 1% 5% 0% 1% 1 1 1 0 1
cdecl 0.71 0.05 0.25 0.00 1.02 2% 3% 6% 0% 2% 1 2 1 0 2
diff 0.40 0.19 0.48 0.00 1.07 1% 2% 12% 0% 2% 2 3 1 0 3
unzip 0.45 0.04 0.53 0.02 1.05 1% 1% 9% 1% 2% 5 2 1 3 7
assembler 0.36 0.13 0.41 0.32 1.22 2% 1% 13% 7% 3% 2 2 1 9 9
gnugo 0.50 0.00 0.35 0.18 1.03 3% 0% 9% 6% 4% 1 0 1 2 2
livc 0.51 0.00 0.58 0.00 1.09 1% 0% 22% 0% 1% 54 0 1 0 54
lharc 0.40 0.01 0.50 0.21 1.13 1% <1% 15% 7% 2% 1 2 1 4 4
patch 0.49 0.16 0.39 0.00 1.04 1% 2% 8% 0% 1% 1 2 1 0 2
simulator 0.46 0.07 0.39 0.23 1.16 2% 2% 15% 6% 4% 1 2 1 13 13
arc 0.48 0.06 0.44 0.12 1.10 <1% <1% 14% 4% 1% 3 2 1 8 8
triangle 0.04 0.07 0.74 0.15 1.00 4% 1% 5% 3% 2% 1 1 1 2 2
tbl 0.50 0.03 0.49 0.02 1.04 1% 2% 12% <1% 1% 8 1 1 4 8
football 0.51 0.00 0.50 0.00 1.01 1% 0% 11% <1% 2% 3 0 1 1 3
flex 0.53 0.25 0.32 0.02 1.13 <1% <1% 7% 1% 1% 3 7 1 2 7
moria 0.35 0.00 0.62 0.16 1.12 <1% 0% 12% 3% 1% 3 1 1 33 33

Table 5: Statistics for MODC(FSAlias) (assignments)
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Average # Locations Modified Average Percent of Worst Case Maximum # Locations Modified
program glob dyn loc nv tot glob dyn loc nv tot glob dyn loc nv tot

allroots 0.95 0.25 0.00 0.00 1.20 48% 25% 0% 0% 24% 2 1 0 0 3
fixoutput 5.46 2.69 0.00 0.00 8.15 68% 90% 0% 0% 64% 8 3 0 0 11
diffh 2.48 0.48 0.00 0.00 2.96 28% 48% 0% 0% 22% 9 1 0 0 10
travel 4.62 1.33 0.00 0.00 5.96 26% 44% 0% 0% 26% 18 3 0 0 21
ul 4.14 0.00 0.00 0.00 4.14 16% 0% 0% 0% 15% 26 0 0 0 26
plot2fig 2.82 0.23 0.05 0.00 3.10 13% 12% 1% 0% 11% 21 2 4 0 23
lex315 3.04 1.75 0.00 0.00 4.79 43% 58% 0% 0% 48% 7 3 0 0 10
compress 6.21 0.07 0.00 0.00 6.28 21% 7% 0% 0% 18% 30 1 0 0 31
clinpack 1.64 0.00 0.11 0.00 1.75 11% 0% 1% 0% 8% 15 0 1 0 15
loader 1.05 0.50 0.68 0.06 2.29 13% 7% 14% 4% 11% 8 7 3 1 15
mway 3.21 0.00 0.51 0.02 3.74 8% 0% 2% 2% 8% 39 0 8 1 39
ansitape 3.35 0.30 0.04 0.00 3.69 12% 8% 2% 0% 11% 29 4 1 0 33
stanford 2.66 0.17 0.06 0.06 2.96 9% 9% 1% 1% 9% 29 2 5 5 31
pokerd 0.84 0.22 0.16 0.00 1.22 8% 6% 2% 0% 7% 10 4 1 0 14
zipship 2.70 0.49 0.00 0.00 3.19 14% 16% 0% 0% 12% 19 3 0 0 22
dixie 5.10 1.83 0.31 0.00 7.24 23% 17% 4% 0% 18% 22 11 1 0 33
zipnote 1.37 1.34 0.03 0.00 2.73 9% 9% <1% 0% 7% 13 15 1 0 28
learn 3.67 0.19 0.10 0.00 3.96 8% 5% 1% 0% 8% 46 4 2 0 50
xmodem 1.67 0.00 0.03 0.00 1.70 6% 0% <1% 0% 5% 27 0 2 0 27
compiler 11.03 0.00 0.00 0.00 11.03 33% 0% 0% 0% 32% 33 0 0 0 33
