
Model Checking with
Abstract State Matching

Corina Păsăreanu
QSS, NASA Ames Research Center

Joint work with
Saswat Anand (Georgia Institute of Technology)

Radek Pelánek (Masaryk University)
Willem Visser (RIACS, NASA Ames)

Introduction

• Abstraction in software model checking
– Used to reduce data domains of a program
– Described as abstract interpretation
– Classic approach: over-approximation

• SLAM, Blast, Magic; see also Bandera, Feaver
– Preserves true results; abstract counter-examples may be infeasible
– Counter-example based iterative abstraction refinement

Our approach
• Under-approximation based abstraction with refinement

– Goal: error detection; explores only feasible system behaviors
– Preserves errors of safety properties
– Iterative refinement based on checking “exactness” of abstraction

• Framework for test input generation – built around Java PathFinder
– Measure code coverage
– Evaluate against other test input generation methods
– Applied to Java container classes

Predicate Abstraction
• Maps a (possibly infinite state) concrete transition system into a finite state

system
– Via a set of predicates: Preds = {p1, p2 … pn}

• Abstraction function α: ConcreteStates → BitVectors
� α(s) = b1b2…bn, bi=1 ⇔ s╞ pi

Traditional approaches:
• May abstract transitions:

– Over-approximate concrete transitions
– a1 →may a2 : ∃ s1 s.t. α(s1)= a1 and ∃ s2 s.t. α(s2)=a2, s.t. s1 → s2

• Must abstract transitions:
– Under-approximate concrete transitions
– a1 →must a2 : ∀ s1 s.t. α(s1)= a1, ∃ s2 s.t. α(s2)=a2 and s1 → s2

• Compute may/must transitions automatically:
– Use a theorem prover/decision procedure: require 2n × n × 2 calls

Our Approach

Concrete search with abstract matching:
• Traverse the concrete system
• For each explored concrete state

– Store abstract version of the state
– Use predicate abstraction

• Abstract state used to determine if the search should
continue or backtrack

• Does not build abstract transitions
– It executes the concrete transitions directly

• Decision procedure invoked during refinement:
– At most 2 calls for each explored transition

Example

Concrete system
May abstraction

p = (x < 2)
Over-approximation

A,p

D,p

E,pE,!p

B,p C,p

A,0

D,1 D,0

E,1E,2

B,1 C,0

Must abstraction
p = (x < 2)

Under-approximation

A,p

D,p

B,p C,p

Example

Concrete system May abstraction
p = (x < 2)

Over-approximation

A,p

D,p

E,pE,!p

B,p C,p

A,0

D,1 D,0

E,1E,2

B,1 C,0

abstraction α

Must abstraction
p = (x < 2)

Under-approximation

A,p

D,p

B,p C,p

Example

Concrete system
May abstraction

p = (x < 2)
Over-approximation

A,p

D,p

E,pE,!p

B,p C,p

A,0

D,1 D,0

E,1E,2

B,1 C,0

Must abstraction
p = (x < 2)

Under-approximation

A,p

D,p

B,p C,p

p

Example

Concrete system
May abstraction

p = (x < 2)
Over-approximation

Must abstraction
p = (x < 2)

Under-approximation

!p

p

pA,0

B,1

D,1

E,2

A,p

D,p

B,p C,p

A,p

D,p

E,pE,!p

B,p C,p

A,0

D,1 D,0

E,1E,2

B,1 C,0

Concrete search w/
abstract matching

p = (x < 2)

p

Example

Concrete system
May abstraction

p = (x < 2)
Over-approximation

Must abstraction
p = (x < 2)

Under-approximation

!p

p

pA,0

B,1

D,1

E,2

A,p

D,p

B,p C,p

A,p

D,p

E,pE,!p

B,p C,p

A,0

D,1 D,0

E,1E,2

B,1 C,0

Concrete search w/
abstract matching

p = (x < 2)

pC,0

D,0

Example

Concrete system
May abstraction

p = (x < 2)
Over-approximation

Must abstraction
p = (x < 2)

Under-approximation

!p

p

pp

pA,0

B,1 C,0

D,1 D,0

E,2

A,p

D,p

B,p C,p

A,p

D,p

E,pE,!p

B,p C,p

A,0

D,1 D,0

E,1E,2

B,1 C,0

Concrete search w/
abstract matching

p = (x < 2)

abstraction
not “exact”

