APTE: Automated Pointcut Testing for AspectJ Programs

Prasanth Anbalagan Tao Xi¢’
Department of Computer Science, North Carolina State University, Rallig 27606, USA
'panbal a@csu. edu 2xi e@csc.ncsu.edu

Abstract Joinpoints can be method calls, constructor invocations, o
some other points in the execution of a progratintcuts

Aspect-Oriented Programming (AOP) has been pro- are constructs that match the joinpoints, which perform a
posed as a methodology that provides new modularizationspecific action calleddvicewhen triggered. The encapsu-
of software systems by allowing encapsulation of cross-lation of joinpoint, pointcut and advice is provided by an
cutting concerns. AspectJ, an aspect-oriented programmin aspect
language, provides two major constructs: advice and point- The crosscutting behavior of Aspect can be divided
cuts. The scope of pointcuts spans across various objectsnto two major components: what the behavior does (ad-
instantiated from the classes. With the increase in the num-yice) and where the behavior applies (pointcut). Unit test-
ber of objects, classes, and integration of source cods, it i ing [16, 7, 15, 14] in AOP can be carried out by weaving
likely that a developer writes a pointcut that does not serve or without weaving the aspect code with the encapsulating
its intended purpose. Therefore, there is a need to testpoin components (called the target classes). Unit testing with-
cuts for validating the correctness of their expressions. oyt weaving involves tests in isolation that verify individ

In this paper, we propose APTE, an automated frame- yal components of the AOP language independent of other
work that tests pointcuts in AspectJ programs with the help components.

of AJTE, an existing unit-testing framework without weav-
?ng. OurpewAPTE frameworkidentifiesjoinpointg t_hatgat- in the execution of a program. Pointcuts are modelled us-
|sfy a pointcut expression and a ;et of bou_ndary Jompom'ts, ing expressions that identify the type, scope, or context of
which are events that do not_ s_atlsfy a pointeut EXPressionhe events. AspectJ pointcuts provide the features of ab-
buF are clos_e to t_h_e matched joinpoints. ThE." poun_daryjom_- straction and composition, which include various designa-
points are |der!t|f|ed as those unmatcheq Joinpoint candi- tors, wildcards, and their combination with logical opera-

dates whose <_j|stance from the matched joinpoints are I.esstors. Developers often lack high confidence on assuring
than a predefined threshold value. A developer could in- that these pointcuts are specified as intended. In addition,

spect these matched joinpoints and boundary joinpoints forduring program evolution, specified pointcuts may not be
correctness of the pointcuts. '

Pointcuts are predicates that match an event (Joinpoints)

robust enough to stand the maximum chance of continuing
to match the intended joinpoints, and only the intended join
points.

1 Introduction In this paper, we propose a framework that automati-
cally checks the correctness of the pointcut expressions in
Aspect-Oriented Programming(AOP) [5, 4] attempts to aspect code. In the implementation of the framework, we
aid programmers in the separation of concerns: breakinguse AJTE [15], an existing framework that performs unit
down of a program into distinct parts that overlap in func- testing without weaving. Our framework receives a thresh-
tionality. In particular, AOP focuses on the modulariza- old value and a list of source files, including the source of
tion of concerns as appropriate for the host language andaspects and target classes. The framework outputs a list of
provides a mechanism for describing concerns that cross-matched joinpoints in the target classes as well as a list of
cut each other. AspectJ [5, 13, 8] is an implementation of boundary joinpoints, which are events that do not satisfy a
AOP for the Java [12] programming language, being built pointcut expression but are close to the matched joinpoints
as an extension to the language. The major components off he framework also outputs the distances of these boundary
this AOP language are joinpoints, pointcuts, advice, and as joinpoints from the matched joinpoints, being measured to
pects. Joinpointsare well-defined locations within the pri- quantify their deviation from the matched ones. The bound-
mary code where a concern will crosscut the application. ary joinpoints are identified as those unmatched joinpoint

candidates whose distance from the matched joinpoints aréSPect NenhegativeArg {

less than a predefined threshold value. This threshold value poi ntcut checkarg() :

is the maximum distance against which the distances of un- execution(public bool ean «.+Prime(int));
matched joinpoint candidates are compared and is suppliedbefore() : checkarg() {

by the user to the framework. A developer could inspectthe =~ % ect args = thisloi nPoint. get Args();

o . o - if ((args instanceof Integer) &&
matched joinpoints and boundary joinpoints for correcdnes (((I'nteger)args).intValue() < 0))

