
1

Tool Support for Change-centric Test Development
How do developers know they have done a good job?

Jan Wloka, Rutgers University, USA, Einar W. Høst, Norwegian Computing Center, Norway,
and Barbara G. Ryder, Virginia Tech, USA

Abstract— Developers use unit testing to improve the quality
of software systems. Current development tools for unit testing
help to automate test execution, to report results, and to generate
test stubs. However, they offer no aid for designing tests aimed
specifically at exercising the effects of changes to a program. This
paper describes a method for applying change impact analysis to
test-driven development, to provide developers with quantitative
feedback of test coverage of their changes. This information
can be used to meet defined coverage goals or to help generate
new tests to reveal unanticipated changes effects. The approach,
called change-centric test development, is tool supported; a typical
scenario shows the effectiveness of our tool JUNITMX in a
practical feasibility study.

Index Terms— Change Impact Analysis, Test-driven Develop-
ment, Unit Testing.

I. INTRODUCTION

Software testing aims at validating the correctness, complete-
ness and quality of developed computer software [3]. A test makes
the correctness of a program against its specification more likely
by executing the program and comparing the outcome against
expectations to find faults. A good test has a high probability of
finding an as yet undiscovered fault. There are various testing
levels used for different purposes within a development process.
For example, unit and integration testing enable developers to test
an implementation and its effects on existing functionality. In test-
driven development, a unit test acts as a specification for a specific
functionality before it is implemented. It guides the developer to
implement only the code necessary to pass the test [1]. Moreover,
a set of unit tests is a prerequisite for any refactoring activity [4].

While most developers agree on the advantages of having
a solid test suite with good code coverage, most also admit
the difficulty of developing such a test suite. Implementing the
“simplest thing that could possibly work” [5], results ideally
in a test suite that reveals any effect of the added code on
existing functionalities. However, what if the test coverage of
the unchanged system parts is low and the test suite results in
a green bar? Since successful tests do not show the absence of
faults, but rather the inability of the test suite to find any fault,
the green bar in the developer’s unit testing tool may leave her
feeling over-confident. Moreover, the developer might not have
implemented the “simplest thing that could possibly work”, thus
additional tests are needed to validate her entire edit. In both
cases, the developer has written tests “blindly”, that is by missing
possible side effects or by being unable to verify that her edit has
caused no unexpected alteration in the system’s behavior.

This paper presents an approach to test development that uses
change impact analysis [9], [8] to guide developers in the creation
of new unit tests. This analysis specifies those changes introduced
by the developer that are not covered by the current test suite, and
hence indicates that there are tests missing. It supports developers

in test-driven development by indicating whether their newly
added functionality was the ”simplest thing that could possibly
work”, and which additional effects on the system’s behavior are
not covered by the test suite. The developer can decide if she
needs to add or extend a test to cover every effect on existing
code. Even if the test suite covers all the changes introduced and
all the tests pass, there still may be faults in the system; however,
such coverage makes it more likely that new faults have not been
introduced and that all changes can be committed safely into
the shared repository. We define a new metric, change coverage,
that supports change-centric test development through use of our
tool, JUNITMX. Also, we discuss a feasibility study that shows
the potential benefit of using our approach in current software
development practice.

II. ILLUSTRATING EXAMPLE

We use the Java program in Figure 1 to illustrate change-
centric test development, to describe a hands-on scenario and to
show the support offered by JUNITMX. The example is a simple
counter application that can increase, store and return a single
integer value. The application will be extended to a multi-counter
that manages several instances of a counter. On the left-hand-
side of the figure is the actual program code and on the right-
hand-side, the associated test suite. Program changes are indicated
with annotated boxes. The original program, version V1, consists
of all the code, except that shown in boxes. Each of the three
subsequent program versions are shaded with gray labels. For
example, version V2 is constructed from version V1 by applying
all changes whose boxes are within the label V2, version V3 is
constructed similarly from version V2 and so forth.