zipcloak 1.31 1.00 0.01 0.00 2.32 8% 8% <1% 0% 7% 16 12 1 0 28
sim 9.17 4.83 0.00 0.00 14.00 20% 24% 0% 0% 19% 45 20 0 0 65
cdecl 2.58 0.88 0.00 0.00 3.46 7% 44% 0% 0% 7% 36 2 0 0 38
diff 2.99 0.76 0.00 0.00 3.75 6% 6% 0% 0% 6% 52 12 0 0 64
unzip 7.55 1.26 0.09 0.02 8.92 13% 32% 2% 1% 13% 60 4 3 1 64
assembler 2.25 1.44 0.32 0.20 4.21 11% 9% 6% 7% 10% 20 16 5 5 36
gnugo 2.54 0.00 0.51 0.39 3.44 13% 0% 9% 13% 13% 20 0 3 3 20
livc 2.64 0.00 0.00 0.00 2.64 3% 0% 0% 0% 3% 78 0 0 0 78
lharc 3.79 0.17 0.13 0.07 4.17 7% 6% 3% 3% 7% 54 3 2 4 57
patch 2.73 0.68 0.00 0.00 3.41 4% 6% 0% 0% 4% 76 11 0 0 87
simulator 1.58 0.25 0.23 0.06 2.13 8% 6% 7% 5% 8% 20 4 2 3 24
arc 8.27 0.45 0.10 0.02 8.85 8% 3% 3% 2% 7% 106 16 1 1 122
triangle 0.16 0.98 0.91 0.16 2.21 16% 8% 3% 2% 8% 1 13 6 3 14
tbl 2.48 0.09 0.03 0.01 2.61 4% 5% 1% <1% 4% 66 2 1 3 68
football 2.71 0.00 0.00 0.00 2.71 6% 0% <1% 0% 5% 45 0 1 0 45
flex 7.74 6.32 0.06 0.01 14.12 5% 8% 1% <1% 6% 153 75 3 1 228
moria 4.78 0.00 0.12 0.02 4.92 6% <1% 2% <1% 5% 86 1 4 22 87

Table 6: Statistics for MODC(FSAlias) (calls)
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Average # Locations Modified Average Percent of Worst Case Maximum # Locations Modified
program glob dyn loc nv tot glob dyn loc nv tot glob dyn loc nv tot

allroots 1.62 0.62 2.38 0.00 4.62 81% 63% 75% 0% 85% 2 1 6 0 8
fixoutput 6.14 2.71 1.00 0.00 9.86 77% 91% 29% 0% 82% 8 3 4 0 15
diffh 3.40 0.53 1.93 0.00 5.87 38% 53% 53% 0% 47% 9 1 7 0 15
travel 6.62 1.50 2.56 0.00 10.69 37% 50% 63% 0% 46% 18 3 12 0 21
ul 8.80 0.00 1.33 0.00 10.13 34% 0% 53% 0% 37% 26 0 4 0 30
plot2fig 4.96 0.37 1.04 0.15 6.52 24% 19% 30% 100% 25% 21 2 9 4 30
lex315 3.61 1.83 1.67 0.00 7.11 52% 61% 28% 0% 61% 7 3 16 0 17
compress 9.12 0.19 2.50 0.00 11.81 30% 19% 63% 0% 34% 30 1 9 0 40
clinpack 4.36 0.00 3.36 0.07 7.79 29% 0% 79% 100% 41% 15 0 12 1 27
loader 2.03 1.26 2.65 1.10 7.03 25% 18% 65% 82% 32% 8 7 18 9 33
mway 7.59 0.00 4.91 0.86 13.36 19% 0% 68% 57% 28% 40 0 40 8 52
ansitape 6.39 0.86 1.44 0.08 8.78 22% 22% 72% 60% 25% 29 4 5 1 34
stanford 4.10 0.25 1.58 0.10 6.04 14% 13% 75% 100% 19% 29 2 8 5 31
pokerd 2.37 0.78 3.19 0.37 6.70 24% 19% 82% 64% 36% 10 4 12 3 21
zipship 6.29 1.21 2.79 0.00 10.29 33% 41% 79% 0% 40% 19 3 11 0 30
dixie 5.94 2.56 2.89 0.33 11.72 27% 23% 78% 14% 31% 22 11 12 6 45
zipnote 3.05 3.40 2.20 0.05 8.70 20% 23% 65% 100% 25% 15 15 12 1 39
