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Introduction

• Abstraction in software model checking
– Used to reduce data domains of a program
– Described as abstract interpretation
– Classic approach: over-approximation

• SLAM, Blast, Magic; see also Bandera, Feaver
– Preserves true results; abstract counter-examples may be infeasible
– Counter-example based iterative abstraction refinement

Our approach
• Under-approximation based abstraction with refinement

– Goal: error detection; explores only feasible system behaviors
– Preserves errors of safety properties
– Iterative refinement based on checking “exactness” of abstraction

• Framework for test input generation – built around Java PathFinder
– Measure code coverage
– Evaluate against other test input generation methods
– Applied to Java container classes



Predicate Abstraction
• Maps a (possibly infinite state) concrete transition system into a finite state

system
– Via a set of predicates: Preds = {p1, p2 … pn}

• Abstraction function α: ConcreteStates → BitVectors
� α(s) = b1b2…bn,            bi=1 ⇔ s╞ pi

Traditional approaches:
• May abstract transitions:

– Over-approximate concrete transitions
– a1 →may a2 : ∃ s1 s.t. α(s1)= a1 and ∃ s2 s.t. α(s2)=a2, s.t. s1 →  s2

• Must abstract transitions:
– Under-approximate concrete transitions
– a1 →must a2 : ∀ s1 s.t. α(s1)= a1, ∃ s2 s.t. α(s2)=a2 and s1 →  s2

• Compute may/must transitions automatically:
– Use a theorem prover/decision procedure: require 2n × n × 2 calls



Our Approach

Concrete search with abstract matching:
• Traverse the concrete system
• For each explored concrete state

– Store abstract version of the state
– Use predicate abstraction

• Abstract state used to determine if the search should
continue or backtrack

• Does not build abstract transitions
– It executes the concrete transitions directly

• Decision procedure invoked during refinement:
– At most 2 calls for each explored transition
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(Concrete) Search Algorithm

PROCEDURE dfs()

BEGIN
     add(s0, VisitedStates);
     push(s0, Stack);
     WHILE ! empty(Stack) DO

s = pop(Stack);
FOR all transitions t enabled in s DO

       s' = successor(s, t);
       IF s' NOT IN VisitedStates THEN

                        add(s', VisitedStates);
        push(s', Stack);
FI;

OD;
     OD;
END;



Search w/ Abstract Matching

PROCEDURE αSearch ( Preds )

BEGIN
     add(αPreds (s0), VisitedStates);
     push(s0, Stack);
     WHILE ! empty(Stack) DO

s = pop(Stack);
FOR all transitions t enabled in s DO

       s' = successor(s, t);
       IF αPreds (s') NOT IN VisitedStates THEN

                        add(αPreds (s'), VisitedStates);
        push(s', Stack);
FI;

OD;
     OD;
END;
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Check if abstraction is exact with respect to each transition t: s → s’
• Check if the induced abstract transition is a must transition w/ a decision procedure
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• Use weakest precondition calculations α(s) ⇒ wp(α(s’),t)
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⇒   x+1>0 True ⇒   x-1>0 False



Iterative Refinement

• Check if bad state ϕerr is reachable

BEGIN
  Preds = ∅;
  WHILE true DO

αSearch(Preds);
/* during αSearch perform:

• IF ϕerr is reachable THEN output counterexample FI;
• check if abstraction is exact for each transition
• NewPreds = newly generated predicates from failed checks

*/
IF NewPreds = ∅ THEN output unreachable FI;
Preds = Preds  NewPreds;

  OD;
END;



Correctness and Termination

• In general
– The iterative algorithm might not terminate

• If it terminates
– It finds an error or
– It computes a finite bisimilar structure

• If a finite (reachable) bisimulation quotient exists then
– It will eventually compute a finite bisimilar structure
– May still fail to terminate



Implementation

• Implementation for simple guarded command language
– PERL, OCAML
– Uses SIMPLIFY as a decision procedure