; throw new Runti meException("negative arg of " +
of the pomtcuts. . . . t hi sJoi nPoi nt. get Si gnature().toShortString());
The rest of the paper is organized as follows. Section 2 }
presents an overview of pointcuts in AspectJ. Section 3 il- }
lustrates our APTE framework. Section 4 describes the im-
plementation of the framework. Section 5 provides prelimi- Figure 1. NonNegat i veAr g aspect
nary results of applying the framework on selected subjects
Section 6 discusses issues of the framework and Section 8 o
cl ass FastDivision {

concludes the paper. publ i ¢ bool ean i sPrime(int num {
//Fast division primality test algorithm

2 Pointcutsin AspectJ) }

This section presents an example to explain pointcuts® asspffﬁf‘ii void rsa() {
in AspectJ and discusses potential problems of pointcuts /1A gorithmto perform RSA encryption
during program evolution. Section 2.1 presents an exam- o o) :
ple program. Section 2.2 explains sample situations where Fast Di vision obj = new FastDivision();
problems could occur.) result = obj.isPrime(n);

}

21 Example

Figure 2. An RSA encryption with the FastDi-

We illustrate the concept of pointcuts by using a simple e .
prorp y 9 P vision algorithm

RSA encryption example that uses the FastDivision algo-
rithm for initial primality test. Figure 2 shows the imple- ciass MiierRabin {

mentation of the classes. TIRSA class provides the op- public boolean isPrime(int base, int exponent) {
X R L. //Mller Rabin primality test algorithm

eration of RSA encryption and theast Di vi si on class

performs the primality test. }

TheNonNegat i veAr g aspect checks whether a method ’

i i i i lass RSA {
argument Is a nonnegative integer. The aspect contains & public void rsa() {

piece of advice that goes through the arguments of a method /1A gorithmto perform RSA encryption
and checks whether these arguments are nonnegative in- Ibgf' ean ggf];'a;aom,

tegers. A method whose arguments need to be checked Fast Di visi on obj = new Fast Division();
is identified by the pointcut expressiomHeckarg”. In i'fe(SlrJ'efsuft;’bi{- i sPrime(n);

this example, the pointcut expression has been designed to int exp = genRandon();

match any public method that ends withr'f ne”, has an :V‘e's'uf{ Ribi)gj Oibispr:i x‘(ﬂ’n"" 'e'XS; Rabi n() ;
integer argument, and is invoked by an instance of any class } ' ’ '

with bool ean as the return value.) }

2.2 Problemswith pointcuts
Figure 3. An RSA encryption with the

The pointcutcheckarg appears to be robust as it MillerRabin algorithm
meets its requirements and matches only the joinpoint
“i sPrime(int num”with asingle integer argument. But
in practice, the choice of primality test algorithms in en-
cryption varies with implementation or as the program detected as prime by the FastDivision algorithm. Figure 3
evolves. For example, consider an implementation of shows the implementation of the class.
RSA encryption with another primality test algorithm cdlle Now the pointcut matches only thé $Pri ne” method
MillerRabin. The example provided in Figure 2 isimproved of the Fast Di vi si on class. Because only a single ar-
by performing a second round of primality test on numbers gument has been matched in the pointcut expression , the

“i sPri me” method of theM | | er Rabi n class is ruled out.

