
APTE: Automated Pointcut Testing for AspectJ Programs

Prasanth Anbalagan1 Tao Xie2

Department of Computer Science, North Carolina State University, Raleigh, NC 27606, USA
1panbala@ncsu.edu 2xie@csc.ncsu.edu

Abstract

Aspect-Oriented Programming (AOP) has been pro-
posed as a methodology that provides new modularization
of software systems by allowing encapsulation of cross-
cutting concerns. AspectJ, an aspect-oriented programming
language, provides two major constructs: advice and point-
cuts. The scope of pointcuts spans across various objects
instantiated from the classes. With the increase in the num-
ber of objects, classes, and integration of source code, it is
likely that a developer writes a pointcut that does not serve
its intended purpose. Therefore, there is a need to test point-
cuts for validating the correctness of their expressions.

In this paper, we propose APTE, an automated frame-
work that tests pointcuts in AspectJ programs with the help
of AJTE, an existing unit-testing framework without weav-
ing. Our new APTE framework identifies joinpoints that sat-
isfy a pointcut expression and a set of boundary joinpoints,
which are events that do not satisfy a pointcut expression
but are close to the matched joinpoints. The boundary join-
points are identified as those unmatched joinpoint candi-
dates whose distance from the matched joinpoints are less
than a predefined threshold value. A developer could in-
spect these matched joinpoints and boundary joinpoints for
correctness of the pointcuts.

1 Introduction

Aspect-Oriented Programming(AOP) [5, 4] attempts to
aid programmers in the separation of concerns: breaking
down of a program into distinct parts that overlap in func-
tionality. In particular, AOP focuses on the modulariza-
tion of concerns as appropriate for the host language and
provides a mechanism for describing concerns that cross-
cut each other. AspectJ [5, 13, 8] is an implementation of
AOP for the Java [12] programming language, being built
as an extension to the language. The major components of
this AOP language are joinpoints, pointcuts, advice, and as-
pects.Joinpointsare well-defined locations within the pri-
mary code where a concern will crosscut the application.

Joinpoints can be method calls, constructor invocations, or
some other points in the execution of a program.Pointcuts
are constructs that match the joinpoints, which perform a
specific action calledadvicewhen triggered. The encapsu-
lation of joinpoint, pointcut and advice is provided by an
aspect.

The crosscutting behavior of AspectJ can be divided
into two major components: what the behavior does (ad-
vice) and where the behavior applies (pointcut). Unit test-
ing [16, 7, 15, 14] in AOP can be carried out by weaving
or without weaving the aspect code with the encapsulating
components (called the target classes). Unit testing with-
out weaving involves tests in isolation that verify individ-
ual components of the AOP language independent of other
components.

Pointcuts are predicates that match an event (Joinpoints)
in the execution of a program. Pointcuts are modelled us-
ing expressions that identify the type, scope, or context of
the events. AspectJ pointcuts provide the features of ab-
straction and composition, which include various designa-
tors, wildcards, and their combination with logical opera-
tors. Developers often lack high confidence on assuring
that these pointcuts are specified as intended. In addition,
during program evolution, specified pointcuts may not be
robust enough to stand the maximum chance of continuing
to match the intended joinpoints, and only the intended join
points.

In this paper, we propose a framework that automati-
cally checks the correctness of the pointcut expressions in
aspect code. In the implementation of the framework, we
use AJTE [15], an existing framework that performs unit
testing without weaving. Our framework receives a thresh-
old value and a list of source files, including the source of
aspects and target classes. The framework outputs a list of
matched joinpoints in the target classes as well as a list of
boundary joinpoints, which are events that do not satisfy a
pointcut expression but are close to the matched joinpoints.
The framework also outputs the distances of these boundary
joinpoints from the matched joinpoints, being measured to
quantify their deviation from the matched ones. The bound-
ary joinpoints are identified as those unmatched joinpoint

1

candidates whose distance from the matched joinpoints are
less than a predefined threshold value. This threshold value
is the maximum distance against which the distances of un-
matched joinpoint candidates are compared and is supplied
by the user to the framework. A developer could inspect the
matched joinpoints and boundary joinpoints for correctness
of the pointcuts.

