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Abstract

Call graphs are widely used to represent calling rela-
tionships among methods. However, there is not much inter-
est in calling relationships among library methods in many
software engineering applications such as program under-
standing and testing, especially when the library is very big
and the calling relationships are not trivial. This paper ex-
plores approaches to generate more accurate application
call graphs for Java. A new data reachability algorithm is
proposed and fine-tuned to resolve library callbacks accu-
rately. Compared to a simple algorithm that generates an
application call graph by traversing the whole-program call
graph, the fine-tuned data reachability algorithm results in
fewer spurious callback edges. In experiments with the spec
jvm98 benchmarks, the new algorithm shows a significant
reduction in the number of spurious callback edges over the
simple algorithm: on average, the number of callback edges
is reduced by 74.97%, amounting to overall 64.43% edge
reduction for the generated application call graphs.

1 Introduction
A call graph is the representation of calling relationships

among methods: a directed edge from method a to b de-
notes that a may call b directly. Call graphs are widely used
as a program representation in software engineering and op-
timizing compilation. Construction of call graphs is usually
straightforward in classical procedural languages; for exam-
ple, in C, barring the use of function pointers, a call site has
exactly one possible callee. In object-oriented languages,
a call site may invoke several callees due to dynamic dis-
patch. The corresponding call graph construction ([4]) uses
some form of reference analysis. Reference analysis calcu-
lates type information about the objects to which reference
variables can point. There is a wide variety of reference
analyses which differ in terms of cost and precision. An

in-depth discussion can be found in [12, 5].
Precise reference analysis requires a whole-program

analysis. The constructed call graph includes both appli-
cation and library methods as its nodes. However for many
software engineering applications such as program under-
standing and testing, there is not much interest in the call-
ing relationships among library methods. In these contexts,
an accurate application call graph is more useful than a
whole-program call graph. Also, a static analysis requir-
ing a call graph can run more efficiently and produce more
accurate results for application program if an accurate ap-
plication call graph can be substituted for a whole-program
call graph.

Application Call Graph.
An application call graph represents calling relationships

among application methods. There are two kinds of edges:
direct and callback. For application methods a and b, a
direct edge from a to b means that there is a call site in a
that resolves to a call of b. A callback edge from a to b

means that a may call back b through the library; that is to
say, a may call a library method that may eventually call b,
and there exists a call path from a to b, a → m1 → m2 →
... → mn → b on which all the intermediate methods (mi)
are library methods. Call edges in an application call graph
may have labels to denote call site information. For exam-
ple, a callback edge from a to b with label s means that
at statement s, method a makes a library call, from which
it may eventually call back b; we say that ”call site s calls
back b” for brevity.

The contributions of this work are:

• Design of new approaches to construct an accurate ap-
plication call graph for Java. A new variant of the data
reachability algorithm ([3]) is proposed and fine tuned
to resolve library callbacks accurately.

• Implementation of the proposed algorithm and experi-
ments with it.



• Description of the potential usages of application call
graphs in white-box testing.

Outline.
The rest of the paper is organized as follows: Section 2

discusses a simple algorithm to generate application call
graphs by traversing whole-program call graphs. Section 3
presents an algorithm to resolve library callbacks accu-
rately. Section 4 describes the empirical study. Section 5
discusses the potential usages of application call graphs
generated by the given algorithm. Section 6 discusses re-
lated work. Section 7 gives conclusions and directions for
future work.

2 A Simple Algorithm And Its Imprecision
After a whole-program call graph is generated by us-

ing some form of reference analysis, an application call
graph can be generated by traversing the whole-program
call graph. A direct call edge is generated if there is a
call edge between two application methods in the whole-
program call graph. A callback edge is generated between
a pair of application methods if there is a directed path be-
tween them in the whole-program call graph on which all
intermediate nodes are library methods.

The application call graph generated by the above simple
algorithm represents the calling relationships among appli-
cation methods that can be captured by the whole-program
call graph. There is a one-to-one mapping between direct

edges and call edges among application methods in the
whole-program call graph, so the precision for direct edges
corresponds directly to the precision for the whole-program
call graph([4]). Callback edges are generated by collaps-
ing through-library call paths that connect a pair of applica-
tion methods in the whole-program call graph. Many such
through-library call paths cannot happen at runtime; conse-
quently, the corresponding callback edges generated by the
simple algorithm are spurious.

