
Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Code Clone Analysis and
Application

Katsuro Inoue
Osaka University

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Talk Structure
• Clone Detection
• CCFinder and Associate Tools
• Applications
• Summary of Code Clone Analysis and

Application

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Clone Detection

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

What is Code Clone?
• A code fragment which has

identical or similar code fragments
in source code

• Introduced in source code
because of various reasons
– code reuse by `copy-and-paste’
– stereotyped function

• ex. file open, DB connect, …
– intentional iteration

• performance enhancement

• It makes software maintenance more difficult
– If we modify a code clone with many similar code fragments, it is

necessary to consider whether or not we have to modify each of
them

• It is likely to overlook

code clone
copy-and-paste

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Simple Example
AFG::AFG(JaObject* obj) {
objname = “afg";
object = obj;

}
AFG::~AFG() {
for(unsigned int i = 0; i < children.size(); i++)
if(children[i] != NULL)

delete children[i];

...

for(unsigned int i = 0;
i < nodes.size(); i++)

if(nodes[i] != NULL)
delete nodes[i];

}

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Definition of Code Clone
• No single or generic definition of code clone

– So far, several methods of code clone detection have
been proposed, and each of them has its own definition
about code clone

• Various detection methods
1. Line-based comparison
2. AST (Abstract Syntax Tree) based comparison
3. PDG (Program Dependency Graph) based comparison
4. Metrics comparison
5. Token-based comparison

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Detection Method

1. Line-Based Comparison
• Detect code clone by comparing source code on

line unit[1]
– Before comparison，tabs and white-spaces are

eliminated
• This is a method of an early days

• Detection accuracy is low
– Cannot detect code clones written in different coding

styles
• ex. `{‘ position of if-statement or while-statement

– Cannot detect code clones using different variable
names

• we want to identify the same logic code as code clones even
if variable names are different

[1]B. S. Baker, A Program for Identifying Duplicated Code, Proc. Computing Science and
Statistics 24th Symposium on the Interface, pp.49-57, Mar. 1992.

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Detection Method

2. AST Based Comparison
• Parse source code, and construct AST
（Abstract Syntax Tree）
– Similar sutrees are identified as code clones[2]

• The differences of code style and variable name are
eliminated

• Fairly practical method
– Commercial tool

CloneDR:
http://www.semanticdesigns.com/Products/Clone/
[2] I.D. Baxter, A. Yahin, L. Moura, M.S. Anna, and L. Bier, Clone Detection Using Abstract
Syntax Trees, Proc. International Conference on Software Maintenance 98, pp368-377, 16-19,
Nov. 1998.

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Detection Method

3. PDG Based Comparison
• Build PDG (Program Dependence Graph) using

the result of semantic analysis
– Similar sub-graphs are identified as code clones [3]

• The detection accuracy is very high
• Can detect code clones which are not detected

in other methods
– semantic clone, reordered clone

• Require complex computation
– It is very difficult to apply to large software

[3] R. Komondoor and S. Horwitz, Using slicing to identify duplication in source code, Proc.
the 8th International Symposium on Static Analysis, pp.40-56, July, 16-18, 2001.

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Detection Method

4. Metrics Comparison
• Calculate metrics for each function unit

– Units with the similar metrics values are
identified as code clones [4]

• Partly similar units are not detected
• Suitable to large scale analysis

[4] J. Mayland, C. Leblanc, and E.M. Merlo, Experiment on the automatic detection of function
clones in a software system using metrics, Proc. International Conference on Software
Maintenance 96, pp.244-253, Nov. 1996.

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Detection Method

5. Token Based Comparison
• Compare token sequences of source code, and

identify the similar subsequence as code
clones[5]
– Before comparison, tokens of identifier (type name,

variable name, method name, …) are replaced by the
same special token (parameterization)

• The Scalability is very high
– M Loc / 5-20 min.

[5] T. Kamiya, S. Kusumoto, and K. Inoue, CCFinder: A multi-linguistic token-based code
clone detection system for large scale source code, IEEE Transactions on Software Engineering,
vol. 28, no. 7, pp. 654-670, Jul. 2002.