The rest of the paper is organized as follows. Section 2
presents an overview of pointcuts in AspectJ. Section 3 il-
lustrates our APTE framework. Section 4 describes the im-
plementation of the framework. Section 5 provides prelimi-
nary results of applying the framework on selected subjects.
Section 6 discusses issues of the framework and Section 8
concludes the paper.

2 Pointcuts in AspectJ

This section presents an example to explain pointcuts
in AspectJ and discusses potential problems of pointcuts
during program evolution. Section 2.1 presents an exam-
ple program. Section 2.2 explains sample situations where
problems could occur.

2.1 Example

We illustrate the concept of pointcuts by using a simple
RSA encryption example that uses the FastDivision algo-
rithm for initial primality test. Figure 2 shows the imple-
mentation of the classes. TheRSA class provides the op-
eration of RSA encryption and theFastDivision class
performs the primality test.

TheNonNegativeArg aspect checks whether a method
argument is a nonnegative integer. The aspect contains a
piece of advice that goes through the arguments of a method
and checks whether these arguments are nonnegative in-
tegers. A method whose arguments need to be checked
is identified by the pointcut expression “checkarg”. In
this example, the pointcut expression has been designed to
match any public method that ends with “Prime”, has an
integer argument, and is invoked by an instance of any class
with boolean as the return value.

2.2 Problems with pointcuts

The pointcut checkarg appears to be robust as it
meets its requirements and matches only the joinpoint
“isPrime(int num)” with a single integer argument. But
in practice, the choice of primality test algorithms in en-
cryption varies with implementation or as the program
evolves. For example, consider an implementation of
RSA encryption with another primality test algorithm called
MillerRabin. The example provided in Figure 2 is improved
by performing a second round of primality test on numbers

aspect NonNegativeArg {

pointcut checkarg() :
execution(public boolean *.*Prime(int));

before() : checkarg() {
Object args = thisJoinPoint.getArgs();

if ((args instanceof Integer) &&
(((Integer)args).intValue() < 0))

throw new RuntimeException("negative arg of " +
thisJoinPoint.getSignature().toShortString());

}
}

Figure 1. NonNegativeArg aspect

class FastDivision {
public boolean isPrime(int num){

//Fast division primality test algorithm
...

}
}

class RSA {
public void rsa() {

//Algorithm to perform RSA encryption
boolean result;
int n = genRandom();
FastDivision obj = new FastDivision();
result = obj.isPrime(n);

}
}

Figure 2. An RSA encryption with the FastDi-
vision algorithm

class MillerRabin {
public boolean isPrime(int base, int exponent){

//Miller Rabin primality test algorithm
...

}
}

class RSA {
public void rsa() {

//Algorithm to perform RSA encryption
boolean result;
int n = genRandom();
FastDivision obj = new FastDivision();
result = obj.isPrime(n);
if(result) {

int exp = genRandom();
MillerRabin obj = new MillerRabin();
result = obj.isPrime(n, exp);

}
}

}

Figure 3. An RSA encryption with the
MillerRabin algorithm

detected as prime by the FastDivision algorithm. Figure 3
shows the implementation of the class.

Now the pointcut matches only the “isPrime” method
of the FastDivision class. Because only a single ar-
gument has been matched in the pointcut expression , the

2

“isPrime” method of theMillerRabin class is ruled out.
Here we need to modify the pointcut expression to be more
generic on the number of arguments in order to check for
non-negative arguments on both the primality test functions.
Similarly there could be instances where the designed point-
cut matches unwanted joinpoints and has to be narrowed
down to avoid the unwanted matches. Identifying such er-
rors manually is tedious when the number of objects, classes
and source codes is large.