Figure 1 shows an example to illustrate the simple
algorithm and its imprecision. Figure 1-(a) is a piece
of Java code, and 1-(b) shows part of the correspond-
ing whole-program call graph. App.appendA() and
App.appendB() are two application methods both calling
the library method StringBuffer.append(Object) at
call sites (5) and (9), respectively. Classes StringBuffer
and String both come from the java.lang library
package. StringBuffer.append(Object) calls
String.valueOf(Object), which in turn calls
a toString() method. If r is the actual param-
eter passed to StringBuffer.append(Object),
then String.valueOf(Object) will call
Object.toString() on the object pointed to by r.
In this example at call site (5), r points to the A object cre-
ated at (4), and class A overrides the toString() method,

Figure 1. A Example to Illustrate the Simple
Algorithm and its Imprecision



so App.appendA() will call back A.toString() at
runtime. Similarly, App.appendB() will call back
B.toString(). Consequently, an accurate application
call graph should look like Figure 1-(c), in which there are
two callback edges. But in Figure 1-(b), there is a directed
path from App.appendB() to A.toString(), and all
intermediate nodes, StringBuffer.append(Object)

and String.valueOf(Object), are library meth-
ods. According to the simple algorithm, a spurious
callback edge will be generated from App.appendB() to
A.toString(); similarly, another spurious callback

edge will be generated from App.appendA() to
B.toString(), as shown in Figure 1-(d).

The above problem exists because the whole-
program call graph lacks calling context infor-
mation. The shared segments (in this case the
path from StringBuffer.append(Object) to
String.valueOf(Object)) result in infeasible call
paths connecting different start and end points. This prob-
lem cannot be completely solved unless enough context
information is added to the call graph construction algo-
rithm. For example, the specific problem in Figure 1 can be
solved by 2-CFA [14, 15], but 2-CFA is very expensive for
whole-program analysis. What’s more, in many cases the
length of the shared segment is much longer than 2. The
overarching problem will require n-CFA with a very large
n or the use of a call tree [13] instead of a call graph to
represent calling relationships. Currently, both approaches
are impractical because they are not scalable for real-world
programs.

3 A Data Reachability Algorithm To Resolve
Library Callbacks

We want to use a rather precise yet practical analysis to
eliminate as many infeasible through-library call paths as
possible, to reduce the number of spurious callback edges
in the generated application call graph. The data reach-
ability algorithm ([3]) is used to solve this problem. In
this section, we begin by introducing the data reachabil-
ity algorithm. Then a new variant of data reachability, V a-
DataReach, is proposed and compared to the existing V -
DataReach algorithm. Finally the algorithm is fine-tuned
specifically to resolve library callbacks more accurately, re-
sulting in V a-DataReachft.

3.1 Data Reachability Algorithm

The intuitive idea of the data reachability algorithm is
to resolve control-flow reachability (i.e., find feasible call
paths) via data reachability analysis. Call paths requiring re-
ceiver objects of a specific type can be shown to be infeasi-
ble, if those types of objects are not reachable through deref-
erences at the relevant call site. In Figure 1, the call path
App.appendA() → StringBuffer.append(Object)

→ String.valueOf(Object)→ B.toString() is fea-
sible, only if during the lifetime of the library call
StringBuffer.append(Object) at call site (5), the re-
ceiver object of the site calling Object.toString() in-
side the method String.valueOf(Object) can be of
type B; if this cannot happen, then the above call path is
infeasible.

Fu, et. al present three forms of data reachability algo-
rithms in [3]: DataReach, M-DataReach and V-DataReach,
listed in order of accuracy of their solutions. DataReach
uses one set to record all possible reachable objects dur-
ing the lifetime of a specific method call. M-DataReach
uses a separate set for each method to record that method’s
possible reachable objects during the lifetime of a specific
method call. V-DataReach uses a separate set for each ref-
erence variable and each object field to record its possible
referenced objects during the lifetime of a specific method
call.