III. CHANGE-CENTRIC TEST DEVELOPMENT

When developing unit tests for improved or new functionality, a
developer does not always know whether she has done a good job.
Two challenging aspects of writing good unit tests are to ensure
that (i) involved program elements can be exercised by the test
and (ii) all effects on other functionalities are covered by the test.
This section introduces the specific change impact analysis used
to calculate a new test coverage metric that indicates whether a
developer’s changes are sufficiently covered by a test suite.

A. Applying Change Impact Analysis

Change impact analysis is a technique whose goal is to predict
the possible effect of a program edit on a code base [9], [6], [8].
Consider the following scenario. A developer has written several
tests and modifies a working program, in order to add some new
functionality, yielding an edited version of the program. She has
a mental picture of the program parts that may be affected by
her edit. If change impact analysis is applied, then its results

2

V5

V2

V3

V2

V4

public class Counter {

 protected int sum;

 public Counter() { sum = 0; }

 public int getSum() { return sum; }

 public void inc() { ++sum; }

}

public class MultiCounter extends Counter {

 private Counter[] counters;

 public MultiCounter(Counter[] cs) {

 this.counters = cs;

 }

 public void inc() {

 for (int i = 0; i < counters.length; i++) {

 counters[i].inc();

 }

 }

 public int getSum() {

 int result = 0;

 for (int i = 0; i < counters.length; i++) {

 result += counters[i].getSum();

 }

 return result;

 }

}

public class Tests extends TestCase {

 public void test1() {

 Counter c = new Counter();

 int n = c.getSum();

 c.inc();

 assertTrue(c.getSum() > n);

 }

 public void test2() {

 Counter[] cs = new Counter[] {

 new Counter(), new Counter() };

 MultiCounter m = new MultiCounter(cs);

 m.inc();

 assertEquals(1, cs[0].getSum());

 assertEquals(1, cs[1].getSum());

 }

 public void test3() {

 Counter[] cs = new Counter[] {

 new Counter(), new Counter() };

 Counter m = new MultiCounter(cs);

 m.inc();

 assertEquals(2, m.getSum());

 }

}

(a) (b)

AF(4)

AM(5), CM(6)

AM(7), CM(8), LC(9), LC(10)

AM(14), CM(15), LC(16), LC(17)

AM(1), CM(2), LC(3)

Lookup Changes

LC(3): <Tests, Tests, Tests.test2()>

LC(9): <MultiCounter, Counter, MultiCounter.inc()>

LC(10):<MultiCounter, MultiCounter, MultiCounter.inc()>

LC(13):<Tests, Tests,Tests.test3()>

LC(16):<MultiCounter, Counter, MultiCounter.getSum()>

LC(17):<MultiCounter, MultiCounter, MultiCounter.getSum()>

AM(11), CM(12), LC(13)

Fig. 1. (a) Original and edited version of the example program. The original program consists of all program fragments except those shown in boxes. The
edited program is obtained by adding all boxed code fragments. Each box is annotated with the IDs of the corresponding atomic changes. (b) Tests associated
with (all versions of) the example program and lookup changes (LC) describing effects to dynamic dispatch.

can be used to ascertain whether the developer’s expectations
are fulfilled. Otherwise, if unexpected effects are predicted, the
developer may want to explore the results more fully to make sure
no unintended outcomes were introduced by her edit. The specific
change impact analysis used combines static (i.e., compile-time)
analysis and profiling to predict the method-level effects of an
edit on the behavior of a Java program. Each Java program is
assumed to have an associated test suite; thus the impact induced
by the edit can be reported as possible behavioral changes to tests
in the suite [9], [8], [7].

An edit or the textual difference between two program versions,
can be decomposed into a set of atomic changes or ’smallest
changes’ to a program. Adding a method (AM), changing the
code in a method (CM), or adding a new field to a class (AF)
are examples of atomic changes. The element in the program that
is affected by a change is called denoted program element. The
complete set of atomic changes we are using is presented in [8].
After the decomposition of the edit, dependencies between atomic
changes are computed. An atomic change may be dependent on
one or more other atomic changes, that must be applied also
in order for the resulting program to compile [7], [2]. These
structural dependences do not capture all effects of an edit on
program behavior. Certain changes indirectly impact program
behavior. For example, the addition of a virtual method may
give rise to changes in dispatch behavior, and changing a field
initializer may result in an implicit change to the bodies of
the constructors for the class in which the field is declared.
Such effects are captured by mapping dependences between
changes. Unlike structural dependencies,mapping dependences
are symmetrical, because it is not possible to apply one without

the other.
In Figure 1, the developer adds a constructor to class

MultiCounter as part of the edit that leads to version V2. This
addition is expressed as two atomic changes: AM(5), CM(6), as
shown in the shaded box label. The constructor is the denoted
program element of these two changes. Moreover, CM(6) cannot
be applied without AM(5), which makes it dependent on AM(5).
Just as the added field counters (AF(4)), which is structurally
required by CM(6).