Even when developers design pointcuts for the current
program version, they could make mistakes in defining the
right pointcuts: designed pointcuts may be too narrow leav-
ing out some necessary joinpoints out of matched scope or
including more than necessary joinpoints in the matched
scope.

3 The APTE Framework

Figure 4 provides a high level overview of the frame-
work. Our framework receives source files of the aspects
and target classes under test. In particular, the source files
are given as input to three components in the framework:
candidate generator, pointcut generator, and AJTE. AJTE
outputs a test bench that consists of methods for testing the
joinpoint candidates generated from the candidate genera-
tor. Then the framework feeds this result and pointcuts ob-
tained from the pointcut generator to the distance measure
component to identify the boundary joinpoints, which are
events that do not satisfy a pointcut expression but are close
to the matched joinpoints. The framework also outputs the
distances of these boundary joinpoints from the matched
joinpoints, being measured to quantify their deviation from
the matched ones. A developer could inspect these selected
joinpoints and joinpoint candidates for correctness of the
pointcuts.

Our APTE framework has been designed to verify the
correctness of the pointcut expressions in aspect code. The
framework is based on the approach of automatically gen-
erating the test inputs (joinpoint candidates and pointcut
expressions) to test the pointcuts and identify the bound-
ary joinpoints with the measure calculated using the Leven-
shtein algorithm (also called Edit-Distance)1.

Our framework uses AJTE, a unit-testing framework for
aspects without weaving, which provides methods for test-
ing pointcuts. This framework also provides methods for
creating joinpoint objects, which are in turn used as argu-
ments to pointcut-testing methods. TheTestJoinPoint
class of AJTE is the class for processing a joinpoint as an
object. TheTestPointcut class is the class for processing
a pointcut expression as an object. Once these objects are
created, thetestPointcut method is used to check if the
joinpoint object matches the pointcut object.

1http://www.levenshtein.net/

Source

Candidate

Generator

Pointcut

Generator

Pointcuts
Joinpoint

candidates

AJTE

Measure

Distance Measure

component

Boundary

Joinpoints

Matched

Joinpoints

Figure 4. Overview of the APTE framework

Our framework automatically generates likely join
points from the Java class file. This list forms the join-
point candidates used to test the pointcuts. The frame-
work generates all possible joinpoints from the Java class.
Figure 5 shows the joinpoint candidates generated for the
RSA encryption example. The framework identifies two
execution joinpoints and two call joinpoints. The execu-
tion joinpoints identify the execution of the public method
“isPrime”. The call joinpoints identify the call sites of the
same method. These functions are invoked by the objects
of the classesMillerRabin and FastDivision. Once
the joinpoint candidates are identified, they are fed as input
to theTestJoinPoint factory class of AJTE to produce
joinpoint objects. These joinpoint objects are then fed as
arguments to theTestJoinPoint factory class of AJTE to
verify if the joinpoints match the pointcut expression. This
step is performed on all joinpoint candidates.

The second set of inputs include the pointcut expres-
sions from the AspectJ source file. We parse the As-
pectJ source code to identify the pointcut expressions. Fig-
ure 6 shows the list of pointcut expressions identified for
the NonNegativeArg aspect. This list of pointcut ex-
pressions is used to identify two categories of joinpoints:
joinpoint candidates that satisfy a pointcut expression and
those that do not. For each pointcut expression, the dis-
tance between the preceding two categories are measured
using the Levenshtein algorithm. The result of this algo-
rithm is an integer value that signifies the number of trans-
formations (i.e., insertions, deletions) that should be per-
formed on a unmatched joinpoint candidate to transform it
into a joinpoint that successfully matches a pointcut expres-
sion. Figure 7 shows a sample measure between a join-
point (which matches a pointcut expression) and a joinpoint
candidate (which does not match a pointcut expression).
The measure of 4 indicates that the joinpoint candidate re-

3

execution(public boolean FastDivision.isPrime(int))

execution(public boolean MillerRabin.isPrime(int,int))

call(public boolean FastDivision.isPrime(int))

call(public boolean MillerRabin.isPrime(int,int))