Source ‘

Here we need to modify the pointcut expression to be more l l
generic on the number of arguments in order to check for it oo
non-negative arguments on both the primality test funstion Generator | | Generator

Similarly there could be instances where the designed-point
cut matches unwanted joinpoints and has to be narrowed
down to avoid the unwanted matches. Identifying such er- S
rors manually is tedious when the number of objects, classes
and source codes is large. SN
Even when developers design pointcuts for the current 1
program version, they could make mistakes in defining the Distance Measure
right pointcuts: designed pointcuts may be too narrow leav- comporen i
ing out some necessary joinpoints out of matched scope or T ‘ S—
including more than necessary joinpoints in the matched @ @ @

scope.

3 The APTE Framework Figure 4. Overview of the APTE framework

Figure 4 provides a high level overview of the frame- oyr framework automatically generates likely join
work. Our framework receives source files of the aspects points from the Java class file. This list forms the join-
and target classes under test. In particular, the souree file point candidates used to test the pointcuts. The frame-
are given as input to three components in the framework:\york generates all possible joinpoints from the Java class.
candidate generator, pointcut generator, and AJTE. AJTErjgre 5 shows the joinpoint candidates generated for the
outputs a test bench that consists of methods for testing thegga encryption example. The framework identifies two
joinpoint candidates generated from the candidate generagyecution joinpoints and two call joinpoints. The execu-

tor. Then the framework feeds this result and pointcuts ob-jon joinpoints identify the execution of the public method
tained from the pointcut generator to the distance measure:; gpr i ne”. The call joinpoints identify the call sites of the

component to identify the boundary joinpoints, which are same method. These functions are invoked by the objects
events that do not satisfy a pointcut expression but ar@clos f the classes | | er Rabi n and Fast Di vi si on. Once

to the matched joinpoints. The framework also outputs the e joinpoint candidates are identified, they are fed astinpu
distances of these boundary joinpoints from the matchedyq the Test Joi nPoi nt factory class of AJTE to produce
joinpoints, being measured to quantify their deviatiomfro j4innoint objects. These joinpoint objects are then fed as
the matched ones. A developer could inspect these selected g ments to theest Joi nPoi nt factory class of AJTE to
Jompomts and joinpoint candidates for correctness of the verify if the joinpoints match the pointcut expression. Fhi
pointcuts. _ _ step is performed on all joinpoint candidates.

Our APTE framework has been designed to verify the 1o gecond set of inputs include the pointcut expres-
correctness of the pointcut expressions in aspect code. Th%ions from the Aspect] source file. We parse the As-
fram_ework IS bas_ed on the_ apProaCh O_f automaucally gen'pect\J source code to identify the pointcut expressions. Fig
erating the test inputs (joinpoint candidates and pointcut ;.o g shows the list of pointcut expressions identified for
expressions) to test the pointcuts and identify the bound-,o NonNegat i veAr g aspect. This list of pointcut ex-
ary joinpoints with the measure calculated using the Leven- , o «sions is used to identify two categories of joinpoints:
shtein algorithm l((also called Edit-Distante)) joinpoint candidates that satisfy a pointcut expressiath an

Our framework uses AJTE, a unit-testing framework for w0 that do not. For each pointcut expression, the dis-

gspect's without Weaving, which provideslmethods for test- tance between the preceding two categories are measured
ing pointcuts. This framework also provides methods for using the Levenshtein algorithm. The result of this algo-

creating joinpoint objects, which are in turn used as argu- iy is an integer value that signifies the number of trans-

ments to pointcut-testing methods. Thest Joi nPoi nt formations (i.e., insertions, deletions) that should be pe
class of AJTE is the class for processing a joinpoint as ang, meq on a unmatched joinpoint candidate to transform it

object. TheTest Poi nt cut class is the class for processing jnyq 3 joinpoint that successfully matches a pointcut espre
a pointcut expression as an object. Once these objects argion " Figure 7 shows a sample measure between a join-

created, th; est Poi nrt] CUthmEth_Od IS UZ_Ed to check ifthe it (which matches a pointcut expression) and a joinpoint
Joinpaint object matches the pointcut object. candidate (which does not match a pointcut expression).
thttp: // www. | evensht ei n. net/ The measure of 4 indicates that the joinpoint candidate re-

execution(public bool ean FastDivision.isPrime(int))