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

CCFinder and Associate Tools

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Clone Pair and Clone Set
• Clone Pair

– a pair of identical or similar code fragments
• Clone Set

– a set of identical or similar fragments

C1

C2

C3

C4

C5
(C3, C5)
(C2, C4)

{C3, C5}(C1, C4)
{C1, C2, C4}(C1, C2)

Clone SetClone Pair

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Our Code Clone Research
• Develop tools

– Detection tool: CCFinder
– Visualization tool: Gemini
– Refactoring support tool: Aries
– Change support tool: Libra

• Deliver our tools to domestic or overseas
organizations/individuals
– More than 100 companies uses our tools!

• Promote academic-industrial collaboration
– Organize code clone seminars
– Manage mailing-lists

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Detection tool:

Development of CCFinder
• Developed by industry requirement

– Maintenance of a huge system
• More than 10M LOC, more than 20 years old
• Maintenance of code clones by hand had been performed,

but ...
• Token-base clone detection tool CCFinder

– Normalization of name space
– Parameterization of user-defined names
– Removal of table initialization
– Identification of module delimiter
– Suffix-tree algorithm

• CCFinder can analyze the system of millions line
scale in 5-30 min.

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Detection tool:

CCFinder Detection Process
Source files

Lexical analysis

Transformation

Token sequence

Match detection

Transformed token sequence

Clones on transformed sequence

Formatting

Clone pairs

1. static void foo() throws RESyntaxException {
2. String a[] = new String [] { "123,400", "abc", "orange 100" };
3. org.apache.regexp.RE pat = new org.apache.regexp.RE("[0-9,]+");
4. int sum = 0;
5. for (int i = 0; i < a.length; ++i)
6. if (pat.match(a[i]))
7. sum += Sample.parseNumber(pat.getParen(0));
8. System.out.println("sum = " + sum);
9. }

10. static void goo(String [] a) throws RESyntaxException {
11. RE exp = new RE("[0-9,]+");
12. int sum = 0;
13. for (int i = 0; i < a.length; ++i)
14. if (exp.match(a[i]))
15. sum += parseNumber(exp.getParen(0));
16. System.out.println("sum = " + sum);
17. }

[] = new String [] {

} ;

int sum = 0

; for (int i = 0 ; i <

a . length ; ++ i)

sum

+= pat . getParen 0

; System . out . println ("sum = "

+ sum) ; }

Sample . parseNumber (

))

if pat

. match a [i]())

pat = new

RE ("[0-9,]+") ;

static void goo (

) {

String

a []

int sum = 0

; for (int i = 0 ; i <

a . length ; ++ i)

System . out . println ("sum = " + sum

) ; }

throws RESyntaxException

if exp

. match a [i]())

exp =

new RE ("[0-9,]+") ;

(

RE

sum

+= exp . getParen 0

;

parseNumber ((

(

(

static void foo () { String athrows RESyntaxException

$

RE

$.))

Lexical analysis

Transformation

Token sequence

Match detection

Transformed token sequence

Clones on transformed sequence

Formatting

for

new

[] = [] {

} ;

=

; for (= ; <

. ; ++)

+= .

; . . (

+) ; }

. (

))

if

. []())

=

() ;

static (

) {[]

=

; (= ; <

. ; ++)

. . (+

) ; }

throws

if

. []())

=

new () ;

(

+= .

;

())(

(

(

static $ () {throws

$

$.

$ $ $ $

$ $

$ $

$ $ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $ $

Lexical analysis

Transformation

Token sequence

Match detection

Transformed token sequence

Clones on transformed sequence

Formatting

1. static void foo() throws RESyntaxException {
2. String a[] = new String [] { "123,400", "abc", "orange 100" };
3. org.apache.regexp.RE pat = new org.apache.regexp.RE("[0-9,]+");
4. int sum = 0;
5. for (int i = 0; i < a.length; ++i)
6. if (pat.match(a[i]))
7. sum += Sample.parseNumber(pat.getParen(0));
8. System.out.println("sum = " + sum);
9. }

10. static void goo(String [] a) throws RESyntaxException {
11. RE exp = new RE("[0-9,]+");
12. int sum = 0;
13. for (int i = 0; i < a.length; ++i)
14. if (exp.match(a[i]))
15. sum += parseNumber(exp.getParen(0));
16. System.out.println("sum = " + sum);
17. }

Lexical analysis

Transformation

Token sequence

Match detection

Transformed token sequence

Clones on transformed sequence

Formatting

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Suffix-tree
• Suffix tree is a tree that satisfies the

following conditions.
1. A leaf node represents the starting

position of sub-string.
2. A path from root node to a leaf node

represents a sub-string.
3. First characters of labels

of all the edges from one node
are different from each other.