Figure 5. JoinPoint candidates

execution(public boolean *.*Prime(int))

Figure 6. Pointcut expression

Pointcut expression:
execution(public boolean *.*Prime(int))

Joinpoint:
execution(public boolean FastDivision.isPrime(int))

Joinpoint candidate:
execution(public boolean MillerRabin.isPrime(int,int))

Distance Measure: 4

Figure 7. Distance Measure

quires a transformation of 4 letters to become a success-
ful joinpoint. Then the framework identifies boundary join-
points by comparing joinpoint candidates’ distance against
the user-defined threshold value and outputs these boundary
joinpoints along with the list of matched joinpoints.

4 Implementation

We have implemented the framework for AspectJ and
Java code using the Byte Code Engineering Library
(BCEL) [2], Java reflection API [11], and AJTE. The cur-
rent implementation of the framework supports an AspectJ
compiler called ajc [3] Version 1.5 and Java 5 [1]. The main
components of the framework includes the test bench gen-
erator, pointcut generator, candidate generator, and distance
measure component, as shown in Figure 8.

4.1 Test Bench Generator

The Test Bench generator is a part of AJTE that trans-
lates the data from the aspect class (generated by the
ajc AspectJ compiler) and provides two wrapper classes:
TestJoinPoint andTestPointcut.

The TestJoinPoint class is a class for processing a
join point as an object. TheTestPointcut class is a
class for processing a pointcut expression as an object. The
testPointcut method has both a pointcut expression ob-
ject and a join point object as the parameters. If the former
matches the latter, it returns true; otherwise, it returns false.
The framework feeds the aspect class and aspect source

Source

Java classThreshold Aspect code

Test Bench

Generator

Candidate

Generator
Pointcut Generator

Pointcuts
Joinpoint

Candidates
TestBench.java

TestJoinpoint

Factory

AspectJ

Compiler

Joinpoint

objects
TestBench.class

TestPointcut Factory

Distance measure

component

Measure

AspectJ class

Matched

Joinpoints

Boundary

Joinpoints

Figure 8. Implementation of the APTE frame-
work

code as input to the test bench generator, which generates
the Test Bench Java file. Then the framework automatically
compiles the Test Bench Java source using the ajc AspectJ
compiler to generate the Test Bench class file.

4.2 Pointcut Generator

The pointcut generator parses the AspectJ source code to
identify pointcut expressions. The generated pointcuts are
passed as parameters to the distance measure component to
identify the group of joinpoints that are matched against a
particular pointcut expression and then use them to measure
the distance.

4.3 Candidate Generator

The framework feeds the Java class file as input to the
candidate generator. This component uses the Java re-
flection API to generate the methods [6] in the class file,
parse the class file and identify the call sites of the meth-
ods in the code. The component produces joinpoint can-
didates using the identified call sites and execution points.
Then the framework feeds these joinpoint candidates to the

4

TestJoinPoint factory class to generate joinpoint ob-
jects.

4.4 Distance Measure Component

The framework feeds the list of joinpoints that satisfy
a pointcut expression, candidate joinpoints that fail to sat-
isfy any pointcut expression, and the pointcut expressions
to the distance measure component. This component uses
the Levenshtein algorithm to compute the distance. The dis-
tance signifies the number of characters that need to be in-
serted, deleted, or modified in the candidate joinpoints to
transform them into joinpoints that match a particular point-
cut expression. Finally the framework identifies bound-
ary joinpoints by comparing joinpoint candidates’ distance
against the user-defined threshold value and outputs bound-
ary jionpoints along with the list of matched joinpoints.

5 Preliminary Results

We describe selected outputs of applying our frame-
work on a few pointcut expressions and joinpoints identified
from the AspectJ Benchmark Suite2 for our sample code,as
shown in Table 1. Columns 1-4 show the pointcut expres-
sions, joinpoints (which successfully match the pointcut ex-
pressions), joinpoint candidates, and the distance measures
using the Levenshtein algorithm, respectively. The listed
joinpoint candidates are the boundary joinpoints identified
with the threshold of 20.