In essence, the data reachability algorithm performs
a separate reference analysis for each call site after a
whole-program reference analysis. More specifically for
V-DataReach, there are two kinds of points-to analyses in
the algorithm: one is a whole-program analysis, and the
other is a call-site specific analysis. During the call-site
specific points-to analysis, an object is either accessible or
local. Accessible means that before the end of the call,
the object may be accessed from code executed outside the
reachable methods of this method call (e.g., through another
thread). Consequently, for an instance field read statement
l = r.f 1 encountered during the call-site specific analy-
sis, if r points to an accessible object o, it means that o.f

may have been changed elsewhere, so the global points-to
result for o.f is used in the call-site specific points-to analy-
sis. In V -DataReach, in order to calculate the set of those
accessible objects, a global escape analysis ([2]) is per-
formed after the whole-program points-to analysis and be-
fore the call-site specific analysis. If an object may escape
the method that creates it according to the escape analysis,
it is considered accessible in V -DataReach. In this paper,
we propose a new variation of the data reachability algo-
rithm: V a-DataReach, that differs from V -DataReach

by calculating the set of accessible objects on the fly during
the process of calculating the set of methods reachable from
a call, using a call-site specific points-to analysis.

3.2 Va-DataReach.

Similarly to V -DataReach, V a-DataReach needs an
initial whole-program points-to analysis, whose result is de-
noted as Pt. For a given call site, the algorithm computes

1For brevity, we omit the cases for static fields and arrays in our dis-
cussion. The static fields can be considered to belong to a single (fake)
object that is accessible. An array instance is regarded as one object and
all accesses to elements of this array are modelled using a single field.



the set of accessible objects (Accessible), the call-site spe-
cific points-to result (U ) and the set of reachable methods
(R). If needed, the reachable sub-call graph can be also
computed.

Both of the points-to analysis results, Pt and U , con-
tain points-to information (P(O)) for each reference vari-
able (Ref ) and object field (O × F ), where O is the set
of object creation sites and F is the set of object fields. U

is a subset of Pt. During the call-site specific analysis to
calculate U , the points-to information for the fields of the
accessible objects comes from Pt, while the points-to in-
formation for the local reference variables and the fields of
the local objects comes from U .

An object o is accessible if it satisfies one of the follow-
ing:

• o is referenced by an actual parameter passed to the
call site.

• o is referenced by a static field.

• o is reachable from an accessible object a through
field access (i.e., there exists a list of object fields fis
such that a.f1.f2......fn refers to o).

In V a-DataReach, the set of accessible objects is calcu-
lated on the fly during the call-site specific points-to analy-
sis. For example, if an instance field read statement l = r.f

is encountered, and if r points to an accessible object o,
both Ul and Accessible will be updated and Pt(o.f) will
be included in Accessible (see constraint 4 below).

V a-DataReach is defined by the following constraints,
using the constraint-based formalism from [18], analogous
to the data reachability algorithm schema defined in [3]:

• input:
{

Pt : Ref → P(O), O × F → P(O)
the original call site as the starting point.

• output:
{

R
Accessible
U : Ref → P(O), O × F → P(O)

• initialize: for each target M at original call and the corre-
sponding actuals ai and formals M.fi :
{

M ∈ R∧

Pt(ai) ⊆ Accessible∧

Pt(ai) ⊆ UM.fi

Initialize UM.this of targets M accordingly
Initialize all other Uv and Uo.f to ∅

1. For each method M and for each object creation statement
si: l = new oi in M :
(M ∈ R) ⇒ oi ∈ Ul

2. For each method M and for each reference assignment state-
ment si: l = r in M :
(M ∈ R) ⇒ Ur ⊆ Ul

3. For each method M , and for each instance field write state-
ment l.f = r in M and each oi ∈ Pt(l):
(M ∈ R) ∧ (oi ∈ Ul) ⇒
{

oi /∈ Accessible ⇒ Ur ⊆ Uoi.f

oi ∈ Accessible ⇒ Ur ⊆ Accessible

4. For each method M , and for each instance field read state-
ment l = r.f in M and each oi ∈ Pt(r):
(M ∈ R) ∧ (oi ∈ Ur) ⇒






oi /∈ Accessible ⇒ Uoi.f ⊆ Ul

oi ∈ Accessible ⇒

{

Pt(oi.f) ⊆ Ul ∧

Pt(oi.f) ⊆ Accessible

5. For each method M , for each virtual call site
l = e.m(e1, . . . , en) occurring in M , and for each
o ∈ Pt(e) where StaticLookup(o, m) = M ′:
(M ∈ R) ∧ (o ∈ Ue) ⇒