Many kinds of edits may alter the existing dynamic dispatch
behavior of a Java program, such as adding an overriding method
in a subclass, or changing visibility from private to public. A
lookup change (LC) represents the effect of an edit on dynamic
dispatch. For example, the addition of method inc() to class
MultiCounter results in two LC changes. LC(10) corresponds
to the newly possible dispatch of MultiCounter objects to the
new method inc(). LC(9) corresponds to the redirected dispatch
of MultiCounter objects referred to by a Counter reference,
in a call of inc() which after the code edit, will be directed to
MultiCounter.inc() rather than to Counter.inc(). All
of the LC changes corresponding to the edits in Figure 1, are
shown in the shaded box in the right-hand corner of the figure.1

After the dependencies have been computed, the test suite is
run on the edited program and profiles are collected to obtain
the calling structure of each test. By mapping method-level
atomic changes to a tests calling structure (e.g., a call graph),
the analysis computes the set of affected tests [8], tests whose

1The first element in each LC change is the instance type of the receiver
object; the second element is the static (compile-time) type of the method
invocation, and the third is the actual method defintion.

3

Run tests

Implement
Tests

Test
results

Implement
functionality

Green

Yellow

Red

Fig. 2. Development cycle in change-centric test development: red: test
failures, yellow: tests missing, some changes in the program edit are not
covered, green: all tests pass and all changes are covered. Note: the solid arrow
eminating from the start circle (on the left) shows the test-driven development
process. The dashed arrow from the start circle shows the test-last development
process.

behavior may be different after the edit. In Figure 1, when the
program transitions from version V2 to version V3, test2 is
affected, but test1 is not. Intuitively, this is because test2
calls MultiCounter.inc() after the edit, whereas it called
Counter.inc() in version V2. By contrast, the same set of
(unchanged) methods is called by test1 before and after the
edit [8].

For each affected test, the analysis is able to isolate those parts
of the edit which may have affected it, called its affecting changes.
Affecting changes are the part of the edit that could be mapped
to the test’s calling structure. Considering the edit from version
V2 to version V3 in Figure 1; for example, {AM(7), CM(8)} are
affecting changes for test2 since after the edit, test2 will call
MultiCounter.inc().

Thus, change impact analysis allows a developer to check if
she has anticipated the overall effect of her edit correctly. The
following section describes how a developer can judge if the test
suite is sufficient for good test coverage after an edit, by using
change impact analysis.

B. The Change-centric Test Development Approach

In test-driven development the goal requiring program changes
is defined by both the newly created and failing tests. Ideally
every feature request, a bug fix, or other improvement should be
encoded with unit tests. A developer must modify the program to
fulfill the specification encoded by the tests.

¡¡¡¡¡¡¡ task-aware-test-development.tex
======= ¿¿¿¿¿¿¿ 1.27
Work on such a task manifests itself as an edit to the program,

(i.e., a set of atomic changes). When the test suite is run again,
some tests ¡¡¡¡¡¡¡ task-aware-test-development.tex may exercise
modified program elements corresponding to atomic changes. The
tests that exercise these elements are affected by the changes,
which may or may not alter the outcome of the test. Each
atomic change that affects a specific test is covered by this test,
irrespective of whether it alters the test’s outcome. Such changes,
called covered changes, affect (and may alter) the outcome of a
test in a test suite. Conversely, the term uncovered changes is
used for changes in an edit that do not affect any test of the test
suite.