learn 7.08 0.47 2.67 0.19 10.42 15% 12% 69% 41% 20% 46 4 13 2 50
xmodem 4.75 0.00 3.04 0.11 7.89 18% 0% 54% 67% 24% 27 0 21 2 32
compiler 18.82 0.00 1.10 0.00 19.92 57% 0% 64% 0% 58% 33 0 4 0 35
zipcloak 2.70 1.90 2.00 0.03 6.63 16% 16% 63% 20% 20% 17 12 12 1 39
sim 13.12 6.65 6.71 0.00 26.47 29% 33% 71% 0% 35% 45 20 20 0 85
cdecl 8.85 0.67 1.48 0.00 11.00 23% 33% 42% 0% 25% 38 2 18 0 50
diff 6.65 1.95 2.86 0.00 11.47 13% 16% 77% 0% 17% 52 12 11 0 67
unzip 12.62 1.48 4.00 0.20 18.30 21% 37% 70% 100% 27% 60 4 15 3 71
assembler 5.32 3.74 2.85 1.68 13.58 27% 23% 74% 69% 32% 20 16 13 15 47
gnugo 4.48 0.00 2.93 1.00 8.41 22% 0% 72% 92% 34% 20 0 9 4 26
livc 5.87 0.00 1.34 0.00 7.22 8% 0% 58% 0% 9% 78 0 13 0 81
lharc 6.29 0.29 2.51 0.37 9.45 12% 10% 69% 36% 15% 54 3 11 4 58
patch 8.66 1.75 2.27 0.00 12.68 11% 16% 48% 0% 14% 76 11 20 0 95
simulator 3.21 0.71 1.94 0.84 6.70 16% 18% 82% 89% 24% 20 4 7 24 29
arc 13.57 1.07 2.26 0.22 17.12 12% 7% 72% 52% 13% 110 16 10 8 126
triangle 0.42 2.89 13.21 2.26 18.79 42% 22% 90% 43% 55% 1 13 41 6 55
tbl 6.99 0.29 2.06 0.08 9.42 11% 15% 62% 29% 13% 66 2 15 4 68
football 5.17 0.00 3.03 0.02 8.22 12% 0% 71% 20% 16% 45 0 36 1 63
flex 15.58 9.64 2.55 0.16 27.93 10% 13% 62% 38% 12% 153 75 22 3 228
moria 7.88 0.01 3.80 0.87 12.56 9% 1% 75% 69% 13% 86 1 24 66 87

Table 7: Statistics for MODC(FSAlias) (procedures)
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Average # Locations Modified Average Percent of Worst Case Maximum # Locations Modified
program glob dyn loc nv tot glob dyn loc nv tot glob dyn loc nv tot

allroots 1.00 1.00 0.00 0.00 2.00 33% 100% 0% 0% 25% 1 1 0 0 2
fixoutput 0.00 1.80 0.00 0.00 1.80 0% 60% 0% 0% 15% 0 2 0 0 2
diffh 1.00 0.50 0.25 0.25 2.00 11% 50% 4% 25% 13% 1 1 1 1 3
travel 1.00 3.00 0.33 1.67 6.00 6% 100% 3% 47% 19% 1 3 1 2 6
ul 0.33 0.00 0.67 0.00 1.00 1% 0% 19% 0% 3% 1 0 1 0 1
plot2fig 0.75 0.25 0.00 0.25 1.25 3% 13% 0% 6% 4% 1 2 0 1 3
lex315 0.00 1.83 0.00 0.00 1.83 0% 61% 0% 0% 16% 0 2 0 0 2
compress 1.64 0.27 0.00 0.00 1.91 6% 27% 0% 0% 5% 3 1 0 0 3
clinpack 2.47 0.00 0.00 0.07 2.53 16% 0% 0% 7% 13% 3 0 0 1 3
loader 0.56 0.27 0.03 1.23 2.09 7% 4% 1% 4% 5% 1 2 1 12 13
mway 0.54 0.00 0.00 0.55 1.08 1% 0% 0% 4% 2% 1 0 0 2 2
ansitape 2.62 0.95 0.00 0.86 4.43 9% 24% 0% 21% 11% 8 2 0 3 13
stanford 0.64 0.33 0.00 0.24 1.21 2% 17% 0% 5% 3% 2 2 0 1 2
pokerd 0.61 0.56 0.00 1.49 2.66 6% 14% 0% 15% 10% 1 3 0 7 8