M ′ ∈ R ∧

Uei
⊆ UM′.fi

where fi are the formal parameters of M ′ ∧

UM′.ret var ⊆ Ul ∧

o ∈ UM′.this

6. For each method M and for each static field write statement
C.f = l in M :
(M ∈ R) ⇒ Ul ⊆ Accessible

7. For each method M and for each static field read statement
l = C.f in M :
(M ∈ R) ⇒
{

Pt(C.f) ⊆ Ul

Pt(C.f) ⊆ Accessible

8. For each method M and for each static call site
l = C.M ′(e1, . . . , en) in M :
(M ∈ R) ⇒
{

M ′ ∈ R ∧

Uei
⊆ Upi

where pi are the formal parameters of M ′ ∧

UM′.ret var ⊆ Ul

During initialization, V a-DataReach populates U and
Accessible according to the whole-program points-to infor-
mation for the corresponding actual parameters, and initial-
izes R to include the possible target methods of the orig-
inal call site. Constraints 1 and 2 handle object creation
and reference assignment statements and update U accord-
ingly. Constraint 3 handles the instance field write state-
ment l.f = r: for an object oi pointed to by l, if oi is local,
then Uoi.f is updated by Ur. Uoi

need not be updated when
oi is accessible because the whole-program points-to in-
formation will be used for oi; also, objects in Ur will be
marked as accessible if oi is accessible. Constraint 4 han-
dles the instance field read statement l = r.f : if r refers
to an accessible object oi, the result of the whole-program
points-to analysis for oi.f will be used to update Ul and
Accessible; otherwise (oi is local), Accessible remains
unchanged, and the result of the call-site specific points-
to analysis for oi.f will be used to update Ul. Constraint
5 specifies the addition of new methods to the set of reach-
able methods at virtual calls: a new method M ′ is added



Figure 2. An Example to Illustrate the Difference between Va-DataReach vs. V-DataReach

to R only if the required object(s) to trigger the invocation
of M ′ are in the call-site specific points-to set of the re-
ceiver reference variable. U is modified because of parame-
ter assignments and the return value. The auxiliary function
StaticLookup returns the dynamic dispatch target of virtual
call, given the receiver object and the compile-time target
method. Constraints 6, 7 and 8 handle static field writes,
static field reads and static call sites, respectively.

Comparison: Va-DataReach vs. V-DataReach.
V -DataReach and V a-DataReach calculate the set of

accessible objects differently. V a-DataReach calculates
the set on the fly as shown in the constraints. In contrast,
V -DataReach requires the result of a separate escape anal-
ysis, and considers an object accessible if the object may
escape the method that creates it. Figure 2 illustrates the
difference between both algorithms. Figure 2-(a) is a piece
of Java code that contains two methods: EG.entry() and
EG.assignX(B). Figures 2-(b),(c) illustrate the points-to
graph for the two methods, in which we use the state-
ment sequence number to represent the object created at
that creation statement. Assume that we apply the two
data reachability algorithms to the same call site that calls
EG.entry(). Because Object 3 is referenced via a field
from the parameter of method EG.assignX(B), which cre-
ates it, it escapes EG.assignX(B), and thus is regarded as
accessible by V -DataReach. In contrast, it can be seen
from Figure 2-(c) that Object 3 is not accessible from the
code executed beyond the method call of EG.assignX(B),
and thus is regarded as local by V a-DataReach. Another
example is Object 9: it also escapes the method creating it
via the return node and thus is regarded as accessible by
V -DataReach; but it is not accessible from the code exe-
cuted beyond the method call to EG.assignX(B) until af-
ter the call finishes and returns, so it will not be considered
accessible by V a-DataReach.

In both V a-DataReach and V -DataReach the points-

to information for fields of accessible objects comes from
Pt, while the points-to information for fields of local ob-
jects comes from U . U is a subset of Pt, so the fewer
the number of accessible objects, the more accurate the
data reachability algorithm result can be. In the example
shown in Figure 2, two fewer objects, 3 and 9 are consid-
ered accessible in V a-DataReach than in V -DataReach,
so V a-DataReach can get more accurate results than V -
DataReach. However, it is hard to draw a general con-
clusion from this simple example. As part of future work,
we will examine the difference between the two notions of
accessible objects and its influence on the accuracy of the
data reachability algorithms, through empirical studies.