Newly added tests that cover (as yet not covered) changes are
called effective tests, regardless whether they are developed before

or after the program has been changed (i.e., in test-first or tret-
last mode). An effective test renders unexpected side effects of
the edit less likely, in contrast to newly added tests that do not
cover any change, called unrelated tests. they do not exercise any
changed program element. Unrelated tests are still useful in a
global sense — they may reveal or protect against errors in other
parts of the program — but these errors will not be due to any
effect caused by the ongoing edit. are not related to the current
task of the clean separation of tasks, the developer writing such
unrelated tests, and define a new development. ======= may
exercise modified program elements denoted by atomic changes,
e.g., invoke a modified method. Change impact analysis can be
use to obtain the affecting changes for each test. Every atomic
change that affects a test and also all the changes on which it
depends on, following dependence relationships transitively, is
considered as a covered change. Conversely, the term uncovered
changes is used for changes in an edit that do not affect any test
of the suite. Moreover, the uncovered changes can be grouped by
their impact on program elements, since we know every atomic
change that denotes an element. We use ADDITIONS, CHANGES,
and DELETIONS for classifying modified program elements.

Newly added tests that cover (as yet not covered) changes are
called effective tests, regardless whether they are developed before
or after the program has been changed (i.e., in test-first or tret-
last mode). An effective test renders unexpected side effects of
the edit less likely, in contrast to newly added tests that do not
cover any change, called unrelated tests. Unrelated tests are still
useful in a global sense — they may reveal or protect against
errors in other parts of the program — but these errors will not
be due to any effect caused by the ongoing edit. ¿¿¿¿¿¿¿ 1.27

Traditionally, test coverage is taken to mean “a measure of the
proportion of a program exercised by a test suite.”2 While this is a
useful measure of overall program health, it is too broad to be of
much guidance for the developer. Hence writing tests can quickly
become daunting: 100% test coverage for the entire application
is an unattainable goal, and there is no way to reasonably claim
that a sufficient number of tests has been written. This motivates
our change coverage:

Definition: Change coverage is a measure of the pro-
portion of atomic changes comprising the difference
between two program versions, that is exercised by a
test suite.

¡¡¡¡¡¡¡ task-aware-test-development.tex The greatest benefit of
change-centric test coverage is that it enables quantitative estima-
tion of full coverage of a developer’s changes. This is crucial, for
the developer to focus an achievable goal for her current task:
writing tests that provide reasonable coverage for a program edit.
Developers justly can claim to have finished their job when the
desired functionality is implemented, and all changes are covered
with tests. We call this approach change-centric test development.

Change-centric test development is achieved by integrating a
change impact analysis into the execution of a test suite. The
analysis is used to measure the change-centric test coverage each
time the suite is run. Given this coverage information, developers
can be guided in their standard test-driven development cycle test
– code, by adopting a completion condition that indicates not only
whether the implemented functionality fulfills the requirements

2Definition taken from the Free Online Encyclopedia; http:// encyclope-
dia2.thefreedictionary.com/Test+coverage.

4

specified by the tests, but also that all effects of an edit are covered
by the tests. Moreover, the change-centric testing methodology
also can be utilized in a test-last development process, in which
the developer is asked explicitly to create specific tests that cover
her edit.

Figure 2 depicts two possible development cycles, showing
individual activities and decisions. Examining the test-driven
process shown, after a developer has accepted a task, she writes
tests and applies various changes to the program necessary to
implement the described improvement. During this activity she
may run the test suite several times and correct failures that occur.
When all tests pass, the task is only completed if all changes
are covered by the tests. In case of uncovered changes, the
developer explores the kind of changes (i.e., additions, removals,
or modifications) that are uncovered and the denoted program
elements that have to be exercised by new tests. Then, she
creates the new tests and runs the test suite again. This process
is repeated until all changes are covered and the ======= The
greatest benefit of change coverage is that it enables quantitative
estimation of full coverage of a developer’s changes. This is
crucial, for the developer to focus an achievable goal for her
current task: writing tests that provide reasonable coverage for
a program edit. Developers justly can claim to have finished
their job when the desired functionality is implemented, and all
changes are covered with tests. We call this approach change-
centric test development.