zipship 0.80 0.85 0.03 0.00 1.68 4% 28% <1% 0% 6% 4 2 1 0 6
dixie 0.07 2.79 0.18 4.59 7.63 <1% 25% 5% 34% 15% 1 4 1 6 9
zipnote 0.43 1.84 0.08 0.08 2.43 3% 12% 1% 2% 6% 1 5 1 1 6
learn 1.36 0.17 0.14 1.12 2.78 3% 4% 2% 10% 4% 3 3 2 6 9
xmodem 1.20 0.00 0.00 0.03 1.23 4% 0% 0% 1% 3% 3 0 0 1 3
compiler 1.00 0.00 0.00 0.00 1.00 3% 0% 0% 0% 3% 1 0 0 0 1
zipcloak 0.49 1.12 0.04 0.02 1.67 3% 9% <1% 1% 4% 1 4 1 1 5
sim 0.12 0.96 0.00 0.00 1.08 <1% 5% 0% 0% 1% 2 2 0 0 2
cdecl 3.04 1.04 0.08 0.52 4.68 8% 54% 1% 33% 11% 5 2 1 1 8
diff 0.44 2.09 0.00 0.00 2.53 1% 17% 0% 0% 4% 2 4 0 0 4
unzip 2.83 1.38 0.04 0.23 4.48 5% 35% <1% 3% 6% 5 3 1 3 8
assembler 1.03 1.38 0.21 3.65 6.26 5% 9% 2% 8% 7% 3 7 4 17 27
gnugo 0.11 0.00 0.14 1.09 1.34 1% 0% 3% 6% 3% 1 0 1 2 2
livc 1.63 0.00 0.00 0.00 1.63 2% 0% 0% 0% 2% 77 0 0 0 77
lharc 0.67 0.14 0.01 1.76 2.59 1% 5% <1% 6% 3% 3 2 1 6 8
patch 2.61 1.80 0.04 0.53 4.98 3% 17% 1% 20% 5% 8 4 1 2 14
simulator 0.14 0.42 0.02 2.62 3.20 1% 11% 1% 4% 3% 1 2 1 14 14
arc 0.78 0.41 0.02 1.45 2.66 1% 3% <1% 7% 2% 6 2 1 9 10
triangle 0.07 0.31 0.00 1.30 1.68 7% 2% 0% 3% 2% 1 2 0 8 8
tbl 1.15 0.18 0.04 0.29 1.66 2% 9% 1% 3% 2% 8 2 1 4 8
football 1.18 0.00 0.00 0.04 1.22 3% 0% 0% 1% 2% 9 0 0 2 9
flex 0.61 1.67 0.02 0.33 2.63 <1% 2% <1% 2% 1% 3 7 1 5 13
zip 0.86 4.83 0.02 0.02 5.74 1% 12% <1% <1% 4% 5 15 1 2 17
072.sc 6.53 0.65 0.04 3.21 10.44 10% 22% 1% 24% 12% 10 1 1 5 16
spim 6.59 8.41 0.01 0.26 15.27 5% 57% <1% 1% 8% 8 10 1 13 18
larn 10.71 2.17 0.01 2.82 15.72 7% 23% <1% 8% 8% 20 4 1 13 28
tsl 1.77 31.54 0.00 0.99 34.30 6% 85% 0% 3% 35% 3 36 0 4 39
008.espresso 0.53 10.11 0.01 1.65 12.31 1% 6% <1% 3% 4% 11 21 2 7 25
moria 14.13 0.00 0.22 82.79 97.14 14% <1% 3% 20% 18% 25 1 4 149 174
TWMC 0.30 6.11 0.00 0.05 6.46 <1% 3% 0% <1% 1% 18 33 1 32 33
nethack 60.46 23.21 0.12 45.02 128.81 24% 50% 2% 47% 32% 71 27 4 53 151

Table 8: Statistics for MODC(FIAlias) (through-dereference assignments)

Percent of Worst Case is simply the number of fixed locations modified divided by the number
of potentially modified locations. The Average Percent of Worst Case is the average of Percent
of Worst Case over all assignments, calls, or procedures depending on the statement kind. For some
statements/procedures, the number of possible locals and the number of non visibles are zero. In
these cases, “0%” is used as the percent/assign.