Using Va-DataReach to Resolve Library Callbacks
If in constraints 5 and 8 of V a-DataReach, the reach-

able call edge < M , cs, M ′ > is recorded for each reached
method M ′ at call site cs in M , then a sub-call graph reach-
able from a specific call site can be generated. Given a li-
brary call, libcall, and the sub-call graph reachable from it
generated by V a-DataReach, callback edges can be re-
solved in a similar way as in the simple algorithm: if there
is a call path from libcall to an application method am,
and all the intermediate nodes on the path are library meth-
ods, then libcall calls back am. The application call graph
can be formed using these callback edges found from each
library call plus the direct call edges found by the whole-
program points-to analysis.

3.3 Va-DataReachft: Fine-Tuned Algo-
rithm To Resolve Library Callbacks

To calculate callback edges for each library call from an
application method, the data reachability algorithm needs
some fine tuning to increase accuracy, as illustrated in Fig-
ure 3.

Figure 3-(a) is a slight modification of Figure 1-(a),
where method B.toString() contains one more state-



Figure 3. An Example to Illustrate the Need
for Fine-Tuned Algorithm

ment in line 20. Originally in Figure 1, V a-DataReach de-
termines that call site (9) of method App.appendB() calls
back B.toString() only. But the new codes in Figure 3-
(a) introduce the following complication: at call site (20),
method B.toString() calls App.appendA(), which in
turn calls back A.toString(). Figure 3-(b) shows the
discovered sub-call graph by running V a-DataReach on
call site (9): both A.toString() and B.toString()

show up, and it is hard to distinguish A.toString() from
B.toString() while generating callback edges for call
site (9) of method App.appendB(). Figure 3-(c) shows the
application call graph generated by V a-DataReach. Com-
pared to the actual application call graph shown in Figure 3-
(d), one spurious callback edge from App.appendB() to
A.toString() is generated.

In order to solve this problem, we propose V a-
DataReachft based on V a-DataReach. The intuition is
that only library methods are included in R during the call-
site specific points-to analysis. The following is the sub-
stitute for constraint 5 in V a-DataReach to handle virtual
call sites:

5’. For each method M ∈ Lib, for each virtual call site
l = e.m(e1, . . . , en) occurring in M , and for each
o ∈ Pt(e) where StaticLookup(o, m) = M ′ and fi are
the formal parameters of M ′:

(M ∈ R) ∧ (o ∈ Ue) ⇒














































M ′ ∈ Lib ⇒











M ′ ∈ R ∧

Uei
⊆ UM′.fi

∧

UM′.ret var ⊆ Ul ∧

o ∈ UM′.this

M ′ /∈ Lib ⇒











M ′ ∈ Callback ∧

Uei
⊆ Accessible ∧

Pt(M ′.ret var) ⊆ Ul ∧

Pt(M ′.ret var) ⊆ Accessible

The target method M ′ of a virtual call site is added to the
set R only if M ′ is a library method. If not, M ′ is added
to the Callback set. Also, the objects referenced by the
parameters passed to M ′ or returned by M ′ are accessible

from the code executed beyond this library entry before this
library call finishes. There is also a similar substitute for
constraint 8 in V a-DataReach to handle static call site.
For brevity, it is not shown here.

4 Empirical Study
We have implemented two algorithms to generate the ap-

plication call graph. The first one, denoted as simple, gen-
erates the application call graph by traversing the whole-
program call graph generated by a 0-CFA points-to analy-
sis [11, 8]. The second one, denoted as new, starts from
the results of the same 0-CFA analysis, and resolves library
callbacks according to V a-DataReachft presented in Sec-
tion 3. This section describes our experiments with the two



algorithms. We aim to answer the following two questions
in the experimental study:

• Accuracy: how many spurious callback edges can be
eliminated by V a-DataReachft from those generated
by the simple algorithm?

• Practicality: the advantage for the simple algorithm is
that it is cheap after a whole-program call graph is gen-
erated. Comparatively, is V a-DataReachft practical
enough? Is it also scalable?

4.1 Experiment Setup.

We experimented on all eight benchmarks in the SPEC
jvm98 suite ([17]). All experiments were run on a 1.8GHz
AMD Athlon(tm) 64 Processor 3000+, 2GB-memory PC
with Linux 2.6.12-gentoo-r10 and Sun JVM 1.4.1.07 (32-
bit). The algorithm is implemented in the framework pre-
sented in [19], which utilizes a Java optimization frame-
work, Soot ([7]) and a BDD-based constraint solver, bddb-
ddb ([6]).