Change-centric test development is achieved by integrating a
change impact analysis into the execution of a test suite. The
analysis is used to measure the change coverage each time the
suite is run. Given this coverage information, developers can
be guided in their standard test-driven development cycle test –
code, by adopting a completion condition that indicates not only
whether the implemented functionality fulfills the requirements
specified by the tests, but also that all effects of an edit are covered
by the tests. Moreover, the change-centric testing methodology
also can be utilized in a test-last development process, in which
the developer is asked explicitly to create specific tests that cover
her edit.

Figure 2 depicts two possible development cycles, showing
individual activities and decisions. Examining the test-driven
process shown, after a developer has accepted a task, she writes
tests and applies various changes to the program necessary to
implement the described improvement. During this activity she
may run the test suite several times and correct failures that occur.
When all tests pass, the task is only completed if all changes are
covered by the tests. In case of uncovered changes, the developer
explores the kinds of changes (i.e., ADDITIONS, and CHANGES)
that are uncovered and the denoted program elements that have
to be exercised by new tests. DELETIONS are not coverable by
any tests and thus are ignored. Then, she creates the new tests
and runs the test suite again. This process is repeated until all
changes are covered and the ¿¿¿¿¿¿¿ 1.27 task can be declared
completed.

IV. TOOL-SUPPORT FOR CHANGE-CENTRIC TEST

DEVELOPMENT

To support change-centric test development as illustrated in
Figure 2, a tool must augment the feedback given to the developer
when a test suite is run to inform her of any uncovered changes.
This is necessary in order to establish the boundary condition that

tells the developer when she has done a good job in providing
tests that protect against unexpected side effects.

Standard tools for unit testing communicate the test outcome
with a simple metaphor. They display a red bar whenever a test
failed or crashed and a green bar when all existing tests pass.
Our tool, JUNITMX, extends this concept by introducing a new
possible result, a yellow bar. The yellow bar is shown if all the
tests pass, but change impact analysis reveals changes that are not
covered by the tests. This leads to a redefinition of the meaning
of the green bar as well: The green bar is shown only when all
tests pass and every change applied by the developer is covered
by the test suite. The meaning of the red bar is same as before.
With this simple extension, the tool confirms that the test suite
passes and verifies that the developer’s changes have not resulted
in any side effects not covered by the test suite.

A. A Hands-on Scenario
To illustrate how JUNITMX supports change-centric test de-

velopment, consider a hypothetical scenario, using the example
in Figure 1. Assume that the developer is working on the code
from the running example inside the Eclipse JDT3, and wants
to extend it to enable the counting of multiple values. The
developer synchronizes her code with the version control system
to ensure that she is working on the latest version of the example
(i.e., version V1). Version V1 consists of two classes Counter
and MultiCounter, where MultiCounter is a subclass of
Counter. This version of the code is tested by a single passing
test, test1.

Working in a test-first manner, the developer adds a new test,
test2 (AM(1), CM(2), LC(3)), to class Tests, in order to drive
the development of the desired functionality. The new test asserts
that when method inc() is called on a MultiCounter, then
each Counter is indeed increased. To get test2 to compile, the
developer must define a constructor of MultiCounter (AM(5),
CM(6)) that accepts an array of Counter objects to manipulate,
and add a new field counters (AF(4)) to store them. The code
then compiles yielding version V2 which when run results in
the expected failure of test2. Satisfying test2 requires the
developer to redefine method inc() in class MultiCounter
(AM(7), CM(8), LC(9), LC(10)), so that all counters are in-
creased. The change results in version V3 of the code.

While test2 now passes, the result of running the test suite
is a yellow bar, not a green one. Apparently, there are atomic
changes that are not covered by the current test suite. Hence
there are denoted program elements that need to be covered
by additional tests. Indeed, there is a lookup change (LC(9))
associated with program element MultiCounter.inc() that
is not yet covered by any test.

In the JUNITMX user interface, the uncovered changes can be
viewed by clicking on the Uncovered changes tab. The changes
are organized by type; each change can be inspected further by
single-clicking to compare the current version of the denoted
program element with its previous one.