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Average # Locations Modified Average Percent of Worst Case Maximum # Locations Modified
program glob dyn loc nv tot glob dyn loc nv tot glob dyn loc nv tot

allroots 0.47 0.06 0.51 0.00 1.04 16% 6% 16% 0% 14% 1 1 1 0 2
fixoutput 0.83 0.10 0.11 0.00 1.03 10% 3% 3% 0% 7% 1 2 1 0 2
diffh 0.34 0.04 0.66 0.01 1.05 4% 4% 18% 1% 7% 1 1 1 1 3
travel 0.28 0.07 0.71 0.03 1.09 2% 2% 14% 1% 4% 1 3 1 2 6
ul 0.63 0.00 0.37 0.00 1.00 2% 0% 18% 0% 3% 1 0 1 0 1
plot2fig 0.51 0.04 0.45 0.03 1.03 2% 2% 13% 1% 3% 1 2 1 1 3
lex315 0.42 0.10 0.51 0.00 1.04 6% 3% 6% 0% 7% 1 2 1 0 2
compress 0.62 0.01 0.40 0.00 1.04 2% 2% 10% 0% 3% 3 1 1 0 3
clinpack 0.61 0.00 0.56 0.01 1.17 4% 0% 13% 1% 5% 3 0 1 1 3
loader 0.35 0.12 0.49 0.40 1.35 4% 2% 11% 1% 3% 1 2 1 12 13
mway 0.36 0.00 0.56 0.10 1.01 1% 0% 8% 1% 2% 1 0 1 2 2
ansitape 0.78 0.09 0.33 0.07 1.26 3% 2% 18% 2% 3% 8 2 1 3 13
stanford 0.35 0.04 0.60 0.03 1.02 1% 2% 25% 1% 3% 2 2 1 1 2
pokerd 0.25 0.12 0.66 0.30 1.33 3% 3% 15% 3% 5% 1 3 1 7 8
zipship 0.48 0.16 0.48 0.00 1.12 3% 5% 10% 0% 4% 4 2 1 0 6
dixie 0.25 0.55 0.58 0.85 2.23 1% 5% 16% 6% 4% 1 4 1 6 9
zipnote 0.49 0.50 0.35 0.02 1.35 3% 3% 9% 1% 3% 1 5 1 1 6
learn 0.67 0.03 0.38 0.15 1.24 1% 1% 9% 1% 2% 3 3 2 6 9
xmodem 0.53 0.00 0.51 0.01 1.05 2% 0% 8% <1% 3% 3 0 1 1 3
compiler 0.74 0.00 0.26 0.00 1.00 2% 0% 13% 0% 3% 1 0 1 0 1
zipcloak 0.52 0.30 0.34 0.00 1.17 3% 3% 9% <1% 3% 1 4 1 1 5
sim 0.21 0.18 0.62 0.00 1.01 1% 1% 5% 0% 1% 2 2 1 0 2
cdecl 0.86 0.06 0.25 0.03 1.21 2% 3% 6% 2% 2% 5 2 1 1 8
diff 0.40 0.39 0.48 0.00 1.27 1% 3% 12% 0% 2% 2 4 1 0 4
unzip 0.59 0.10 0.53 0.02 1.25 1% 3% 9% <1% 2% 5 3 1 3 8
assembler 0.57 0.63 0.50 1.59 3.30 3% 4% 14% 3% 4% 3 7 4 17 27
gnugo 0.50 0.00 0.37 0.18 1.06 3% 0% 10% 1% 2% 1 0 1 2 2
livc 0.59 0.00 0.58 0.00 1.17 1% 0% 22% 0% 1% 77 0 1 0 77
lharc 0.44 0.03 0.50 0.27 1.25 1% 1% 15% 1% 1% 3 2 1 6 8
patch 0.89 0.34 0.40 0.09 1.72 1% 3% 8% 4% 2% 8 4 1 2 14
simulator 0.46 0.07 0.39 0.42 1.35 2% 2% 15% 1% 1% 1 2 1 14 14
arc 0.51 0.07 0.44 0.21 1.24 1% 1% 14% 1% 1% 6 2 1 9 10
triangle 0.04 0.08 0.74 0.29 1.15 4% 1% 5% 1% 2% 1 2 1 8 8
tbl 0.56 0.06 0.50 0.09 1.20 1% 3% 12% 1% 2% 8 2 1 4 8
football 0.54 0.00 0.50 0.01 1.06 1% 0% 11% <1% 2% 9 0 1 2 9
flex 0.56 0.32 0.32 0.06 1.27 <1% <1% 7% <1% 1% 3 7 1 5 13
zip 0.47 1.06 0.48 0.00 2.01 1% 3% 11% 0% 1% 5 15 1 2 17