’ Source ‘

execution(public boolean MIIlerRabin.isPrinme(int,int))

cal |l (public bool ean FastDivision.isPrine(int))

Threshold Aspectd class Java class Aspect code

cal |l (public boolean MIlerRabin.isPrime(int,int))

A,
H H H H Test Bench Candidat .
Figure 5. JoinPoint candidates ’ Gonrator ‘ ’ Caarator ‘ Pointcut Generator
execution(public boolean *.*Prine(int))
. Joinpoint .
Pointcuts
Figure 6. Pointcut expression
.) AspectJ TestJoinpoint
Poi nt cut expression: Compiler Factory
execution(public boolean *.*Prine(int))
Joi npoi nt:) o .)) Joinpoint
execution(public bool ean FastDivision.isPrine(int)) TestBench.class objects
Joi npoi nt candi dat e:
execution(public boolean MIlerRabin.isPrine(int,int))
’ TestPointcut Factory ‘
Di stance Measure: 4 l
o Distance measure [

component

Figure 7. Distance Measure

Joinpoints Joinpoints
quires a transformation of 4 letters to become a success-

ful joinpoint. Then the framework identifies boundary join-

points by comparing joinpoint candidates’ distance agains ~ Figure 8. Implementation of the APTE frame-
the user-defined threshold value and outputs these boundary Wwork

joinpoints along with the list of matched joinpoints.

4 Implementation code as input to the test bench generator, which generates
the Test Bench Java file. Then the framework automatically

We have implemented the framework for AspectJ and compiles the Test Bench Java source using the ajc AspectJ

Java code using the Byte Code Engineering Library compiler to generate the Test Bench class file.

(BCEL) [2], Java reflection API [11], and AJTE. The cur-

rent implementation of the framework supports an Aspectd4.2 Pointcut Gener ator

compiler called ajc [3] Version 1.5 and Java 5 [1]. The main

components of the framework includes the test bench gen-

erator, pointcut generator, candidate generator, andrdist

measure component, as shown in Figure 8.

The pointcut generator parses the AspectJ source code to
identify pointcut expressions. The generated pointcugs ar
passed as parameters to the distance measure component to
identify the group of joinpoints that are matched against a
particular pointcut expression and then use them to measure

. the distance.
The Test Bench generator is a part of AJTE that trans-

lates the data from the aspect class (generated by the .
ajc Aspect) compiler) and provides two wrapper classes:4-3 Candidate Generator
Test Joi nPoi nt andTest Poi nt cut .

The Test Joi nPoi nt class is a class for processing a The framework feeds the Java class file as input to the
join point as an object. Thé&est Poi ntcut class is a candidate generator. This component uses the Java re-
class for processing a pointcut expression as an object. Thdlection API to generate the methods [6] in the class file,

t est Poi nt cut method has both a pointcut expression ob- parse the class file and identify the call sites of the meth-
ject and a join point object as the parameters. If the formerods in the code. The component produces joinpoint can-
matches the latter, it returns true; otherwise, it retuahsef. didates using the identified call sites and execution points
The framework feeds the aspect class and aspect sourc&hen the framework feeds these joinpoint candidates to the

4.1 Test Bench Generator

Test Joi nPoi nt factory class to generate joinpoint ob-
jects.

the following types of designators in a pointcut: execu-
tion (method or constructor call execution), call (method o
call), initialization, and args. We plan to extend the frame
work to support other designators in a pointcut expression
in future work.

The framework feeds the list of joinpoints that satisfy ~ The current implementation of the Levenshtein algo-
a pointcut expression, candidate joinpoints that fail te sa fithm computes measure between a joinpoint and a join-
isfy any pointcut expression, and the pointcut expressionspoint candidate. We plan to extend the distance mea-
to the distance measure component. This component use§ure component to compute distance measure against point-
the Levenshtein algorithm to compute the distance. The dis-Cut expressions: we can automatically analyze probable
tance signifies the number of characters that need to be intransformation of the pointcut expression in order to being
serted, deleted, or modified in the candidate joinpoints to matched by an unmatched joinpoint candidate.
transform them into joinpoints that match a particular poin
cut expression. Finally the framework identifies bound- 7 Related Work
ary joinpoints by comparing joinpoint candidates’ distanc
against the user-defined threshold value and outputs bound-
ary jionpoints along with the list of matched joinpoints.