→ A common path means a clone

x

y

z%

%

xyxyz%

y

xyz%

z%

xyz%

z%

1

2

4
3

5
6

7
1 2 3 4 5 6 7
x x y x y z %

1 2 3 4 5 6 7
x x y x y z %

1 x *
2 x * *
3 y *
4 x * * *
5 y * *
6 z *
7 % *

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Visualization Tool:

Gemini Outline
• Visualize code clones

detected by CCFinder
– CCFinder outputs the

detection result to a text
file

• Provide interactive
analyses of code
clones
– Scatter Plot
– Clone metrics
– File metrics

• Filter out unimportant
code clones

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Visualization tool:

Gemini Scatter Plot
• Visually show where code

clones are
• Both the vertical and

horizontal axes represent the
token sequence of source
code
– The original point is the

upper left corner
• Dot means corresponding

two tokens on the two axes
are the same
– Symmetric to main

diagonal (show only
lower left)

a c a c a cb b bc c a b d e f c d

F1 F2 F3

F1
F2

F3

F4

e f

a
c

a
c

a
b

b
b

c
c

a
b

d
e

f
c

d
e

f

F4

c

D1 D2

D
1

D
2

F1, F2, F3, F4 : files
D1, D2 : directories

: matched position detected as a non -interesting code clone
: matched position detected as a practical code clone

a c a c a cb b bc c a b d e f c d

F1 F2 F3

F1
F2

F3

F4

e f

a
c

a
c

a
b

b
b

c
c

a
b

d
e

f
c

d
e

f

F4

c

D1 D2

D
1

D
2

F1, F2, F3, F4 : files
D1, D2 : directories

-interesting code clone

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Visualization tool:

Gemini Clone and File Metrics
• Metrics are used to quantitatively characterize entities
• Clone metrics

– LEN(S): the average length of code fragments (the number of tokens)
in clone set S

– POP(S): the number of code fragments in S
– NIF(S): the number of source files including any fragments of S
– RNR(S): the ratio of non-repeated code sequence in S

• File metrics
– ROC(F): the ratio of duplication of file F

• if completely duplicated, the value is 1.0
• if not duplicated at all, the value is 0,0

– NOC(F): the number of code fragments of any clone set in file F
– NOF(F): the number of files sharing any code clones with file F

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Visualization tool:

Gemini Metric RNR
• By a lot of experience, we fount that CCFinder detects a

lot of code clones from monotonous or repetitive
fragment
– consecutive entries of switch-statements
– consecutive variable declarations or method invocations

• Filtering metric: RNR(S)
– Represents the ratio of non-repeated code sequence in S

RNR(S) = 1 -
∑

C∈ S
Tokensrepeated(C)

∑ Tokensall(C)
C∈ S

Tokensrepeated(C) : Number of repeated tokens in C
Tokensall(C) : Number of tokens in code fragment C

Definition

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

• We introduced selection mechanism,
Metric Graph
– Each metric has parallel coordinate axes
– A polygonal line is drawn per clone set

• The user can specify the upper and
lower limits of each metric
– The hatching part is the range bounded by

the upper and lower limit
– A clone set is selected state if its all metric

values are within the range
– The user can easily browse source code of

selected code clones

Visualization tool:

Gemini Selection of Clone Set

LEN NIF POP

S1

S3

RNR

2 0.0 1 2

3 1.0 3 4

S2

LEN NIF POP

S1

S3

RNR

2 0.0 1 2

3 1.0 3 4

S2

LEN NIF POP

S1

S3

RNR

2 0.0 1 2

3 1.0 3 4

S2

LEN NIF POP

S1

S3

RNR

2 0.0 1 2

3 1.0 3 4

S2

Before Selection

After Selection

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Refactoring Support System: Aries (1)