Example

Concrete system
May abstraction

p = (x < 2)
Over-approximation

Must abstraction
p = (x < 2)

Under-approximation

!p

p

pp

pA,0

D,1 D,0

E,2

B,1 C,0

A,p

D,p

B,p C,p

A,p

D,p

E,pE,!p

B,p C,p

A,0

D,1 D,0

E,1E,2

B,1 C,0

 p,!q

!p,!q

p,q

p,qp,q

p,qA,0

D,1 D,0

E,2

B,1 C,0

E,2 p,!q

Concrete search w/
abstract matching

p = (x < 2)

Concrete search w/
abstract matching

p = (x < 2)
q = (x < 1)

abstraction
not “exact”

refine

(Concrete) Search Algorithm

PROCEDURE dfs()

BEGIN
 add(s0, VisitedStates);
 push(s0, Stack);
 WHILE ! empty(Stack) DO

s = pop(Stack);
FOR all transitions t enabled in s DO

 s' = successor(s, t);
 IF s' NOT IN VisitedStates THEN

 add(s', VisitedStates);
 push(s', Stack);
FI;

OD;
 OD;
END;

Search w/ Abstract Matching

PROCEDURE αSearch (Preds)

BEGIN
 add(αPreds (s0), VisitedStates);
 push(s0, Stack);
 WHILE ! empty(Stack) DO

s = pop(Stack);
FOR all transitions t enabled in s DO

 s' = successor(s, t);
 IF αPreds (s') NOT IN VisitedStates THEN

 add(αPreds (s'), VisitedStates);
 push(s', Stack);
FI;

OD;
 OD;
END;

wp(x>0,x=x-1)

x>0

x>0A,2

B,1

x=x-1
wp(x>0,x=x+1)

Abstraction Refinement
Check if abstraction is exact with respect to each transition t: s → s’
• Check if the induced abstract transition is a must transition w/ a decision procedure
• If not, add new predicates
• Use weakest precondition calculations α(s) ⇒ wp(α(s’),t)

Abstraction is exact

x>0

x>0A,2

B,3

x=x+1

Abstraction is refined
Add new predicate (x-1>0) from
failed check and repeat αSearch

⇒ x+1>0 True ⇒ x-1>0 False

Iterative Refinement

• Check if bad state ϕerr is reachable

BEGIN
 Preds = ∅;
 WHILE true DO

αSearch(Preds);
/* during αSearch perform:

• IF ϕerr is reachable THEN output counterexample FI;
• check if abstraction is exact for each transition
• NewPreds = newly generated predicates from failed checks

*/
IF NewPreds = ∅ THEN output unreachable FI;
Preds = Preds NewPreds;

 OD;
END;

Correctness and Termination

• In general
– The iterative algorithm might not terminate

• If it terminates
– It finds an error or
– It computes a finite bisimilar structure

• If a finite (reachable) bisimulation quotient exists then
– It will eventually compute a finite bisimilar structure
– May still fail to terminate

Implementation

• Implementation for simple guarded command language
– PERL, OCAML
– Uses SIMPLIFY as a decision procedure

Applications
• Property verification for the Bakery mutual exclusion protocol

– Search order matters
5 iterations for breadth first search order
4 iterations for depth first search order

• Error detection in RAX (Remote Agent Executive)
– Component extracted from an embedded spacecraft-control application
– Deadlocked in space
– Error found faster than over-approximation based analysis

Related Work

• Refinement of under-approximations
– For SAT based bounded model checking – Grumberg et al. [POPL’05]

• May and must abstractions
– Branching time properties – Godefroid et al [Concur’01]
– “Hyper” must transitions for monotonicity – Shoham and Grumberg

[TACAS’04]
– Dams and Namjoshi, de Alfaro et al [LICS’04], Ball et al [CAV’05]
– Our previous work – choice free search [TACAS’01]

• Model driven software verification
– Use abstraction mappings during concrete model checking – Holzmann

and Joshi [SPIN’04]
• Over-approximation based predicate abstraction
• Online minimization of transition systems

– Lee & Yannakakis [1992]

Conclusions (I)

• Model checking algorithm
– Under-approximation refinement
– Integrates abstract analysis with concrete program execution
– Uses decision procedure to detect incompleteness of abstraction

and to refine the abstraction
• Comparison with standard over-approximation abstraction

