
Jeff Kramer
Jeff Magee
Sebastian Uchitel

Goals, Scenarios, Models and
Architectures:

a tasty
requirements

recipe

2

We believe in ….

… model construction as part of the
requirements process.

Early use of a behaviour model can form part
of a requirements specification.

Model checking and animation of model
behaviour and misbehaviour (property
violations) help in performing requirements
analysis .

3

Motivation

I’m a practitioner -
get me out of here!

Models !
analysis,animation,
properties, blah

blah, …

4

1. model synthesis

Automated
Construction

Models

scenarios MSCs

Statechart models [Khriss et al,
Krüger et al, Whittle and Schumann]

Live Sequence Charts [Harel]

OO models [Koskimies, Systä et al]

ROOM models [Leue]

Timed Automata models [Somé]

LTS models in FSP [Uchitel et al]

5

Start

Sensor Database Actuator

Pressure

Control

Query
Data

Command
Pressure

Stop

Basic MSC - Message Sequence Chart

Widely accepted
notation.
Standard: ITU &
UML Sequence
Diagrams.
Components,
messages and time.
Synchronous
communication
Partial order
semantics.

Start, Pressure, Query, Data, Command, Pressure, Stop.
Start, Pressure, Query, Data, Pressure, Command, Stop.

6

High level MSC

Start

Sensor Database Actuator

Pressure

Control
Initialise

Sensor Database ActuatorControl
Register

Query
Sensor Database ActuatorControl
Analysis

Data Command

Sensor Database ActuatorControl
Stop

Stop

Nodes are bMSCs or hMSCs.
Scenario reuse and scalability.
ITU Standard/Not UML.

Initialise

StopAnalysis

Register

7

Synthesis of Control component

Query Data Command

0 1 2 3

Query
Sensor Database ActuatorControl
Analysis

Data

Command

C_Analysis = (query->data->command->End)
8

HMSC_Control = Initialise,
Initialise = C_Initialise ; Next_Initialise,
Register = C_Register ; Next_Register,
...
Next_Initialise = (t->Register),
Next_Register = (t->Register | t->Analysis | t->Stop).

τ

τ

ττ
τ

τ

τ

Synthesis of Control component

query data command

start stop

C_Analysis

C_Initialise C_Stop

C_Register

Initialise

StopAnalysis

Register

9

Synthesis of Control component

Control
start query

stop

data

command

0 1 2 3

deterministic ||Control = HMSC_Control\{t}.

10

component behaviour model - animation

11

Model synthesis from Scenarios

requirements

architecture
behaviour model

counterexamples
animation

analysis

Scenarios (MSC)

Composition of
component
behaviours

synthesis

12

Architecture-based Synthesis:
scenarios and architecture

fragments

2. What about Complex Systems?

MSCs ADLs
(Architecture Description Languages)

13

Darwin ADL - structural view
Component types have one or
more interfaces. An interface
is simply a set of names
referring to actions in a
specification or services in an
implementation, provided or
required by the component.

Systems / composite
component types are
composed hierarchically
by component instantiation
and interface binding.

interfaces
Component

Composite Component

14

The motivation: A real system
A family of TVs that support multiple tuners
and video output devices …

horcom
v1:Video

horcom
v2:Video

f:Fork
out1

in
out2

t1:Tuner horcomui

t2:Tuner
horcom

ui

s:Switchin1
outin2

s

u1:User ui

u2:User ui
d:Director

switch

TV with 2 tuners – 2 Videos specified in Darwin

15

horcom
v1:Video

horcom
v2:Video

f:Fork
out1

in
out2

t1:Tuner
horcomui

t2:Tuner
horcom

ui

s:Switchin1
outin2

s

u1:User ui

u2:User ui
d:Director

switch

tc:Tuner
Contoller

tune

vc

td:tuner
Driver

i

horcom:Horcom

Tuner

ui:UI ui vc:Video
Contoller

video

tc

td:Video
Driver

i

Video

horcom:Horcom

Component types in a hierarchy

The motivation: A real system

16

A scenario for a real system …

u:User tc1:Tuner
Controller

vc2:Video
Controller

td1:Tuner
Driver

Channel change on active tuner

tune

change_ack
change

dropReq

blank_ack

dropReq_ack

restore_ack

restore

vd2:Video
Driver

blank

unblank_ack
unblank

s:Switch

dropReq

dropReq_ack

restore

restore_ack

f:Fork vc1:Video
Controller

blank_ack

vd1:Video
Driver

blank

unblank_ack
unblank

dropReq
dropReq

dropReq_ack
dropReq_ack

restore
restore
restore_ack

restore_ack

17

Can we build complex systems by
composition, using combinations of
simpler architectural fragments …?