072.sc 1.08 0.07 0.53 0.35 2.04 2% 2% 13% 3% 2% 10 1 1 5 16
spim 1.98 2.02 0.35 0.06 4.41 2% 14% 9% <1% 2% 8 10 1 13 18
larn 1.11 0.14 0.49 0.18 1.92 1% 1% 17% 1% 1% 20 4 1 13 28
tsl 0.49 7.90 0.69 0.25 9.32 2% 21% 21% 1% 9% 3 36 1 4 39
008.espresso 0.25 3.08 0.58 0.50 4.41 <1% 2% 10% 1% 2% 11 21 2 7 25
moria 3.71 0.00 0.67 20.98 25.36 4% 0% 12% 5% 5% 25 1 4 149 174
TWMC 0.17 2.28 0.54 0.02 3.02 <1% 1% 4% 0% 1% 18 33 1 32 33
nethack 13.04 4.90 0.51 9.49 27.95 5% 10% 14% 10% 7% 71 27 4 53 151

Table 9: Statistics for MODC(FIAlias) (all assignments including through-dereferences)
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Average # Locations Modified Average Percent of Worst Case Maximum # Locations Modified
program glob dyn loc nv tot glob dyn loc nv tot glob dyn loc nv tot

allroots 1.20 0.25 0.00 0.00 1.45 40% 25% 0% 0% 25% 3 1 0 0 4
fixoutput 5.46 2.69 0.00 0.00 8.15 68% 90% 0% 0% 64% 8 3 0 0 11
diffh 2.96 0.52 0.00 0.52 4.00 33% 52% 0% 52% 27% 9 1 0 1 11
travel 4.62 2.12 0.21 1.92 8.88 26% 71% 3% 43% 32% 18 3 1 3 24
ul 4.14 0.00 0.00 0.67 4.81 16% 0% 0% 33% 16% 26 0 0 2 28
plot2fig 2.94 0.23 0.05 0.26 3.47 13% 12% 1% 6% 11% 22 2 4 4 28
lex315 3.04 1.75 0.00 0.00 4.79 43% 58% 0% 0% 48% 7 3 0 0 10
compress 6.79 0.07 0.00 0.14 7.00 23% 7% 0% 7% 19% 30 1 0 2 33
clinpack 2.25 0.00 0.11 0.03 2.39 15% 0% 1% 3% 10% 15 0 1 1 16
loader 1.60 0.50 1.27 6.76 10.14 20% 7% 25% 26% 21% 8 7 5 29 44
mway 3.33 0.00 0.56 1.37 5.26 8% 0% 2% 11% 9% 39 0 8 15 54
ansitape 6.86 1.46 0.15 1.89 10.37 23% 37% 8% 51% 26% 30 4 1 3 37
stanford 2.71 0.20 0.06 0.31 3.29 9% 10% 1% 6% 9% 29 2 5 5 36
pokerd 0.84 0.43 0.19 2.02 3.48 8% 11% 3% 24% 12% 10 4 1 10 24
zipship 3.28 0.72 0.00 0.11 4.11 17% 24% 0% 8% 14% 19 3 0 2 24
dixie 5.34 3.18 1.83 5.14 15.49 24% 29% 17% 53% 30% 22 11 6 14 47
zipnote 1.75 2.34 0.04 0.07 4.20 12% 16% <1% 2% 10% 13 15 1 2 30
learn 4.15 0.19 0.19 1.44 5.96 9% 5% 2% 13% 9% 47 4 2 9 60
xmodem 1.76 0.00 0.03 0.10 1.89 7% 0% <1% 3% 5% 27 0 2 4 31
compiler 11.03 0.00 0.02 0.10 11.16 33% 0% 1% 10% 31% 33 0 1 1 34
zipcloak 1.58 1.57 0.01 0.05 3.22 9% 13% <1% 1% 8% 16 12 1 2 30
sim 9.17 5.00 0.00 0.07 14.24 20% 25% 0% 7% 19% 45 20 0 1 66
cdecl 5.75 1.32 0.49 0.18 7.73 14% 66% 3% 9% 14% 38 2 1 1 41
diff 3.05 1.06 0.00 0.12 4.23 6% 9% 0% 4% 6% 52 12 0 3 67