The first pointcut expression matches the execution
of any public method that ends with “Blocks”, ac-
cepts an integer as an argument, and returns an integer
value. The executions of methodscombineBlocks and
deleteBlocks match these pointcut expressions whereas
the executions of methodsturnblock andgetBlock fail.
These two failed joinpoints are considered as joinpoint
candidates and are measured against the joinpoints that
matched the pointcut expression. The measures are shown
in the last column. For example, the joinpoint candidate
“execution(public int Apte.turnBlock(int))”
differs from the joinpoint “execution(Public int

Apte.deleteBlocks(int))” by a measure of 8. This
measure indicates that the joinpoint candidate requires a
transformation of 8 characters to be a successful joinpoint.
Similarly, the measures for other joinpoint candidates could
be found in the table.

6 Discussion

The current implementation of the framework provides
support for automatic generation of joinpoint candidates for

2http://www.sable.mcgill.ca/benchmarks/

the following types of designators in a pointcut: execu-
tion (method or constructor call execution), call (method or
call), initialization, and args. We plan to extend the frame-
work to support other designators in a pointcut expression
in future work.

The current implementation of the Levenshtein algo-
rithm computes measure between a joinpoint and a join-
point candidate. We plan to extend the distance mea-
sure component to compute distance measure against point-
cut expressions: we can automatically analyze probable
transformation of the pointcut expression in order to being
matched by an unmatched joinpoint candidate.

7 Related Work

Lopes and Ngo [7] classify behavior of aspect-oriented
programs into aspectual behavior or aspectual composition.
Xie and Zhao [14] developed the Aspectra framework that
automatically generates tests for testing aspectual behavior
by leveraging existing Java test generation tools.

Our APTE framework performs unit testing of pointcuts
for AspectJ programs by using the AJTE framework [15].
The AJTE framework allows to test whether the pointcut
expression associated with a piece of advice matches (man-
ually) provided joinpoints. Manually identifying joinpoints
for testing pointcuts is tedious especially when the num-
ber of objects and classes is large. Our APTE framework
reduces human effort in the testing process because APTE
automates test-input generation as well test execution.

Störzer and Graf [10] developed the pointcut delta anal-
ysis was developed to support evolution of aspect-oriented
software by analyzing different versions of an AspectJ pro-
gram. Their analysis detects semantic differences in the
program behavior because of changed pointcut semantics.
Their approach does not verify the correctness of a point-
cut expression in a single version of the AspectJ program.
Their approach assumes that the pointcut expressions are
logically correct. It compares the set of matched joinpoints
for both versions. It does not attempt to search for probable
joinpoints that may have been missed out due to an error
in pointcut construction. Our approach helps detect these
probable joinpoints. Our approach verifies the pointcut ex-
pressions against all possible joinpoints and verifies if the
constructed pointcut expression is logically correct.

Mortensen and Alexander [9] proposed adequate testing
of AspectJ programs, which provides a set of mutation op-
erators to find incorrect strengths in pointcut patterns and
thereby evaluate the effectiveness of a test suite. Their ap-
proach does not verify the correctness of the expression
or measure unmatched joinpoints. Our approach computes
the measure of the boundary joinpoints and indicates the
amount of transformation required to change them into suc-
cessful joinpoints.