How should we go about describing systems
with

… additional tuners/video devices?
… introduce other complex devices?

Do we have to use more complex scenarios?
Or is there an alternative approach …

More complex?

18

Simpler architectural fragments …
horcom

v1:Videot1:Tuner horcomuiu1:User ui

horcom
v2:Video

f:Fork
out1

in
out2

t2:Tuner
horcom

ui

s:Switchin1
outin2

s
u2:User ui

d:Director

switch

19

Simpler architectural fragments …
horcom

v1:Videot1:Tuner horcomuiu1:User ui

20

Simpler architectural fragments …

uiu1:User tc:Tuner
Contoller

tune

vc

td:tuner
Driver

i

horcom

t:Tuner

ui ui vc:Video
Contoller

video

tc

td:Video
Driver

i

v:Video

horcom

unblank_ack

21

Generalisation

Build models for component types by
generalising their behaviour.
1. Model communication through ports instead

of direct communication between instances

Model as in2.dropReq
rather than t2.s.dropReq

22

Generalisation

Build models for component types by
generalising their behaviour.
1. Model communication through ports instead

of direct communication between instances
2. Model merging by combining the behaviours

of components of the same type.

u1:User t1:Tuner v:Video
Tune active tuner

tune
dropReq

dropReq_ack

restore_ack

restore

s:Switch

dropReq
dropReq_ack

restore
restore_ack

change

23

Generalisation and Instantiation

1

Generalisation

2

Instantiation

Behaviour -
FSP dynamic
combinators

Composition -
FSP static
combinators

24

Instantiation

Mapping Darwin to FSP (static combinators)

instantiation inst
composition
binding bind
interfaces

instantiation :
parallel composition ||
relabelling /
sets and hiding @

DarwinDarwin FSPFSP

25

3. Scenarios, architectures, models …

GOALS ?

What about …

26

Goals

PrivateAccessLegalAccess

SecureAccess

Maintain Maintain

LoggedIn ⇒ Registered ReadMsg ⇒ LoggedIn

KAOS Style
[Lamsweerde et al]

Goal graphs structure
and model refinement
relations

The web mail system shall
provide secure access to email

in that a user must be
registered before he/she can
logon and must be logged in

before he/she can read email
via Web browser.

Declarative statement of
intent about system
behaviour

27

Early Validation of Requirements
Goals and Scenarios are complementary

State vs. Events
Declarative vs. Operational
General vs. Example
What & Why vs. How

Crucially, a formal relation between goals and
scenarios needs to be defined…

28

Fluent Propositions

Defined in terms of sets actions

Time

fluent LOGGEDIN =
<{authenticate},{disable,logout}>

initially False

authenticate logout

TRUE FALSEFALSE

[Magee & Giannakopoulou, ESEC/FSE’03]

29

Defining Fluents
fluent LOGGEDIN

= <authenticate,{disable, logout}>

fluent REGISTERED

= <enable, disable>

fluent READMSG

= <sendMsg, {closeMsg, logout}>

//---

assert SecureAccess

= [] (LegalAccess && PrivateAccess)

assert LegalAccess

= [] (LOGGEDIN -> REGISTERED) 30

Fluents provide basis for model-
checking operational descriptions
against goals.

We can build animations that execute
scenarios but present them in terms
of the goals

Goals as properties

31

Violation of PrivateAccess

LOGGEDIN

LOGGEDIN

LOGGEDIN & READMSG

READMSG

assert PrivateAccess =
[](READMSG → LOGGEDIN)

32

The tool support: LTSA

Model synthesis from Message Sequence
Charts

Model generation from Darwin
architecture description.

Graphic Animation of Models

Plugins developed for:

Extended LTSA to deal with Fluents and FLTL.

33

Model-centric approach

System
Architecture

Goals Scenariosmodels

Analysis
Model Checking

Animation
Simulation