The lower pane acts as a comparison view, showing the
previous version on the left, and the current version on the right.
Because the method was added, the left half is empty and the
source code for the current version is shown on the right. Double-
clicking on the change opens an editor for the source file in
question, focused on the denoted program element.

3The Eclipse Java Development Tooling http://www.eclipse.org/jdt

5

Fig. 3. Uncovered changes are shown in a tree view.

Inspecting the uncovered changes, the developer proceeds to
write a test, test3 (AM(11), CM(12), LC(13)), to cover the un-
covered lookup change LC(9). This yields version V4 of the code.
The new test exercises method inc() on a MultiCounter
object referred to by the declared type Counter, and specifies
how the interplay between inc() and getSum() should work.

The benefit of targeted tests is evident from the fact that the
newly added test fails. Running the test suite now results in a red
bar — a fault in the logic has been exposed. Indeed, the uncovered
lookup change pointed to a place in the code where the code edit
had side effects that produced the wrong result.

In response to the failing test, the developer proceeds to
fix the exposed fault. In version V5, a redefinition of method
getSum() in the class MultiCounter is introduced (AM(14),
CM(15), LC(16), LC(17)), establishing the correct interplay
between inc() and getSum(). Now all the tests succeed;
moreover, there are no more uncovered changes. The bar finally
turns green. The developer can justifiably feel confident that her
code is free from unanticipated effects.

B. Behind the Scenes

The tool JUNITMX is built as an extension to the JUnit Eclipse
plug-in.4 Developers already familiar with JUnit and the Eclipse
JDT can build on knowledge with a familiar tool when using
JUNITMX. The UI that displays the test outcomes looks like
the well-known JUnit plug-in, with some additional information.
The JUNITMX UI displays the kinds and numbers of uncovered
changes and provides an extra tree view to browse the uncovered
changes. Given this information, a developer can focus on where
to start creating needed tests. A click on any of the changes opens
the source code editor and leads the developer directly to the
denoted program element.

JUNITMX hooks into the execution of a JUnit test suite and
adds pre- and post-processing phases. JUNITMX combines the
results from two modules, Chianti and Dila, with those from

4A more detailed description of JUNITMX is available in the Appendix
(i.e., http://thiswillbefixedinfinalversion).

JUnit to compute the change coverage information. Chianti5

is a tool for change impact analysis that computes the atomic
changes comprising an edit. Classes are instrumented as they
are loaded by a custom class loader provided by Dila6, a library
that uses bytecode utilities from the WALA project.7 This simple
mechanism allows for an efficient building of dynamic application
call graphs. Each JUnit run of a test constructs its call graph
and produces its outcome. In a post-processing phase, the actual
change impact analysis is performed, and change coverage and
test suite effectiveness are calculated.

V. A CASE FOR CHANGE-CENTRIC TEST DEVELOPMENT

In practice developers write tests “blindly”, that is, they have
an unclear perception of which parts of their program need to
be tested after an edit. This is manifested in two ways: (i)
developers write too few tests to sufficiently cover their edit,
and (ii) the written tests are sometimes unrelated to the edit. To
gather evidence to support this claim, we compared development
activities over multiple releases of JUnit3.8 The results of the
study support the claim, and provide evidence that (i) and (ii) can
be demonstrated for a real open source application. Further, the
results show the inadequacy of branch coverage, a practical and
popular coverage metric, as an achievable boundary that motivates
developers to write effective tests. In contrast, our approach alerts
developers to the potential of introducing bugs with their edits,
and guides them to write tests that reduce this potential effectively.

A. Goals and Methodology

Our major goal in this study was to show the potential utility of
the change coverage metric. To this end, three different kinds of
data were collected to show that (i) there are many uncovered
changes in the development of a widely-used software tool,
(ii) a trusted, existing coverage metric is a poor predictor of
change coverage, and (iii) tests are actually written “blindly” by
developers.