Applications
• Property verification for the Bakery mutual exclusion protocol

– Search order matters
5 iterations for breadth first search order
4 iterations for depth first search order

• Error detection in RAX (Remote Agent Executive)
– Component extracted from an embedded spacecraft-control application
– Deadlocked in space
– Error found faster than over-approximation based analysis



Related Work

• Refinement of under-approximations
– For SAT based bounded model checking – Grumberg et al. [POPL’05]

• May and must abstractions
– Branching time properties – Godefroid et al [Concur’01]
– “Hyper” must transitions for monotonicity – Shoham and Grumberg

[TACAS’04]
– Dams and Namjoshi, de Alfaro et al [LICS’04], Ball et al [CAV’05]
– Our previous work – choice free search [TACAS’01]

• Model driven software verification
– Use abstraction mappings during concrete model checking – Holzmann

and Joshi [SPIN’04]
• Over-approximation based predicate abstraction
• Online minimization of transition systems

– Lee & Yannakakis [1992]



Conclusions (I)

• Model checking algorithm
– Under-approximation refinement
– Integrates abstract analysis with concrete program execution
– Uses decision procedure to detect incompleteness of abstraction

and to refine the abstraction
• Comparison with standard over-approximation abstraction

– Finds errors faster (potentially)
– More efficient (in the number of theorem prover calls)
– Complementary, should be combined

• Future work
– Liveness properties
– Backward vs. forward refinement, property driven refinement
– Evaluation



Part II



Test Input Generation

• Model checking with abstract state matching
– No automated refinement
– User-provided abstractions

• Generate test input sequences for Java container classes
– Use Java PathFinder (JPF)

• Explicit state model checker for Java programs
– (Abstract) state matching

• To avoid generation of redundant test sequences
– Measure coverage

• Whenever coverage increased, output test sequence
• Test oracles

– Method post-conditions, assertions
– Absence of run-time errors



General Idea

Java container

Driver

 M = sequence length
 N = max parameter value 

Interface
Methods

add
remove

…

Test sequence: add(1); add(0); remove(0);

Test suite
Model checking

Explore all call sequences
Measure coverage



Driver Skeleton

M: sequence length
N: parameter values

Container c = new Container();
for (int i = 0; i < M; i++) {
    int v = Verify.random(N - 1);
    switch (Verify.random(1)) {
       case 0: c.add(v); break;
       case 1: c.remove(v); break;
    }  
    Verify.ignoreIf(checkAbstractState(c));
}



Test Generation Techniques

• Explicit state model checking
– “Classical” concrete state matching
– Abstract state matching

• Model checking with symbolic execution
– State matching using subsumption checking
– Abstract matching

• Model checking with random selection



Explicit State Model Checking

Abstract Matching
• Perform state matching after each method call

– Map container state to an abstract version
– Backtrack if abstract state was seen before, i.e. discard test sequence

• Automated support for two abstractions:
– Shape abstraction

• Records (concrete) heap shape of container; discards numeric data
• Obtained through heap “linearization”
• Comparing shapes reduces to comparing sequences

– “Complete” abstraction
• Shape augmented with data
• Similar to symmetry reduction in software model checking



Shape Abstraction: Linearization
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Complete Abstraction: Shape + Data
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Symbolic Execution

• Execute methods on symbolic input values
• Symbolic states represent sets of concrete states

– Can yield significant improvement over explicit
execution

• For each path, build a path condition
– Condition on inputs – for the execution to follow

that path
– Check satisfiability



x = 1, y = 0

1 > 0 ? true

x = 1 + 0 = 1

y = 1 – 0 = 1

x = 1 – 1 = 0

0 > 1 ? false

int x, y;

if (x > y) {

  x = x + y;

  y = x – y;

  x = x – y;

  if (x > y)

    assert false;

}

Concrete Execution Path:Code that swaps 2 integers:

Example – Explicit Execution



[PC:true] x = X, y = Y

[PC:true] X > Y ?

