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Abstract

Any time source code is analyzed, whether for mainte-
nance or general code comprehension, identifiers play a
key role. Their makeup, therefore, is very important. Each
identifier can be thought of as constructed from individ-
ual words, where each word may be found in a natural
language dictionary or might be an abbreviation, a pro-
gramming language key word, a program-specific word,
or just plain gibberish. A summary of the types of words
found in the code can indicate, at a glance, how compre-
hensible the code will be.

The problem of determining the words that make up
an identifier in the absence of explicit word divisions
such as underscores and camel-casing is addressed. One
approach considered is a greedy algorithm. However,
greedy algorithms can be time and space inefficient, mak-
ing them less desirable. One interesting alternative is an
artificial neural network. Neural networks are fast and
have been used for speech and vision recognition, as well
as a host of other patter-recognition tasks. This paper de-
scribes both a greedy algorithm and an a neural network
(using the C-implementation of the Fast Artificial Neural
Network) that are used to split non-well separated identi-
fiers.
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1 Introduction

Identifiers, which represent the defined concepts in a pro-
gram, account for, by some measures, almost three quar-
ters of source code [5]. The makeup of identifiers plays
a key role in how well they communicate these defined
concepts.

Motivation for the analysis of identifiers comes from
several previous studies. For example, Deißenböck and
Pizka observe that “Research on the cognitive processes
of language and text understanding shows that it is the
semantics inherent to words that determine the compre-
hension process” [5]. Thus, they conclude that the im-
portance of identifier names is crucial to program com-
prehension [5]. A second motivation comes from the
work of Caprile and Tonella, who observe that “Identifier
names are one of the most important sources of informa-
tion about program entities” [4].

Furthermore, Rilling and Klemola observe that “In
computer programs, identifiers represent defined concepts
[where] identifier density corresponds to comprehension
cost” [12]. Knuth noted that descriptive identifiers are a
clear indicator of code quality and comprehensibility [8].
As a measure of how much of a program is devoted to
identifiers, Deißenböck and Pizka report that in the source
for eclipse (about 2 MLoC) 33% of the tokens and 72%
of characters are devoted to identifiers [5].
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Finally, Antoniol et al., observe that most of the
application-domain knowledge that programmers possess
when writing code is captured by identifier mnemon-
ics [2]. Thus, how readily the semantics inherent to iden-
tifiers can be extracted is of key importance. They write,
“Programmers tend to process application-domain knowl-
edge in a consistent way when writing code: program
item names of different code regions related to a given
text document are likely to be, if not the same, at least
very similar.” Thus, an underlying premise of their work
is that programmers use organized methodical meaningful
(high quality) identifiers for code items.

Following Takang et al., Brook’s theory of program
comprehension underpins the theoretical framework of
this analysis [15]. Brooks argues that programming in-
volves the construction of mappings from a problem do-
main via intermediate domains into a programming do-
main – represented by program text. He contends further
that the process of program comprehension is one of re-
constructing knowledge about these domains and the re-
lationships between them.

Thus, to comprehend a program, an engineer must map
the identifiers to the concepts they represent. Jones notes
that a variety of different kinds of character sequences are
used in source code identifiers [6]. Some are complete
words or phrases, some abbreviated forms of words or
phrases, while others have no obvious association with
any known language. Studies have found that people’s
performance in processing character sequences can vary
between different kinds of sequences. For instance, fre-
quently used character sequences (i.e., dictionary words)
are recognized faster and are more readily recalled than
rare ones [6]. Thus, the more meaningful the identifiers
of a program, the easier it is to map them to appropriate
concepts. As an example, compare, pqins() with prior-
ity queue insert().

Anquetil and Lethbridge (among others) have observed
that there is some controversy over the value of general
identifier names [1]. For example, Sneed finds that “in
many legacy systems, procedures and data are named ar-
bitrarily · · · programmers often choose to name proce-
dures after their girlfriends or favorite sportsmen” [14].
A similar pattern was observed by one of the authors at
a previous industrial position in the code of a colleague
who was fond of Star Wars.

This paper describes two methods of breaking an iden-
tifier down into its most basic parts: a greedy algorithm
and a neural network. This paper considers the source
code used in the study in Section 2. It then presents the
two techniques and empirical studie them in Sections 3
and 4. The final three sections consider related work, fu-
ture work and conclusions.