4.4 Distance M easure Component

Lopes and Ngo [7] classify behavior of aspect-oriented
programs into aspectual behavior or aspectual composition
Xie and Zhao [14] developed the Aspectra framework that
automatically generates tests for testing aspectual bmhav
by leveraging existing Java test generation tools.

We describe selected outputs of applying our frame- Our APTE framework performs unit testing of pointcuts
work on a few pointcut expressions and joinpoints identified for AspectJ programs by using the AJTE framework [15].
from the Aspect] Benchmark Sufitler our sample code,as The AJTE framework allows to test whether the pointcut
shown in Table 1. Columns 1-4 show the pointcut expres- expression associated with a piece of advice matches (man-
sions, joinpoints (which successfully match the pointeut e ually) provided joinpoints. Manually identifying joinpois
pressions), joinpoint candidates, and the distance messur for testing pointcuts is tedious especially when the num-
using the Levenshtein algorithm, respectively. The listed ber of objects and classes is large. Our APTE framework

5 Preéiminary Results

joinpoint candidates are the boundary joinpoints idenmtifie
with the threshold of 20.

The first pointcut expression matches the execution

of any public method that ends withBl*ocks”, ac-

reduces human effort in the testing process because APTE

automates test-input generation as well test execution.
Stirzer and Graf [10] developed the pointcut delta anal-

ysis was developed to support evolution of aspect-oriented

cepts an integer as an argument, and returns an integesoftware by analyzing different versions of an AspectJ pro-
value. The executions of methodsnbi neBl ocks and gram. Their analysis detects semantic differences in the
del et eBl ocks match these pointcut expressions whereas program behavior because of changed pointcut semantics.
the executions of methodsir nbl ock andget Bl ock fail. Their approach does not verify the correctness of a point-
These two failed joinpoints are considered as joinpoint cut expression in a single version of the AspectJ program.
candidates and are measured against the joinpoints thalheir approach assumes that the pointcut expressions are
matched the pointcut expression. The measures are showtogically correct. It compares the set of matched joinp®int

in the last column. For example, the joinpoint candidate for both versions. It does not attempt to search for probable
“execution(public int Apte.turnBlock(int))” joinpoints that may have been missed out due to an error

differs from the joinpoint &xecution(Public int
Apt e. del et eBl ocks(int))” by a measure of 8. This

in pointcut construction. Our approach helps detect these
probable joinpoints. Our approach verifies the pointcut ex-

measure indicates that the joinpoint candidate requires apressions against all possible joinpoints and verifieséf th

transformation of 8 characters to be a successful joinpoint
Similarly, the measures for other joinpoint candidatedatou
be found in the table.

6 Discussion

The current implementation of the framework provides
support for automatic generation of joinpoint candidates f

2http: // ww. sabl e. ncgi | | . cal/ benchmar ks/

constructed pointcut expression is logically correct.

Mortensen and Alexander [9] proposed adequate testing
of AspectJ programs, which provides a set of mutation op-
erators to find incorrect strengths in pointcut patterns and
thereby evaluate the effectiveness of a test suite. Their ap
proach does not verify the correctness of the expression
or measure unmatched joinpoints. Our approach computes
the measure of the boundary joinpoints and indicates the
amount of transformation required to change them into suc-
cessful joinpoints.