The popular unit testing framework JUnit3 is a non-trivial pro-
gram with multiple years of development history. It is developed
in Java, has a publicly accessible repository, and comes with a
suite of unit tests. JUnit3 was developed in bursts starting from
2001 over multiple years including 2002 and 2004. We defined
successive program versions of JUnit3 using two week intervals
over several years; only versions with more then 20 atomic
changes were considered, resulting in 13 valid version pairs
from JUnit3 development. ¡¡¡¡¡¡¡ evaluation.tex Corresponding
test suites were run with JUNITMXt̃o capture the following data.
======= Corresponding test suites were run with JUNITMX to
capture the following data. ¿¿¿¿¿¿¿ 1.25

• Size vs. Changes. Program size of each version was cal-
culated using the aggregate number of fields, methods and
classes. Atomic changes correspond to program elements, so
these two measures are comparable. The goal was to com-
pare program size with the number of coverable changes9

5http://www.prolangs.rutgers.edu/projects/chianti/
6http://www.prolangs.rutgers.edu/projects/dila/
7http://sourceforge.net/projects/wala
8http://www.junit.org
9Two kinds of changes cannot be considered in our change coverage data.

Deleted static and non-static class initializers are not captured by our analysis,
because there is no edge in the call graphs of the edited program that witnesses
the deletions of the class initializers. Thus, they are not included in the set of
potentially coverable changes.

6

to illustrate that the extent of an edit is not correlated with
program size. Note that constructors are counted as methods.

• Coverage. The percentages of branch coverage and change
coverage achieved are compared to demonstrate that a
widely-used test coverage metric is not helpful in motivating
and guiding developers to write effective tests during the
development process.

• Effectiveness. The growth of the test suites over time is
compared to test effectiveness, (i.e., what percentage of
newly added tests cover changes that are not covered already
by existing tests). The goal is to show that newly added tests
do not cover the developer’s edit adequately.

B. Evidence in the End

The feasibility experiment results yielded interesting and sur-
prising insights.10

Three of the 13 versions experienced significantly large edits,
with many changes (e.g., >3400, ∼1400, ∼800), but no signif-
icant change in program size. Indeed, program size remained
fairly constant (∼750 program elements) over all version pairs
examined. This indicates that several existing features of JUnit3
were changed, rather than overall functionality being increased.
Even though the number of applied changes varied greatly across
all versions, our results demonstrate that program size is not
correlated with the extent of a program edit.

¡¡¡¡¡¡¡ evaluation.tex In comparing branch coverage with
change-centric coverage across these program versions, we found
that branch coverage barely varied (28-34%), whereas the change
coverage ranged from 0 to 68%. Thus, branch coverage does
not provide guidance for the development of tests to reduce
the likelihood of an edit introducing bugs into the program.
Conversely, change-centric coverage indicates how much of the
edit has been covered by tests, yielding a direct measure of
additional tests necessary to validate edit effects. Moreover, 100%
change-centric coverage seem to be achievable with a reasonable
amount of work. This ability to guide developer actions towards a
desirable goal is a major strength of the change-centric coverage
metric. By comparing change coverage with the size of the edit
(for the same program version), there was no correlation between
these measures; that is, there were large and small edits with
many covered changes and others with no covered changes.

Finally, we compared the growth of the test suite and the
effectiveness of newly added tests. Both metrics are measured as
percentages; thus the more additional changes covered by newly
added tests, the higher the effectiveness. Of the 13 version pairs,
there were four that achieved 100% test effectiveness (i.e., all
added tests cover changes not already covered by existing tests),
three that had partial effectiveness (i.e., 42%, 60%, 92%), and
six with no test suite growth. However, even the 100% effective
test suites only achieved 12-68% change coverage, evidence that
developers write tests “blindly”, as previously asserted. =======
In comparing branch coverage with change coverage across
these program versions, we found that branch coverage barely
varied (28-34%), whereas the change coverage ranged from 0
to 68%. Thus, branch coverage does not provide guidance for
the development of tests to reduce the likelihood of an edit
introducing bugs into the program. Conversely, change coverage

10More details about the study can be found in the online Appendix (i.e.,
http://thiswillbefixedinfinalversion).

indicates how much of the edit has been covered by tests, yielding
a direct measure of additional tests necessary to validate edit
effects. Moreover, 100% change coverage seem to be achievable
with a reasonable amount of work. This ability to guide developer
actions towards a desirable goal is a major strength of the change
coverage metric. By comparing change coverage with the size of
the edit (for the same program version), there was no correlation
between these measures; that is, there were large and small edits
with many covered changes and others with no covered changes.