Table 1 lists all eight benchmarks. For each benchmark,
it shows the number of total methods (#methods), the num-
ber of application methods (#app methods) and the num-
ber of total statements (#statements). All the numbers are
calculated on the call graph generated by the 0-CFA analy-
sis using on-the-fly construction. The statements are Soot’s
jimple statements, which is a three-address representation
for Java bytecode. From this table it can be observed that a
large number of library methods exist in a whole-program
call graph: even in the smallest benchmark (compress) with
only 60 application methods, the whole-program call graph
still contains 3468 methods, 3408 of which are library meth-
ods.

4.2 Accuracy.

Table 2 shows the size of the generated application call
graph in terms of the number of call edges. Each call edge
is a four-tuple < caller, call site, type, callee >, in which
type can be either direct or callback. Both simple and new

algorithms generate the same set of direct call edges, which
correspond to the call edges between application methods
in the whole-program call graph. The numbers of direct

call edges are shown in column #direct. The numbers of
callback edges generated by both algorithms are shown in
the columns #callback. The reduction rate achieved by the
new algorithm over the simple one is also shown.

Benchmark compress does not have callback edges.
Both algorithms produce precise results, so its reduction
rate is unavailable and thus not counted in calculating the
average. The new algorithm reduces at least 43% of the
callback edges generated by the simple one for all the
other seven benchmarks. On average, the reduction rate is
74.94%, that amounts to an overall 64.43% on average call
edge reduction for generated application call graphs. Note

that benchmark mtrt is a dual-threaded version of raytrace,
and the calculated callback edges are exactly the same for
both benchmarks by either algorithm, so they are regarded
as one benchmark and only counted once in calculating the
average.

benchmark #direct #callback
simple new Reduction

compress 122 0 0 NA
jess 2241 17790 10001 43.78%

raytrace 1081 3400 129 96.21%
db 158 5088 1455 71.40%

javac 13069 43241 17889 58.63%
mpegaudio 689 7659 29 99.62%

mtrt 1082 3400 129 96.21%
jack 1283 8076 1614 80.01%

Average 74.94%

Table 2. Generated Application Call Graph

benchmark Time Cost(sec) #Library Calls
0-CFA V a-DataReachft

compress 41 360 806
jess 46 468 1584

raytrace 43 446 986
db 41 417 994

javac 56 781 2432
mpegaudio 57 427 904

mtrt 43 445 986
jack 53 465 1884

Table 3. Time Cost for New Algorithm

4.3 Practicality.

Table 3 shows the time cost for the new algorithm. There
are mainly two phases that cost considerable time: one is 0-
CFA, the whole-program points-to analysis, and the other
is V a-DataReachft to resolve library callbacks. It can be
seen that the algorithm is practical in that it finishes in rea-
sonable time for all benchmarks.

V a-DataReachft performs a call-site specific points-
to analysis for each library call, so its time cost is closely
related to the number of library calls in the benchmark.
In order to show the correlation between the time cost
and the number of library calls, we chose various subsets
of all library calls in benchmark javac, and applied V a-
DataReachft to them. The subsets are chosen randomly
and cumulatively. For example, initially we chose 100 li-
brary calls randomly as the first subset, then we chose an-
other 100 randomly and added them to the first subset to
form the second one. As shown in Figure 4, the x-axis is



benchmark #methods #app methods #statements Description
compress 3468 60 20271 A high-performance application to compress or uncompress

large files; based on the Lempel-Ziv method(LZW)
jess 3907 465 23163 A Java expert shell system based on NASA’s CLIPS system

raytrace 3610 190 21541 Ray tracer application
db 3480 66 20555 Performs database functions on a memory-resident database

javac 4661 1155 27574 JDK 1.0.2 Java compiler
mpegaudio 2667 256 21215 MPEG-3 audio file compression application

mtrt 3610 190 21542 Dual-threaded version of raytrace
jack 3736 318 22854 A Java parser generator with lexical analyzers (now JavaCC)

Table 1. Benchmarks Description

the number of library calls in a chosen subset. The y-axis is
the time cost to run V a-DataReachft on all library calls in
a subset using our implementation. We can see that the time
cost increases more slowly than the number of library calls
(e.g., the size-100 subset costs 249 seconds, while the size-
2000 subset costs 696 seconds, much less than 4980 (i.e.,
249*2000/100) seconds). The reason is that a BDD-based
solver is used to implement V a-DataReachft, and several
call-site specific points-to sets for different library calls can
be updated at the same time with a single BDD operation, so
the implementation is more scalable than performing those
analyses one after another.
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Figure 4. Time Cost for V a-DataReachft on
javac with Increasing Numbers of Library
Calls