• Structural code clones are regarded as the target
of refactoring
1. Detect clone pairs by CCFinder
2. Transform the detected clone pairs into clone sets
3. Extract structural parts as structural code clones from

the detected clone sets

• What is structural code clone ?
– example: Java language

• Declaration: class declaration, interface declaration
• Method: method body, constructor, static initializer
• statement: do, for, if, switch, synchronized, try, while

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

609: reset();
610: grammar = g;
611: // Lookup make-switch threshold in the grammar generic options
612: if (grammar.hasOption("codeGenMakeSwitchThreshold")) {
613: try {
614: makeSwitchThreshold = grammar.getIntegerOption("codeGenMakeSwitchThre
615: //System.out.println("setting codeGenMakeSwitchThreshold to " + makeSwitchT
616: } catch (NumberFormatException e) {
617: tool.error(
618: "option 'codeGenMakeSwitchThreshold' must be an integer",
619: grammar.getClassName(),
620: grammar.getOption("codeGenMakeSwitchThreshold").getLine()
621:);
622: }
623: }
624:
625: // Lookup bitset-test threshold in the grammar generic options
626: if (grammar.hasOption("codeGenBitsetTestThreshold")) {
627: try {
628: bitsetTestThreshold = grammar.getIntegerOption("codeGenBitsetTestThreshold

623: }
624:
625: // Lookup bitset-test threshold in the gram
626: if (grammar.hasOption("codeGenBitsetT
627: try {
628: bitsetTestThreshold = gramma
629: //System.out.println("setting co
630: } catch (NumberFormatException e
631: tool.error(
632: "option 'codeGenBitsetTe
633: grammar.getClassName(
634: grammar.getOption("code
635:);
636: }
637: }
638:
639: // Lookup debug code-gen in the gramma
640: if (grammar.hasOption("codeGenDebug"
641: Token t = grammar.getOption("code
642: if (t.getText().equals("true")) {

fragment 1 fragment 2

Code clones which
CCFinder detects

Code clones which
Aries extracts

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Refactoring Support System: Aries (2)
• Following refactoring patterns[1][2] can be used to

remove code sets including structural code clones
– Extract Class,
– Extract Method,
– Extract Super Class,
– Form Template Method,
– Move Method,
– Parameterize Method,
– Pull Up Constructor,
– Pull Up Method,

• For each clone set, Aries suggests which refactoring
pattern is applicable by using metrics.

[1]: M. Fowler: Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999.
[2]: http://www.refactoring.com/, 2004.

http://www.refactoring.com/
http://www.refactoring.com/

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Refactoring Support System: Aries (3)
• NRV(S): represents the average number of externally defined variables

referred in the fragment of a clone set S

• NSV(S): represents the average number of externally defined variables
assigned to in the fragment of a clone set S

– Definition

• Clone set S includes fragment f1, f2, ・・・, fn
• si is the number of externally defined variable which fragment fi refers
• ti is the number of externally defined variable which fragment fi assigns

int a , b, c;
…
if(…){
…;
… = b + c;
a = …;
…;

}
…

assignment

reference

Fragment f1

example：
・Clone set S includes fragments f1 and f2.
・In fragment f1 , externally defined variable b and c are
referred and a is assigned to.
・Fragment f2 is same as f1.

then，NRV(S) = (2 + 2) / 2 = 2
NSV(S) = (1 + 1) / 2 = 1

int a , b, c;
…
if(…){
…;
… = b + c;
a = …;
…;

}
…

Fragment f2

reference
assignment

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

：

Refactoring Support System: Aries (4)

• DCH(S): represents the position and distance between each
fragment of a clone set S

– Definition

• Clone set S includes fragment f1, f2, ・・・，fn
• Fragment fi exists in class Ci
• Class Cp is a class which locates lowest position in C1, C2, ・・・，Cn on class

hierarchy

• If no common parent class of C1，C２，・・・，Cn exists, the value of DCH(S) is
∞

• This metric is measured for only the class hierarchy where target software exists.