[PC:X>Y] y = X + Y – Y = X

[PC:X>Y] x = X + Y – X = Y

[PC:X>Y] Y > X ?

int x, y;

if (x > y) {

  x = x + y;

  y = x – y;

  x = x – y;

  if (x > y)

    assert false;

}

Code that swaps 2 integers: Symbolic Execution Tree:

[PC:X≤Y] END [PC:X>Y] x = X+Y
false true

[PC:X>Y∧Y≤X ] END [PC:X>Y∧Y>X] END
false true

path condition

Example – Symbolic Execution



Symbolic Execution in JPF

• Handles dynamically allocated data, arrays,
concurrency

• Uses Omega library for linear integer
constraints

• State matching
– Subsumption between symbolic states



Symbolic State

e1

e2

e3 e4

e5

e1 > e2 ∧ 
e2 > e3 ∧ 
e2 < e4 ∧ 
e5 > e1

Shape Symbolic Constraints



Subsumption Checking

e1
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e3 e4
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e1 > e2 ∧ 
e2 > e3 ∧ 
e2 < e4 ∧ 
e5 ≥ e1

e1

e2
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Same shape
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⊆



Subsumption Checking

e1:v1

e2:v4

e3:v3 e4:v5

e5:v2

e1 = V1 ∧ e2 = V4 ∧ e3 = V3 ∧ 
e4 = V5 ∧ e5 = V2

PC:
V1 < V2 ∧ V4 > V3 ∧ V4 < V1 ∧ 
V4 < V5 ∧ V7 < V2 ∧ V7 > V1 

∃ V1,V2,V3,V4,V5,V7: 
e1 = V1 ∧ e2 = V4 ∧ e3 = V3 ∧ e4 = V5 ∧ e5 = V2 ∧ PC

simplifies to
e1 > e2 ∧ e2 > e3 ∧ e2 < e4 ∧ e5 > e1

Existential Quantifier Elimination



Evaluation

• Four container classes
– BinaryTree, BinomialHeap, FibonacciHeap, TreeMap

• Measured coverage
– Number of basic blocks covered by the generated tests

• Measured predicate coverage – at each basic block
– Combinations of predicates chosen from conditions in the code
– More difficult to achieve

• Breadth first search order
• Sequence Length = Number of Values (M=N)

– Tried other values
• Dell Pentium 4, 2.2 GHz, Windows 2000, 1GB memory
• Out of Memory runs not considered



 TreeMap – Basic Block Coverage
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 TreeMap – Predicate Coverage
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Observations

Coverage
• Basic block coverage – easily achieved with all techniques
• Predicate coverage

– Difficult to achieve with “classical” model checking
– Its close “cousin” (complete abstraction) scales better
– Lossy techniques better than exhaustive ones

Symbolic vs. explicit execution
• Exhaustive – subsumption checking

– Better than exhaustive concrete execution
• Lossy – abstract matching

– Worse than concrete search with abstract matching
Random selection
• Requires longer sequences to achieve good coverage
• Could not obtain “best” coverage for FibonacciHeap and

BinomialHeap (more interface methods with more parameters)
– Concrete search with abstract matching performed better



Conclusions (II)

• Test input generation techniques for Java containers
– State matching to avoid generation of redundant tests
– Concrete/abstract matching, explicit/symbolic execution
– Compared to random selection

• Model checking with shape abstraction
– Good coverage with short sequences
– Shape abstraction provides an accurate representation of containers

• Future work
– Coverage highly dependent on abstraction – automatic refinement
– Complex data structures, arrays as input parameters
– Abstractions used in shape analysis [SPIN’06]
– More experiments
– Measure techniques in terms of defect detection, rather than

coverage



Explanation

• Bisimulation: symmetric relation  ~
– s ~ s’ iff for every s → s1 there exists s’→ s1’ s.t. s1 ~ s1’

• Two transition systems are bisimilar if
– Their initial states are bisimilar

• ~ induces a quotient transition system
– States are equivalence classes
– A → B if there exist s in A and s’ in B s.t. s → s’



Non-monotonic Refinement

Refinement Matched

State space explored