5 Potential Usage Of Application Call Graph
An accurate application call graph is useful in many soft-

ware engineering applications. Compared to the whole-
program call graph, the application call graph has the fol-
lowing two advantages: (1) it can capture the calling rela-
tionships more accurately among application methods; (2)
an application call graph contains fewer nodes, and those
algorithms whose cost is closely correlated to the call graph
size will be more efficient if the application call graph can
be substituted for the whole-program call graph. Based on

these advantages, this section explores the potential usage
of an accurate application call graph in white box testing.

White Box Testing
White box testing, a widely used testing technique, is

also called clear box testing, glass box testing or structural
testing. The term white box indicates that testing is done
with specific knowledge of the code to be executed. A test
coverage criterion is generated according to the control-flow
and/or data-flow information from the code, and one goal
of white box testing is to improve the test coverage ratio.
There are different kinds of white box testing techniques as
classified by the coverage criterion used, such as call-chain
based testing [10], def-use pair based testing, etc.

5.1 Call-Chain Based Testing.

A call chain corresponds to a directed path on a call
graph. Call-chain based testing involves static analysis and
dynamic analysis: static analysis computes a set of call
chains that may be observed during runtime. As a conser-
vative estimate, this set is used as the test coverage require-
ment. Dynamic analysis observes the run-time behaviour
and calculates the call chain coverage achieved during test
execution.

The time cost allowed for testing an application is often
limited. Unlike application methods, the library methods
are usually considered well tested, so testing is usually fo-
cused on covering those call chains made up of application
methods. Because the application call graph can capture
the calling relationships more accurately among application
methods than the whole-program call graph, it can be used
to generate a more accurate set of application-method call
chains including callbacks. This means that fewer infea-
sible call chains will be included in the test coverage re-
quirements, so the unnecessary cost of test data generation
and manual code inspection can be reduced. For example,
as shown in Figure 1, App.appendA()→ B.toString()

and App.appendB()→ A.toString()may be generated
by a whole-program call graph, while an accurate applica-
tion call graph will consider those call chains infeasible and
not include them in the test coverage requirements.



5.2 Def-Use Pair Based Testing.

Def-use pair (DU-pair) based testing is referred to as all-
uses in a classic definition for a family of data flow testing
criteria [9]; its goal is to cover all possible uses for each
definition during test execution. Similar to call-chain based
testing, DU-pair based testing involves a static analysis to
calculate the set of DU-pairs as a test coverage require-
ment, and dynamic analysis to measure the achieved cov-
erage. The static analysis requires a call graph to compute
inter-procedural DU-pairs.

For a Java application, one problem for DU-pair based
testing is that many DU-pairs exist in the library, so the
set calculated statically may contain too many DU-pairs for
the test execution to achieve a decent coverage ratio, which
makes DU-pairs unrealistic to use as a test criterion. In ad-
dition to the use of the application call graph, our solution
to this problem is to generate a summary statement for each
library call from the application to summarize side effect in-
formation for this library entry. A summary statement con-
sists of the following three kinds of operations:

I. Call an application method.

II. Read from an object field 2.

III. Write to an object field.
Each summary statement corresponds to a library call

from the application program. The application methods
called by a summary statement are the callback targets of
this library call, as calculated by V a-DataReachft. We
want to capture the live definitions and live uses for the li-
brary entry points, so the objects in II and III only include
those that are accessible from the code executed beyond this
library entry, namely:

1. objects that are initialized before the library call and
passed in through parameter or instance field read
statements.

2. objects that are accessible by another thread during the
lifetime of the library call.

3. objects that are accessible to the code executed in a
callback target method or its descendants.

4. objects that are accessible through the return node of
the library call to the code executed after the call fin-
ishes.

The set of the above objects is denoted by AllAccessible.
There may be more objects whose fields are read or written
during this library entry, but if they are not in AllAccessible,
then any read from or write to them is regarded as a local
operation and will not be summarized in the corresponding
summary statement.

2As in the previous sections, static fields and arrays are omitted in the
discussion.