Finally, we compared the growth of the test suite and the
effectiveness of newly added tests. Both metrics are measured as
percentages; thus the more additional changes covered by newly
added tests, the higher the effectiveness. Of the 13 version pairs,
there were four that achieved 100% test effectiveness (i.e., all
added tests cover changes not already covered by existing tests),
three that had partial effectiveness (i.e., 42%, 60%, 92%), and
six with no test suite growth. However, even the 100% effective
test suites only achieved 12-68% change coverage, evidence that
developers write tests “blindly”, as previously asserted. ¿¿¿¿¿¿¿
1.25

VI. CONCLUSIONS

Although the study does not prove that all developers write
tests “blindly”, we have shown that it is difficult to predict the
effects of an edit or to test them. For larger programs written by
teams, a developer introduces behavior she wants preserved even
after team members change the program; this can be assured by
introducing the appropriate tests.

We have shown that change coverage provides a natural and
achievable boundary to motivate the development of effective
tests. We also presented JUNITMX, an extension to JUnit, that
alerts developers to changes not covered ¡¡¡¡¡¡¡ conclusion.tex
by existing tests. JUNITMXñot only helps developers to focus
on the code that must be exercised to reduce the likelihood of
introducing bugs with their edit, but it also offers =======
by existing tests. JUNITMX not only helps developers to focus
on the code that must be exercised to reduce the likelihood of
introducing bugs with their edit, but it also offers ¿¿¿¿¿¿¿ 1.13
a concrete and achievable goal for sufficient test coverage just
by turning the yellow bar into a green bar. Particularly in test-
driven development, our ¡¡¡¡¡¡¡ conclusion.tex change-centric test
coverage can be used as an upper boundary indicating whether
a developer did the “simplest thing that could possibly work”.
The lack of test coverage of some changes can not always
be anticipated by the developer. These are an indication of
a weak test suite that incompletely specifies the implemented
functionality. Whereas the green bar reflects not only that the
developer has completed the functionality’s implementation, but
also that she has done it well. ======= change coverage can
be used as an upper boundary indicating whether a developer
did the “simplest thing that could possibly work”. The lack of
test coverage of some changes can not always be anticipated by
the developer. These are an indication of either an implementation
that provides more functionality as specified by the tests or a weak
test suite that incompletely specifies the expected functionality.
Whereas the green bar in JUNITMX reflects not only that the
developer has completed implementation, but also that she has
done it well. ¿¿¿¿¿¿¿ 1.13

7

REFERENCES

[1] Kent Beck. Aim, fire. IEEE Software, pages 87–89, September/October
2001.

[2] Ophelia Chesley, Xiaoxia Ren, and Barbara G. Ryder. Crisp: A debugging
tool for Java programs. In 21st IEEE International Conf. on Software
Maintenance (ICSM), Budapest, Hungary, pages 401–410, Sept. 2005.

[3] Lee Copeland. A Practitioner’s Guide to Software Test Design. Number
158053791x. Artech House Publishers, Hardcover edition, January 2004.

[4] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley, 1999.

[5] Pete McBreen. Questioning Extreme Programming. The XP Series.
Addison-Wesley Professional, 1st edition, July 2002.

[6] A. Orso, T. Apiwattanapong, M. J. Harrold, G. Rothermel, and J. B.
Law. An empirical comparison of dynamic impact analysis algorithms.
In Proceedings of the International Conference on Software Engineering
(ICSE 2004), pages 47–50, May 2004.

[7] X. Ren, O. Chesley, and B.G. Ryder. Crisp, a debugging tool for
java programs. IEEE Transactions on Software Engineering, 32(9):1–16,
September 2006.

[8] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: A tool for
practical change impact analysis of Java programs. In ACM SIGPLAN
Conference on Object Oriented Programming, Systems and Applications
(OOPSLA), pages pp 432–448, October 2004.

[9] B. G. Ryder and F. Tip. Change Impact Analysis for Object-oriented Pro-
grams. In PASTE ’01: Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering, pages
46–53, New York, NY, USA, 2001. ACM Press.