example 1:
・Clone set S includes fragments f1 and f2.
・If all fragments of clone set S are included in a
same class,

then， DCH(S) = 0

class A
fragment f1
fragment f2

class A

class B class C
fragment f1 fragment f2

example 2：
・Clone set S includes fragments f1 and f2.
・If all fragments of clone set S are included in a
class and its direct child classes,

then，DCH(S) = 1

fragment f1 fragment f2

class A class B

example 3
・Clone set S includes fragments f1 and f2.
・If all classes which include f1 and f2 don’t have
common parent class,

then，DCH(S) = ∞

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Change Support System: Libra
• Input a code fragment

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Change Support System: Libra (2)

• Find clones between the input and target

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Applications

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Academic-industrial collaboration：

Code Clone Seminar
• We have periodically organized code clone

seminars from Dec 2002
• Seminar is the place to exchange views with

industrial people
• Seminar overview

– Tool demonstration
– Lecture of how to use

code clone information
– Case study of

companies using
our tools

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Case Studies
• Open source software

– FreeBSD, NetBSD, Linux(C, 7MLOC)
– JDK Libraries(Java 1.8MLOC)
– Qt(C++, 240KLOC)

• Commercial software（more than 100
companies）
– IPA/SEC, NTT Data Corp., Hitachi Ltd., Hitachi GP,
Hitachi SAS, NEC soft Ltd., ASTEC Inc., SRA Inc., JAXA，
Daiwa Computer, etc…

• Students excise of Osaka University
• Court evidence for software copyright suit

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Case study 1:

Similarity between FreeBSD, NetBSD, Linux
• Result

– There are many code
clones between
FreeBSD and NetBSD

– There are a little code
clones between Linux
and FreeBSD/NetBSD

• Their histories can
explain the result
– The ancestors of

FreeBSD and NetBSD
are the same

– Linux was made from
scratch

FreeBSD 4.0 Linux 2.4.0 NetBSD 1.5

Fr
ee

BS
D

 4
.0

Li
nu

x
2.

4.
0

N
et

BS
D

 1
.5

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Case study 2:

Students Excise
• Target

– Programs developed on a programming exercise
in Osaka Univ.

• Simple compiler for Pascal written in C language
• This exercise consists of 3 steps

– STEP1: develop a syntax checker
– STEP2: develop a semantics checker by extending his/her

syntax checker
– STEP3: develop a total compiler by extending his/her

semantic checker

• Purpose
– Check the stepwise development
– Check plagiarisms

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Result
• There were a lot of code clones between S2 and S5
• We did not use the detection result for evaluating their excises

S1

S1 S3 S4S2 S5

S2

S2

S3

S4 S5

S5

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Case study 3:

IPA/SEC Advanced Project
• Target

– A car-traffic information system using heterogeneous
sensors, developed by 5 Japanese companies

– The project manager had little knowledge of the source
code since each company indelepndently developed the
components

• Purpose
– Grasp features of black-boxed source code

• Approach
– Analyzed twice, after the unit test (280,000LOC), and

after the combined test (300,000LOC）
– The minimum size of detected code clone is 30 tokens

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

IPA/SEC Advanced Project:

Duplicated Ratio
• The below graph illustrates the distribution of duplicated

ratio of the sub-system developed by a company

• We interviewed developers of the sub-system
– They added library code to the system to add new functions right

before combined test

0

20

40

60

80

100

0%
 -
 1
0%
11
%
-
20
%
21
%
-
30
%
31
%
-
40
%
41
%
-
50
%
51
%
-
60
%
61
%
-
70
%
71
%
-
80
%
81
%
-
90
%
91
%
-
10
0%

Duplicated ratio

N
u
m
b
e
r
o
f
fi
le
s

After unit test

After combined test

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

IPA/SEC Advanced Project:

Scatter Plot Analysis
• Scatter Plot of company X
• In part A, there are many non-

interesting code clones
– output code for debug

(consecutive printf-statements)
– check data validity
– consecutive if-statements

• In part B, there are many code
clones across directories
– This part treats vehicle position

information
– Each directory include a single

kind of vehicles, e.g., taxi, bus, or
track

– Logical structures are mostly the
same

A

B

A

B

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

IPA/SEC Advanced Project:

Clone Metrics Analysis
• LEN: A clone set detected from a company

included 154-lines code fragments
– A code fragment was in file AAAXXXBBB.cpp

– The other code fragment was in file AAAYYYBBB.cpp

– In code fragment of AAAYYYBBB.cpp, some function
names and comments include XXX

• This implies that a `copy-and-paste’ was done from
AAAXXXBBB.cpp to AAAYYYBBB.cpp

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

IPA/SEC Advanced Project:

Clone Metrics Analysis
• NIF: The greatest value of NIF of a

company was 8 (The clone set involved in
8 files)
– Each code fragment checks whether or not

the end of string is NULL. If not, add NULL
– Whole of methods were duplicated

• It means that these code clones are easily merged
by moving to utility package

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

IPA/SEC Advanced Project:

File Metrics Analysis
• NOC: A file contained 358 code clones

– Code clones were scattered widely in the file
– No bug-related code clones were found, but

the maintainability of the file is questionable
• The file size is very big (over 10KLines)
• Various processes are included

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

IPA/SEC Advanced Project:

File Metrics Analysis
• ROC: Two files had very high duplicated

ratio(96%)
– A file is for an off-line process
– The other file is for an on-line process with the

same algorithm
– Developers knew the presence of these code

clones
• In the design process, they decided to separate

off-line and on-line processes

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Summary of Code Clone
Analysis and Application

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Conclusion
• We have developed Code clone analysis tools

– Detection tool: CCFinder
– Visualization tool: Gemini
– Refactoring support tool: Aries
– Debug support tool: Libra

• We have promoted academic-industrial
collaboration
– Organize code clone seminars
– Manage mailing lists

• We have applied our tools to various software

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Future Direction
• CCFinderX

– Token analyzer is definable
• System analysis via code clones

associated with other metrics
• Architecture evolution by the view of code

clones

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

Resources
• Papers

T. Kamiya, S. Kusumoto, and K. Inoue, CCFinder: A multi-linguistic token-based code clone
detection system for large scale source code, IEEE Transactions on Software Engineering, vol.
28, no. 7, pp. 654-670, Jul. 2002.
Many Others ... See our home page

• Web
– CCFinder:

http://sel.ist.osaka-u.ac.jp/cdtools/index-e.html
– CCFinderX:

http://www.ccfinder.net/ccfinderx.html
• Tools

– See home pages

Software Engineering Laboratory, Department of Computer Science, Graduate School of Information Science and Technology, Osaka University

END

	Code Clone Analysis and Application
	Talk Structure
	Clone Detection
	What is Code Clone?
	Simple Example
	Definition of Code Clone
	Detection Method1. Line-Based Comparison
	Detection Method2. AST Based Comparison
	Detection Method3. PDG Based Comparison
	Detection Method4. Metrics Comparison
	Detection Method5. Token Based Comparison
	CCFinder and Associate Tools
	Clone Pair and Clone Set
	Our Code Clone Research
	Detection tool:Development of CCFinder
	Detection tool:CCFinder Detection Process
	Suffix-tree
	Visualization Tool: Gemini Outline
	Visualization tool:Gemini Scatter Plot
	Visualization tool:Gemini Clone and File Metrics
	Visualization tool: Gemini Metric RNR
	Visualization tool:Gemini Selection of Clone Set
	Refactoring Support System: Aries (1)
	Refactoring Support System: Aries (2)
	Refactoring Support System: Aries (3)
	Refactoring Support System: Aries (4)
	Change Support System: Libra
	Change Support System: Libra (2)
	Applications
	Academic-industrial collaboration：Code Clone Seminar
	Case Studies
	Case study 1:Similarity between FreeBSD, NetBSD, Linux
	Case study 2:Students Excise
	Result
	Case study 3:IPA/SEC Advanced Project
	IPA/SEC Advanced Project:Duplicated Ratio
	IPA/SEC Advanced Project:Scatter Plot Analysis
	IPA/SEC Advanced Project:Clone Metrics Analysis
	IPA/SEC Advanced Project:Clone Metrics Analysis
	IPA/SEC Advanced Project:File Metrics Analysis
	IPA/SEC Advanced Project:File Metrics Analysis
	Summary of Code Clone Analysis and Application
	Conclusion
	Future Direction
	Resources
	END