AllAccessible is different from Accessible calculated by
the V a-DataReachft algorithm in that Accessible only
contains the objects that are accessible from the code exe-
cuted beyond this library entry before the call finishes (i.e.,
cases 1-3). If the set of objects in case 4 is denoted as Lat-
erAccessible, then AllAccessible is the union of Accessible
and LaterAccessible.

After the V a-DataReachft algorithm finishes, AllAc-
cessible can be calculated by the following constraints for
a given library call, in which U is the result for the call-
site specific points to analysis, M is a possible callee for
the original call and M.ret var is the reference variable re-
turned by M :















UM .ret var ⊆ LaterAccessible ∧
Uo.f ⊆ LaterAccessible ∀o ∈ LaterAccessible ∧
LaterAccessible ⊆ AllAccessible ∧
Accessible ⊆ AllAccessible

For a method called by the library call, if there is a ref-
erence variable returned by the method, the reference vari-
able’s local points-to set is included in LaterAccessible.
Also, all objects reachable via field references from the re-
turned variable according to the call-site specific points-to
result are included in LaterAccessible.

After AllAccessible is computed, the object fields read
from and written to by the summary statement are calcu-
lated using the following constraints, and denoted by the
sets Read and Write respectively:
(a). For each method M in R, and for each instance field

read statement l = r.f in M and each oi ∈ Ur:
(oi ∈ AllAccessible) ⇒ oi.f ∈ Read

(b). For each method M in R, and for each instance field
write statement w.f = l in M and each oi ∈ Uw:
(oi ∈ AllAccessible) ⇒ oi.f ∈ Write

(c). For each method M in R, and for each static field read
statement l = C.f in M :
C.f ∈ Read

(d). For each method M in R, and for each static field write
statement C.f = l in M :
C.f ∈ Write

Given a library call, the sets Callback, Read and Write can
be generated by V a-DataReachft and the above calcu-
lation. A summary statement is assumed to perform the
following operations: call methods in Callback, read from
each object field in Read and write to each object field in
Write 3. By substituting the summary statement for each li-
brary call, the DU-pairs excluding those in the library can be
calculated as test coverage requirement. Also, static analy-
sis to calculate the DU-pairs can be performed on the ap-
plication call graph, guaranteeing efficiency because of the
fewer method nodes, and accuracy because of the spurious
callback edges eliminated.

3As a safe approximate, the writes by the summary statement are as-
sumed to be non-killing. Flow-sensitive analysis is needed to further im-
prove the precision.



6 Related Work

Call Graph Construction & Reference Analysis
Grove and Chambers presented a large number of

call graph construction algorithms for object-oriented lan-
guages [4]. There is also a wide range of reference and
points-to analyses [12, 5] that can be used to construct call
graphs. The key contribution of our work is that we ex-
plore approaches to build application call graphs that can
capture calling relationships among application methods in-
duced by paths through the library more accurately than the
whole-program call graphs built by the previous work.

Data Reachability Algorithm
The algorithm V a-DataReach presented in this paper

is one variant of the data reachability algorithm presented
in [3], in which the data reachability algorithm was used
to statically discover Java exception throw-catch pairs ac-
curately. The data reachability algorithm calculates the
methods or sub-call graph reachable from a call site for
object-oriented program. [3] presents a detailed discussion
and three forms of data reachability algorithm: DataReach,
M-DataReach and V-DataReach, listed in increasing or-
der of precision. One key contribution of work is V a-
DataReach, that differs from V-DataReach in calculating
the accessibility information on the fly, as discussed in Sec-
tion 3.2.

There are also several other algorithms to detect infeasi-
ble control flow paths statically ([1, 16]). Their difference
from the data reachability algorithm is discussed in [3].

7 Conclusion and Future Work
In this paper we have explored approaches to construct

an accurate application call graph for Java. We designed
a new variant of the data reachability algorithm and fine
tuned it to resolve the library callback edges accurately.
The experimental study shows that the proposed new algo-
rithm is practical and eliminates a large amount of spurious
callback edges from the application call graph generated
by a simple algorithm: on average, the number of callback

edges is reduced by 74.97%, amounting to an overall on av-
erage 64.43% edge reduction for the generated application
call graphs.

There are mainly two directions for our future work. One
is to evaluate algorithm accuracy through more empirical
studies; the other is to explore the use of accurate applica-
tion call graphs in white box testing, to see its improvement
in generating a better test coverage requirement.
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