unzip 11.17 2.42 0.17 1.61 15.37 19% 61% 5% 21% 20% 60 4 3 8 72
assembler 2.93 2.65 0.58 6.16 12.32 15% 17% 8% 13% 14% 20 16 6 49 85
gnugo 2.54 0.00 0.53 1.93 5.00 13% 0% 10% 10% 12% 20 0 3 21 41
livc 2.82 0.00 0.00 0.03 2.85 3% 0% 0% 2% 3% 87 0 0 2 89
lharc 4.26 0.25 0.21 2.10 6.82 8% 8% 4% 8% 8% 54 3 5 23 80
patch 5.11 1.56 0.00 0.67 7.35 7% 14% 0% 23% 7% 78 11 0 3 92
simulator 1.60 0.25 0.29 10.99 13.13 8% 6% 9% 15% 13% 20 4 2 74 98
arc 8.58 0.49 0.13 1.58 10.79 8% 3% 3% 8% 7% 106 16 2 20 142
triangle 0.16 0.98 1.00 2.65 4.79 16% 8% 4% 9% 9% 1 13 6 40 54
tbl 2.50 0.15 0.03 0.47 3.16 4% 7% 1% 5% 4% 66 2 1 9 77
football 3.56 0.00 0.01 0.82 4.40 8% 0% <1% 12% 8% 45 0 1 7 52
flex 9.71 7.86 0.13 3.12 20.82 6% 11% 1% 21% 8% 155 75 4 16 246
zip 9.57 11.19 0.04 0.21 21.01 10% 28% 1% 2% 13% 96 40 2 10 146
072.sc 10.40 0.84 0.08 3.59 14.91 15% 28% 1% 26% 16% 69 3 2 14 86
spim 15.51 6.41 0.35 4.09 26.36 12% 43% 1% 13% 14% 132 15 11 24 171
larn 18.00 2.95 0.06 3.49 24.50 11% 30% 1% 9% 11% 167 10 4 34 211
tsl 2.86 24.22 0.03 1.85 28.96 10% 64% 1% 6% 28% 30 38 4 30 98
008.espresso 2.11 16.67 0.12 3.13 22.02 3% 10% 1% 5% 7% 65 170 5 56 291
moria 9.02 0.00 0.55 58.40 67.97 9% <1% 6% 14% 13% 100 1 9 415 516
TWMC 6.05 8.28 0.56 6.25 21.14 2% 3% 3% 8% 4% 249 247 13 81 577
nethack 54.28 18.00 0.17 30.83 103.29 22% 38% 4% 32% 26% 252 47 4 86 385

Table 10: Statistics for MODC(FIAlias) (calls)
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Average # Locations Modified Average Percent of Worst Case Maximum # Locations Modified
program glob dyn loc nv tot glob dyn loc nv tot glob dyn loc nv tot

allroots 2.25 0.62 2.38 0.00 5.25 75% 63% 75% 0% 82% 3 1 6 0 8
fixoutput 6.14 2.71 1.00 0.00 9.86 77% 91% 29% 0% 82% 8 3 4 0 15
diffh 3.80 0.60 1.93 0.53 6.87 42% 60% 53% 57% 51% 9 1 7 1 16
travel 6.62 2.06 2.56 1.88 13.12 37% 69% 63% 42% 47% 18 3 12 3 24
ul 8.80 0.00 1.33 0.93 11.07 34% 0% 53% 47% 38% 26 0 4 2 32
plot2fig 5.15 0.37 1.04 0.59 7.15 23% 19% 30% 15% 24% 22 2 9 4 35
lex315 3.61 1.83 1.67 0.00 7.11 52% 61% 28% 0% 61% 7 3 16 0 17
compress 9.56 0.19 2.50 0.25 12.50 32% 19% 63% 13% 35% 30 1 9 2 40
clinpack 4.79 0.00 3.36 0.21 8.36 32% 0% 79% 23% 42% 15 0 12 1 27
loader 2.45 1.26 2.65 9.19 15.55 31% 18% 65% 34% 33% 8 7 18 29 56
mway 7.73 0.00 4.91 3.41 16.05 19% 0% 68% 26% 26% 40 0 40 15 59
ansitape 8.83 1.75 1.44 2.00 14.03 29% 44% 72% 52% 36% 30 4 5 3 38