2 Source Code

This section describes the source code from which the test
set of identifiers were chosen and the extraction process.
The source code used in the experiments comes from 186
programs, and includes 26MLoC of C, 15MLoC of C++,
7MLoC of Java, and 21KLoC of Fortran. The total of
almost 50MLoC includes almost 3 million unique iden-
tifiers and over 55 million identifier instances; thus, the
typical identifier appears about 19 times. Not all of this
was used, however. To make the training and testing more
manageable, a sample of 4,000 randomly selected identi-
fiers were selected. The large size of available source code
spreading multiple languages will hopefully help the ap-
plication of the results to programs written in these lan-
guages outside of our available source.

3 Techniques

Past studies of identifier quality typically begin by divid-
ing identifiers into their constituent parts [3, 5, 4, 12, 2, 6].
Herein, these parts are called “words” – sequences of
characters with which some meaning may be associated.
Words are atomic; thus, a word is never subdivided. Two
kinds of words are considered: hard words and soft words.
Hard words are denoted by the use of word markers (e.g.,
the use of CamelCase or underscores). Following Caprile
and Tonella [3], an identifier, I , is well-separated if, for
any (ordered) pair of adjacent words in I , one of the fol-
lowing conditions holds: (1) one of the words in the pair
has lexical type equal to special-string (e.g., ‘ ’); (2) the
word that comes second in the pair is capitalized. For ex-
ample, the identifiers sponge bob and spongeBob both
contains the well separated hard words sponge and bob.

For many identifiers, the division into hard words is
sufficient. This occurs when all the hard words are mem-
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bers of one of three lists: the list of dictionary words, the
list of known abbreviations, or finally, borrowing an idea
from Information Retrieval, the stop list. When a hard (or
soft) word is on one of these three lists, then it is referred
to as “on a list”.

The study uses the publicly available dictionaries
that accompany the Linux spell checker ispell (Version
3.1.20). The list of abbreviations includes domain abbre-
viation (e.g., alt for altitude) and programming abbrevia-
tion (e.g., txt for text and msg for message). Finally, a
stop-list is used to omit words that are not thought to bring
useful information. In English, words such as “the” are
typically eliminated. For identifiers, the stop list contains
three type of words: predefined type names (e.g., int), lan-
guage or environment global variables (e.g., errno), and
standard library names (e.g., printf).

3.1 Greedy Algorithm

The greedy algorithm looks for the longest prefix and the
longest suffix that are “on a list” (i.e., in the dictionary, on
the list of abbreviations, or on the stop list). Starting with
each hard word that is not on a list, the algorithm conducts
two searches and keeps the better result. The first search
finds the longest prefix of the current word that is on a
list. It then recursively calls itself on the remaining por-
tion of the original hard word (this recursive call considers
both prefixes and suffixes). The second search is the same
as the first except it searches for the longest suffix. The
results of the two searches are compared and the one pro-
ducing the higher ratio of “on list” soft words to total soft
words is chosen. If neither the prefix nor the suffix search
generates any “on list” words, the process is repeated with
the first character removed from the identifier. Removed
characters are gathered together and prepended to the re-
sult. If the first soft word in the split identifier is a not on
a list, then these characters are prepended to this first soft
word. Otherwise, they are added as a new first soft word
in the split identifier. The final output is the split identifier.

3.2 Artificial Neural Network

The second technique uses an artificial neural network,
which mimics the parallel structure of neurons in the hu-
man brain. Traditionally, there are three layers in a neu-
ral network – an input, hidden, and output layer – each

consisting of numerous “neurons” or “nodes”. While the
hidden layer can actually contain several sub-layers, it
is common that only one is used. Every node in the in-
put layer is connected to every node in the hidden layer,
each of which is connected to every node in the output
layer. Every connection consists of a weight. This weight
is multiplied by the value of the sending node and then
summed with every other node connecting to the receiver
node. This sum is then passed into an activation function
which will cause the receiving node to “fire” or “not fire”,
just like a human neuron.

In order to make a neural network usable, it must be
trained. To train it, a set of data containing inputs and
expected outputs is compiled. This must then be trans-
lated into a format that the neural network can understand.
The program that performs the training will then upload
the data set and start to run the data through the network,
checking if the actual output of the network matches the
expected output. This generates an error rate which, de-
pending on the type of network, will update weights on
the connections. When and how the weights are changed
depends on the training algorithm. Some training algo-
rithms update after every individual input, others after ev-
ery input from the data set have passed through (called
an epoch). The more popular training algorithms are up-
dated by means of back-propagation (the mean-squared
error is fed backwards through the network). The net-
work is trained until it either achieves a state that produces
a mean-squared-error that is less than or equal to what
the trainer desires or it reaches its maximum number of
epochs. When finished, the trained network is output to
a file where it can be loaded by a network run program.
This program acts like a black box – a user can now pass
input through it and attain output, but the contents of the
network is hidden.