Table 1. Selected outputs of the APTE framework

Pointcuts Joinpoints

Joinpoint Candidates Distance

execution(public int
Apte.*Blocks(int))

execution(public int
Apte.combineBlocks(int))

execution(public int Apte.turnBlock(int))

execution(public int Apte.getBlock(int))

execution(Public int
Apte.deleteBlocks(int))

execution(public int Apte.turnBlock(int))

execution(public int Apte.getBlock(int))

execution(public String
Apte.*To*(int))

execution(public String
Apte.typeToString(int))

execution(public Color Apte.typeToColor(Color))

execution(public Image Apte.typeTolmage(Image))

execution(public String
Apte.typeToName(int))

execution(public Image Apte.typeTolmage(Image))

call(private boolean
Apte.readSpec*(short,boolean))

call(private boolean
Apte.readSpecFile(short,boolean))

call(private boolean Apte.readSpecArray(short
,boolean, long))

8 Conclusion

In aspect-oriented programs, with the increase in the
number of objects, classes, and integration of source code
a developer may likely write a pointcut that fails to serve
its intended purpose. In this paper, we have proposed
APTE, an automated framework that tests pointcuts in As-
pectJ programs. The framework receives a list of source
files, including the source of aspects and target classes. Th
framework outputs a list of matched joinpoints in the tar-
get classes as well as a list of boundary joinpoints, which

are events that do not satisfy a pointcut expression but are [l

close to the matched joinpoints. The framework also out-
puts the distances of these boundary joinpoints from the
matched joinpoints, being measured to quantify their de-
viation from the matched ones. Developers could inspect
these selected joinpoints and joinpoints candidates fer co

rectness of the pointcuts. Our preliminary results show tha
the both matched joinpoints and identified boundary join-
points deserve developers’ attention.

Acknowledgments

We would like to thank the authors of the AJTE tool for
their valuable support in providing the latest version & th
tool and examples for our use.

References

[1] K. Arnold, J. Gosling, and D. HolmesThe Java Program-
ming LanguageAddison-Wesley Longman, 2000.

[2] M. Dahm and J. van Zyl. Byte Code Engineering Library,
April 2003. htt p: // j akar t a. apache. or g/ bcel /.

[3] Eclipse. Aspect] compiler 1.5, May 2005htt p://
eclipse. org/ aspectj/.

[4] R. E. Filman and T. ElradAspect Oriented Software Devel-
opment Addison-Wesley Publishing Co., Inc.,, 2005.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. InProc. 11th European Conference on Object-
Oriented Programmingpages 220-242, 1997.

T. Lindholm and F. Yellin.The Java Virtual Machine Speci-
fication Online manual, 2001.

C. V. Lopes and T. Ngo. Unit testing aspectual behavior. In
Proc. AOSD 05 Workshop on Testing Aspect-Oriented Pro-
grams March 2005.

R. Miles. AspectJ CookboolO’'Reilly, 2004.

M. Mortensen and R. T. Alexander. An approach for ade-
quate testing of aspectj programs.Rroc. AOSD 05 Work-
shop on Testing Aspect-Oriented Prograidgrch 2005.

M. Storzer and J. Graf. Using pointcut delta analysis to sup-
port evolution of aspect-oriented software. Rroc. Inter-
national Conference on Software Maintenanpages 653—
656, 2005.

Sun Microsystems.Java Reflection API Online manual,
2001.

Sun Microsystems. Java 2 platform standard edition v1.4.2
API specification, 2003. http://java. sun. conl

j 2sel 1. 4.2/ docs/ api /.

The Aspectd Team. The AspectJ programming guide. On-
line manual, 2003.

T. Xie and J. Zhao. A framework and tool supports for gen-
erating test inputs of aspectj programs. Aroc. 5th Inter-
national Conference on Aspect-Oriented Software Develop-
ment (AOSD 2006pages 190-201, March 2006.

Y. Yamazaki, K. Sakurai, S. Matsuura, H. Masuhara,
H. Hashiura, and S. Komiya. A unit testing framework for
aspects without weaving. IRroc. 1st Workshop on Testing
Aspect-Oriented Programs (WTAQR)arch 2005.

J. Zhao. Data-flow-based unit testing of aspect-oriented pro-
grams. InProc. 27th IEEE International Computer Software
and Applications Conferencpages 188-197, Nov. 2003.

(5]

(6]

(7]

(8]

(10]

(11]

(12]

(13]

(14]

(18]

(16]