– Finds errors faster (potentially)
– More efficient (in the number of theorem prover calls)
– Complementary, should be combined

• Future work
– Liveness properties
– Backward vs. forward refinement, property driven refinement
– Evaluation

Part II

Test Input Generation

• Model checking with abstract state matching
– No automated refinement
– User-provided abstractions

• Generate test input sequences for Java container classes
– Use Java PathFinder (JPF)

• Explicit state model checker for Java programs
– (Abstract) state matching

• To avoid generation of redundant test sequences
– Measure coverage

• Whenever coverage increased, output test sequence
• Test oracles

– Method post-conditions, assertions
– Absence of run-time errors

General Idea

Java container

Driver

 M = sequence length
 N = max parameter value

Interface
Methods

add
remove

…

Test sequence: add(1); add(0); remove(0);

Test suite
Model checking

Explore all call sequences
Measure coverage

Driver Skeleton

M: sequence length
N: parameter values

Container c = new Container();
for (int i = 0; i < M; i++) {
 int v = Verify.random(N - 1);
 switch (Verify.random(1)) {
 case 0: c.add(v); break;
 case 1: c.remove(v); break;
 }
 Verify.ignoreIf(checkAbstractState(c));
}

Test Generation Techniques

• Explicit state model checking
– “Classical” concrete state matching
– Abstract state matching

• Model checking with symbolic execution
– State matching using subsumption checking
– Abstract matching

• Model checking with random selection

Explicit State Model Checking

Abstract Matching
• Perform state matching after each method call

– Map container state to an abstract version
– Backtrack if abstract state was seen before, i.e. discard test sequence

• Automated support for two abstractions:
– Shape abstraction

• Records (concrete) heap shape of container; discards numeric data
• Obtained through heap “linearization”
• Comparing shapes reduces to comparing sequences

– “Complete” abstraction
• Shape augmented with data
• Similar to symmetry reduction in software model checking

Shape Abstraction: Linearization

7

3

1 5

6

1 2 3 0 0 4 0 0 5 0 0 1 2 3 0 0 4 0 0 5 0 0

1 2 3 0 0 4 0 0 5 0 0 1 2 3 0 0 4 0 5 0 0 0

7

3

1 5

8

6

3

2 5

8

7

3

1 5

8

1:

2:

3:

5:

4:

1:

2:

3: 4:

5:

1:

2:

3: 4:

5:

1:

2:

4:

5:

3:

Complete Abstraction: Shape + Data

17 23 31 0 0 45 0 0 58 0 0 16 23 32 0 0 45 0 0 58 0 0

7

3

1 5

8

1:

2:

3:

5:

4:

6

3

2 5

8

1:

2:

3: 4:

5:

Symbolic Execution

• Execute methods on symbolic input values
• Symbolic states represent sets of concrete states

– Can yield significant improvement over explicit
execution

• For each path, build a path condition
– Condition on inputs – for the execution to follow

that path
– Check satisfiability

x = 1, y = 0

1 > 0 ? true

x = 1 + 0 = 1

y = 1 – 0 = 1

x = 1 – 1 = 0

0 > 1 ? false

int x, y;

if (x > y) {

 x = x + y;

 y = x – y;

 x = x – y;

 if (x > y)

 assert false;

}

Concrete Execution Path:Code that swaps 2 integers:

Example – Explicit Execution

[PC:true] x = X, y = Y

[PC:true] X > Y ?

[PC:X>Y] y = X + Y – Y = X

[PC:X>Y] x = X + Y – X = Y

[PC:X>Y] Y > X ?

int x, y;

if (x > y) {

 x = x + y;

 y = x – y;

 x = x – y;

 if (x > y)

 assert false;

}

Code that swaps 2 integers: Symbolic Execution Tree:

[PC:X≤Y] END [PC:X>Y] x = X+Y
false true

[PC:X>Y∧Y≤X] END [PC:X>Y∧Y>X] END
false true

path condition

Example – Symbolic Execution

Symbolic Execution in JPF

• Handles dynamically allocated data, arrays,
concurrency

• Uses Omega library for linear integer
constraints

• State matching
– Subsumption between symbolic states

Symbolic State

e1

e2

e3 e4

e5

e1 > e2 ∧
e2 > e3 ∧
e2 < e4 ∧
e5 > e1

Shape Symbolic Constraints

Subsumption Checking

e1

e2

e3 e4

e5

e1 > e2 ∧
e2 > e3 ∧
e2 < e4 ∧
e5 ≥ e1

e1

e2

e3 e4

e5

e1 > e2 ∧
e2 > e3 ∧
e2 < e4 ∧
e5 > e1

Same shape

Stored state:

New state:
⇒ Matched

Set of concrete
states represented

by stored state

Set of concrete
states represented

by new state

⊆

Subsumption Checking

e1:v1

e2:v4

e3:v3 e4:v5

e5:v2

e1 = V1 ∧ e2 = V4 ∧ e3 = V3 ∧
e4 = V5 ∧ e5 = V2

PC:
V1 < V2 ∧ V4 > V3 ∧ V4 < V1 ∧
V4 < V5 ∧ V7 < V2 ∧ V7 > V1

∃ V1,V2,V3,V4,V5,V7:
e1 = V1 ∧ e2 = V4 ∧ e3 = V3 ∧ e4 = V5 ∧ e5 = V2 ∧ PC

simplifies to
e1 > e2 ∧ e2 > e3 ∧ e2 < e4 ∧ e5 > e1

Existential Quantifier Elimination

Evaluation

• Four container classes
– BinaryTree, BinomialHeap, FibonacciHeap, TreeMap

• Measured coverage
– Number of basic blocks covered by the generated tests

• Measured predicate coverage – at each basic block
– Combinations of predicates chosen from conditions in the code
– More difficult to achieve

• Breadth first search order
• Sequence Length = Number of Values (M=N)

– Tried other values
• Dell Pentium 4, 2.2 GHz, Windows 2000, 1GB memory
• Out of Memory runs not considered

 TreeMap – Basic Block Coverage

2215739SymEx w/
Subsumption

349739Complete Abstraction

Model Checking
Technique

24338637
Memory (MB)Coverage Seq Length Time (s)

5181039Random Selection

227739SymEx w/ Shape
Abstraction

Shape Abstraction
Technique

621039
Memory (MB)Coverage Seq Length Time (s)

Exhaustive Techniques

Lossy Techniques

 TreeMap – Predicate Coverage

89659412104SymEx w/ Subsumption

8442711095Complete Abstraction

Model Checking
Technique

22938655
Memory (MB)Coverage Seq Length Time (s)

177839106Random Selection

1016130913102SymEx w/ Shape
Abstraction

Shape Abstraction
Technique

101628120106
Memory (MB)Coverage Seq Length Time (s)

Exhaustive Techniques

Lossy Techniques

Observations

Coverage
• Basic block coverage – easily achieved with all techniques
• Predicate coverage

– Difficult to achieve with “classical” model checking
– Its close “cousin” (complete abstraction) scales better
– Lossy techniques better than exhaustive ones

Symbolic vs. explicit execution
• Exhaustive – subsumption checking

– Better than exhaustive concrete execution
• Lossy – abstract matching

– Worse than concrete search with abstract matching
Random selection
• Requires longer sequences to achieve good coverage
• Could not obtain “best” coverage for FibonacciHeap and

BinomialHeap (more interface methods with more parameters)
– Concrete search with abstract matching performed better

Conclusions (II)

• Test input generation techniques for Java containers
– State matching to avoid generation of redundant tests
– Concrete/abstract matching, explicit/symbolic execution
– Compared to random selection

• Model checking with shape abstraction
– Good coverage with short sequences
– Shape abstraction provides an accurate representation of containers

• Future work
– Coverage highly dependent on abstraction – automatic refinement
– Complex data structures, arrays as input parameters
– Abstractions used in shape analysis [SPIN’06]
– More experiments
– Measure techniques in terms of defect detection, rather than

coverage

Explanation

• Bisimulation: symmetric relation ~
– s ~ s’ iff for every s → s1 there exists s’→ s1’ s.t. s1 ~ s1’

• Two transition systems are bisimilar if
– Their initial states are bisimilar

• ~ induces a quotient transition system
– States are equivalence classes
– A → B if there exist s in A and s’ in B s.t. s → s’

Non-monotonic Refinement

Refinement Matched

State space explored