For the neural network used in this experiment, the
Fast Artificial Neural Network (FANN) library was used
[11]. The implementation is in C, which helps minimize
the training times. The network uses a symmetric sig-
moid activation function, meaning the activations are be-
tween -1 and 1, as opposed to the more typical 0 to 1.
The steepness of both the hidden and output layers was
set to 0.3, which preserves fractional output. Finally, re-
silient back-propagation (rProp) is used for the training
algorithm. This approach is one of the best training al-
gorithms currently known. Other algorithms were experi-
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mented with, however resilient back-propagation yielded
the best results.

The input and output layers both contain 25 nodes,
which allows for an identifier of up to length 25 to be
processed. Each of the input nodes is set to a real value
between -1.0 and 1.0 depending on the ASCII value of
the corresponding character. All characters are converted
to lowercase and non-alphabetic characters are coded as
0, as are the remaining positions between the end of the
identifier and the 25th node.

In the network a single hidden layer is used (multiple
layers were experimented with). The rule of thumb for the
size of the hidden layer, obtained from a neural network
newsgroup, is two-thirds the size of the input and output
layers summed. For the network used, this meant a single
layer of 33 nodes. Other sizes were tried, but 33 produced
the best results. Finally, if the value of an output node is
between -0.9 and 1.0, then the neural network is indicat-
ing that there should be a split between the corresponding
character and the following character from the input layer.

The network was configured to test itself and report
a summary every 25 epochs. This data, shown in Fig-
ure 2, showed that the network performed best around
1100 epochs. Thus, in the experiment 1100 epochs were
used to train each network.

3.3 Training the Network

To train the network, a list of unique hard words needs to
be obtained from a collection identifiers. The hard words
are then manually split, with expected splits represented
with underscores. This list is then divided into two files:
one for training, the other for cross-validation: cross val-
idation consists of taking a data set that is not used in the
actual training of the network and then periodically run-
ning it through the network during training. The mean-
squared-error returned by this process is then combined
with the mean-squared-error of the network and incorpo-
rated in the back-propagation. By convention, 90% of the
original list is used for training and the remaining 10%
for cross validation. Both of these lists are then translated
into input for the network.

When the network-training program runs, it loads both
the training and cross-validation lists. It begins train-
ing and every 25 epochs, a call back function is used to
perform the cross validation. By default, the FANN li-

Average Run Time
Programmer own set All 4

programmer 1 0.175 0.521
programmer 2 0.177 0.453
programmer 3 0.171 0.448
programmer 4 0.171 0.453
all 4 0.171 0.453
greedy algorithm 1.211 2.516

Figure 1: Running times in seconds for five trial networks
and the greedy algorithm. (The columns for “own set”
runs each programmer on only their training set of 1000
words.)

brary will only return a mean-squared error when test-
ing a network. To attain raw success and error rates,
the output from the network in its current state in train-
ing was directly compared to to the respective expected
output as given by the training data. This raw compari-
son yielded interesting information, such as the number
of splits correctly identified by the network, the number
of extra splits added by the network, and the number of
identical matches between the expected and actual out-
put. This data was output during training in a format that
could be read by gnuplot and was used as a visual aid in
determining which variables could be changed to improve
training.

4 Results

A sample of 4,000 identifiers were randomly selected
from the set of program described in Section 2. To be
used for training, these were manually split by inserting a
dash (‘-’) a word division should appear. Four program-
mers were each asked to split one quarter of the training
identifiers.

For testing, five neural networks were trained using
five different data-sets (the same options were used when
training each network). Four were trained on each of the
data sets generated by the four programmers. The fifth
network was trained on the combination of these four data
sets. These tests should show how well a network does on
a general program level as well as differences between the
individuals who perform the manual splitting for the train-
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Figure 2: The success rate as reported every 25th epoch by a network in training

ing data. Each data set was run through each network in
addition to the greedy algorithm, yielding a total of thirty
runs.

4.1 Greedy Algorithm Results

Because the greedy algorithm is independent of the data
it is run on, it has the benefit of being consistent across all
data sets. However, the simple rules it follows can differ
from those intuitively applied by a programmer. This is
shown in the success rates of the greedy algorithm, which
range from 74% to 80%.