5

Table 1. Selected outputs of the APTE framework
��������� 	���
����� 	���
������
����
��� ����
����

���������	
�����
���

��������	
��
�����

���������	
�����
���

�
����������������	����
�

���������	
�����
���
�
������������	����� �

���������	
�����
���
�
�����������	����� �

���������	������
���

�
���������������	�����

���������	
�����
���
�
������������	����� �

���������	
�����
���
�
�����������	����� �

���������	
�����
������

�������	�
�����

���������	
�����
������

�
�����
���������	�����

���������	
�����
�����
�
�����
��������	������� ��

���������	
�����
�����
�
�����
��������	������� ��

���������	
�����
������

�
�����
�������	�����

���������	
�����
�����
�
�����
��������	������� ��

����	
�� ���
�������

������������
�
��	����		������

����	
�� ���
�������

������������
����
��	����		������

����	
�� ���
�������
�
��������
�������	�!���

��		�������	����

��

8 Conclusion

In aspect-oriented programs, with the increase in the
number of objects, classes, and integration of source code,
a developer may likely write a pointcut that fails to serve
its intended purpose. In this paper, we have proposed
APTE, an automated framework that tests pointcuts in As-
pectJ programs. The framework receives a list of source
files, including the source of aspects and target classes. The
framework outputs a list of matched joinpoints in the tar-
get classes as well as a list of boundary joinpoints, which
are events that do not satisfy a pointcut expression but are
close to the matched joinpoints. The framework also out-
puts the distances of these boundary joinpoints from the
matched joinpoints, being measured to quantify their de-
viation from the matched ones. Developers could inspect
these selected joinpoints and joinpoints candidates for cor-
rectness of the pointcuts. Our preliminary results show that
the both matched joinpoints and identified boundary join-
points deserve developers’ attention.

Acknowledgments

We would like to thank the authors of the AJTE tool for
their valuable support in providing the latest version of the
tool and examples for our use.

References

[1] K. Arnold, J. Gosling, and D. Holmes.The Java Program-
ming Language. Addison-Wesley Longman, 2000.

[2] M. Dahm and J. van Zyl. Byte Code Engineering Library,
April 2003. http://jakarta.apache.org/bcel/.

[3] Eclipse. AspectJ compiler 1.5, May 2005.http://
eclipse.org/aspectj/.

[4] R. E. Filman and T. Elrad.Aspect Oriented Software Devel-
opment. Addison-Wesley Publishing Co., Inc.,, 2005.

[5] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. InProc. 11th European Conference on Object-
Oriented Programming, pages 220–242, 1997.

[6] T. Lindholm and F. Yellin.The Java Virtual Machine Speci-
fication. Online manual, 2001.

[7] C. V. Lopes and T. Ngo. Unit testing aspectual behavior. In
Proc. AOSD 05 Workshop on Testing Aspect-Oriented Pro-
grams, March 2005.

[8] R. Miles. AspectJ Cookbook. O’Reilly, 2004.
[9] M. Mortensen and R. T. Alexander. An approach for ade-

quate testing of aspectj programs. InProc. AOSD 05 Work-
shop on Testing Aspect-Oriented Programs, March 2005.

[10] M. Störzer and J. Graf. Using pointcut delta analysis to sup-
port evolution of aspect-oriented software. InProc. Inter-
national Conference on Software Maintenance, pages 653–
656, 2005.

[11] Sun Microsystems.Java Reflection API. Online manual,
2001.

[12] Sun Microsystems. Java 2 platform standard edition v1.4.2
API specification, 2003. http://java.sun.com/
j2se/1.4.2/docs/api/.

[13] The AspectJ Team. The AspectJ programming guide. On-
line manual, 2003.

[14] T. Xie and J. Zhao. A framework and tool supports for gen-
erating test inputs of aspectj programs. InProc. 5th Inter-
national Conference on Aspect-Oriented Software Develop-
ment (AOSD 2006), pages 190–201, March 2006.

[15] Y. Yamazaki, K. Sakurai, S. Matsuura, H. Masuhara,
H. Hashiura, and S. Komiya. A unit testing framework for
aspects without weaving. InProc. 1st Workshop on Testing
Aspect-Oriented Programs (WTAOP), March 2005.

[16] J. Zhao. Data-flow-based unit testing of aspect-oriented pro-
grams. InProc. 27th IEEE International Computer Software
and Applications Conference, pages 188–197, Nov. 2003.

6