stanford 4.10 0.25 1.58 0.52 6.46 14% 13% 75% 11% 17% 29 2 8 5 36
pokerd 2.37 1.07 3.19 3.81 10.44 24% 27% 82% 41% 38% 10 4 12 10 29
zipship 7.07 1.50 2.79 0.36 11.71 37% 50% 79% 21% 43% 19 3 11 2 31
dixie 5.94 3.53 2.89 5.08 17.44 27% 32% 78% 38% 35% 22 11 12 14 53
zipnote 3.20 4.05 2.20 0.35 9.80 21% 27% 65% 10% 26% 15 15 12 2 40
learn 7.86 0.47 2.67 2.58 13.58 17% 12% 69% 23% 21% 47 4 13 9 60
xmodem 5.14 0.00 3.04 0.54 8.71 19% 0% 54% 13% 24% 27 0 21 4 36
compiler 18.82 0.00 1.10 0.38 20.31 57% 0% 64% 40% 58% 33 0 4 1 36
zipcloak 2.80 2.20 2.00 0.20 7.20 17% 18% 63% 5% 20% 17 12 12 2 40
sim 13.12 6.71 6.71 0.12 26.65 29% 34% 71% 13% 35% 45 20 20 1 85
cdecl 10.00 0.73 1.48 0.33 12.55 25% 36% 42% 18% 27% 40 2 18 1 52
diff 6.70 2.63 2.86 0.30 12.49 13% 22% 77% 10% 18% 52 12 11 3 70
unzip 15.07 2.20 4.00 2.15 23.43 25% 55% 70% 27% 31% 60 4 15 8 79
assembler 6.30 5.72 2.85 17.00 31.87 32% 36% 74% 36% 36% 20 16 13 49 94
gnugo 4.48 0.00 2.93 3.83 11.24 22% 0% 72% 20% 26% 20 0 9 21 44
livc 6.39 0.00 1.34 0.07 7.80 7% 0% 58% 3% 8% 87 0 13 2 92
lharc 6.89 0.41 2.51 3.46 13.26 13% 14% 69% 13% 15% 54 3 11 23 81
patch 11.71 2.75 2.27 0.95 17.68 15% 25% 48% 33% 18% 78 11 20 3 100
simulator 3.23 0.71 1.94 20.94 26.82 16% 18% 82% 29% 27% 20 4 7 74 102
arc 13.99 1.12 2.26 2.45 19.82 13% 7% 72% 12% 13% 110 16 10 20 146
triangle 0.42 2.89 13.21 8.26 24.79 42% 22% 90% 24% 38% 1 13 41 40 56
tbl 7.05 0.39 2.06 1.24 10.73 11% 19% 62% 14% 14% 66 2 15 9 77
football 6.02 0.00 3.03 0.97 10.02 13% 0% 71% 14% 17% 45 0 36 7 69
flex 17.55 11.06 2.55 3.55 34.70 11% 15% 62% 23% 14% 155 75 22 16 246
zip 8.19 8.19 2.57 0.45 19.40 9% 21% 71% 3% 13% 96 40 21 10 167
072.sc 10.96 0.73 3.01 3.32 18.02 16% 24% 78% 24% 20% 69 3 32 14 116
spim 17.72 6.84 1.57 4.30 30.43 13% 46% 39% 13% 17% 132 15 78 24 174
larn 28.81 3.74 1.72 6.38 40.65 17% 37% 62% 17% 19% 168 10 14 34 215
tsl 3.70 26.69 1.99 2.92 35.30 12% 70% 63% 10% 35% 30 38 14 30 100
008.espresso 3.93 24.29 4.58 5.45 38.25 6% 14% 88% 9% 13% 65 170 22 56 307
moria 15.41 0.01 3.81 96.08 115.31 15% 1% 75% 23% 22% 100 1 24 415 516
TWMC 10.68 14.60 9.93 7.49 42.70 4% 6% 90% 10% 7% 249 247 61 81 592
nethack 71.68 23.13 2.13 40.06 137.01 28% 49% 61% 42% 34% 253 47 32 86 393

Table 11: Statistics for MODC(FIAlias) (procedures)
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