Figure 1 shows the run times for the network and the
greedy algorithm when run on several inputs. The execu-
tion time of the greedy algorithm includes an initialization
step that is dominated by the loading of several dictio-
naries into hash tables. The cost of this step is constant
regardless of the number of identifiers analyzed by the
program. The data indicates that this initialization time is
not the only part weighing down the time. If it was, there
would be a smaller increase in time between the running
times for the four smaller data sets and the one large set.

The greater increase in time, however, shows that the al-
gorithm itself is relatively time-consuming.

4.2 Network Results

The neural network results vary from data set to data set.
This is because the manually splitting of the training data
is a rather subjective process. However, the results are still
interesting. For example they show how different splitting
methods effect training and success rates on unseen data
(e.g., the other data sets). One interesting observation is
that the ‘all’ network performed worse than the others.
This is because it must attempt to reconcile the many often
conflicting ways of splitting used in the four data sets. The
results is that the network does not learn how to correctly
split as many identifiers.

4.3 Conclusion

The greedy algorithm’s consistency is its best quality,
however it requires an up-to-date dictionary and abbre-
viation list. The algorithm fails to meet the varying ex-
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pectation of the authors. Finally, not once did the greedy
algorithm climb above 80% accuracy on one of the four
data sets. The running times were also notably longer.

The neural network demonstrated that it can learn to
split identifiers. Here, consistent and accurate training
data plays a key role. For example, consider the low suc-
cess rate of the ‘all’ data set, which achieved an average
rate of 66% on the various networks. These tests have
also shown how fast a network really is compared to the
greedy algorithm.

As seen in Figure 3, the data set ‘all’, which is a com-
bination of the four other sets, performs badly compared
to the others in all cases. The ‘p1’ data set was the most
consistent in splitting, as can be seen by the 88% success
rate when run on the network which was trained using it.
As expected, all the data sets did second best on the ‘all’
network, since each set was a subset for the training of the
‘all’ network.

The greedy algorithm did better generally, however it
failed to achieve a success rate for the ‘p1’ and ‘p4’ data
sets that that competes with the ‘p1’ and ‘p4’ nets success
rates for their respective data sets.

5 Related Work

This is the first use of neural networks for identifier split-
ting. However, much has been done in the similar field
of pattern matching text, such as word meaning [13] and
text-to-speech translation [7]. While these related works
use different input and output translation methods, they
are rich in information regarding the general structure of
a network and its settings for text processing. Their results
also give us an idea of how well the data presented herein
stands on its own. For instance, Nakamura et alindicate
that success rates for pattern recognition can be in the
80%-90% range. Their word category prediction network
increased the success rate for prediction methods from
81% (set by a previous study) to 86.9% [10].

In an article on text classification, Dieter Merkl sug-
gests that “There is general agreement that the applica-
tion of artificial neural networks may be recommended in
areas that are characterized by (i) noise, (ii) poorly un-
derstood intrinsic structure, and (iii) changing character-
istics” [9]. These three characteristics are present in iden-
tifier splitting as there noise, such as embedded keywords

(e.g., “printf”), poorly understood structure, such as the
disagreement witnessed first hand by the authors in the
manual splitting, and changing characteristics, such as the
use of new abbreviations.

6 Future Work

Future work revolves around establishing a network that
can be used on arbitrary programs.

To achieve this, there are several steps to be considered.
One idea involves the identifier-to-network-input transla-
tion. There appears to be no relevant work that tries to
translate input character-by-character as described in this
paper. Therefore there is no model to compare to concern-
ing the input translation.

Another approach involves having the network auto-
matically pick the best network state during training. Cur-
rently, the network saves itself after the final epoch. How-
ever, the network tests itself every 25th epoch, and there-
fore can check its state at that point, compare it to the
previous “best-network”, and then save over that if it is
currently better. The challenge here is determining what
a “better” network is. Both the success of the training set
and the cross-validation set must be considered.

The most pivotal improvement will be to gather a large
data set that contains consistent data. This would require
a standard, which would have to be agreed on by the au-
thors.

7 Summary

This paper described two methods which automate the
process of identifier splitting. This is a useful task because
an identifier with distinct work breaks is easier to compre-
hend. Of the two methods, the neural network has proved
to be faster and more adaptable to the intuitive splitting
methods of the authors. Future work will hopefully assist
the network to attain better results and become a stable
method of identifier splitting.
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Figure 3: Comparison of the networks and greedy algorithm
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