
1

 Improving a Distributed Software System’s Quality of
Service via Redeployment

Nenad Medvidovic
(joint work with Sam Malek, Chiyoung Seo, and Marija Mikic-Rakic)

Computer Science Department
University of Southern California

Los Angeles, CA 90089
neno@usc.edu

http://sunset.usc.edu/~neno/

2

Deployment Architecture and QoS

 Deployment Architecture: allocation of s/w components to h/w hosts
 hc deployment architectures are possible for a given system

 same functionality
 different qualities of service (QoS)

3

Problem in a Nutshell
 Guiding Insight

 System users have varying QoS
preferences for the system
services they access
 Impacts their satisfaction with the system

 Research Question
 How could we improve system’s

deployment architecture to
maximize users’ satisfaction?
 Where users’ satisfaction depends on the

system’s ability to meet their QoS
preferences

 And where other possible solutions such
as caching, hoarding, replication, etc. are
not appropriate or ideal

 Research Objective
 Devise a solution that is

applicable to many classes of
application scenarios

4

Scenario with a Single QoS Dimension

ResourceMonitorModifyResourceMap

Latency

Schedule Resources

 Objective is to minimize latency

 The optimal deployment architecture is deployment 1

 Most all related approaches stop here

5

Conflicting QoS Dimensions

Durability

ResourceMonitorModifyResourceMap

Latency

Schedule Resources

 Objective is to minimize latency and maximize durability

 There is no optimal deployment architecture!

 Phenomenon known as Pareto Optimal in multidimensional optimization

6

Resolving Trade-Offs between QoS Dimensions

Commander

Durability

ResourceMonitorModifyResourceMap

Latency

Schedule Resources

 Allows expression of multidimensional
optimization in terms of a single scalar
value

 A utility function denotes a user’s
preferences for a given rate of
improvement in a QoS dimension

 Explicitly consider
 system users
 system’s utility to its users

Durability

ResourceMonitorModifyResourceMap

Latency

Schedule Resources

7

Troop

Durability

ResourceMonitorModifyResourceMap

Latency

Schedule Resources

Commander

Exchange Plan

CreatePlan

Security

Dispatcher

 18 utility functions would have to be considered across 27 deployments

 Challenge: consider many users’ preferences for the many QoS dimensions
of many services

 “Eyeballing” the solution quickly becomes impossible!

0

10

20

30

40

50

60

70

80

0% 100% 200% 300% 400% 500% 600% 700%

QoS Change Rate

U
ti

li
ty

 x

Troop, Latency, Exchange Plan

Troop, Latency, Schedule Resources

Troop, Durability, Exchange Plan

Troop, Durability, Schedule Resources

Troop, Security, Exchange Plan

Troop, Security, Schedule Resources

Commander, Latency, Exchange Plan

Commander, Latency, Schedule Resources

Commander, Durability, Exchange Plan

Commander, Durability, Schedule Resources

Commander, Security, Exchange Plan

Commander, Security, Schedule Resources

Dispatcher, Latency, Exchange Plan

Dispatcher, Latency, Schedule Resources

Dispatcher, Durability, Exchange Plan

Dispatcher, Durability, Schedule Resources

Dispatcher, Security, Exchange Plan

Dispatcher, Security, Schedule Resources

A Slightly Larger Scenario

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25

Latency (ms)

D
ur

ab
ili

ty
 (

ho
ur

s)

x

Dep 1

Dep 2

Dep 3

Dep 4

Dep 5

Dep 6

Dep 7

Dep 8

Dep 9

Dep 10

Dep 11

Dep 12

Dep 13

Dep 14

Dep 15

Dep 16

Dep 17

Dep 18

Dep 19

Dep 20

Dep 21

Dep 22

Dep 23

Dep 24

Dep 25

Dep 26

Dep 27

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

Latency (ms)

S
ec

ur
ity

x

Dep 1

Dep 2

Dep 3

Dep 4

Dep 5

Dep 6

Dep 7

Dep 8

Dep 9

Dep 10

Dep 11

Dep 12

Dep 13

Dep 14

Dep 15

Dep 16

Dep 17

Dep 18

Dep 19

Dep 20

Dep 21

Dep 22

Dep 23

Dep 24

Dep 25

Dep 26

Dep 27

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18 20

Durability (hours)

S
e

cu
ri

ty

x

Dep 1

Dep 2

Dep 3

Dep 4

Dep 5

Dep 6

Dep 7

Dep 8

Dep 9

Dep 10

Dep 11

Dep 12

Dep 13

Dep 14

Dep 15

Dep 16

Dep 17

Dep 18

Dep 19

Dep 20

Dep 21

Dep 22

Dep 23

Dep 24

Dep 25

Dep 26

Dep 27

8

Proposed Solution

A framework that provides
 an extensible system model

 inclusion of arbitrary system parameters
 definition of QoS dimensions using the parameters
 specification of users’ QoS preferences

 multiple QoS improvement algorithms
 different algorithms suited to different classes of systems

 extensible tool support
 deployment, execution, and runtime redeployment
 parameter monitoring and visualization

9

Proposed Solution

A framework that provides
 an extensible system model

 inclusion of arbitrary system parameters
 definition of QoS dimensions using the parameters
 specification of users’ QoS preferences

 multiple QoS improvement algorithms
 different algorithm suited to different classes of systems

 extensible tool support
 deployment, execution, and runtime redeployment
 parameter monitoring and visualization

10

Model of the Hardware System

 A set H of hardware nodes
 H={PDA1, PDA2, PDA3, Laptop}

 A set HP of host parameters
 HP={memory, battery}

 A function hParam:H×HP→R
 hParam(PDA1, memory)=20MB

PDA1 Laptop
PDA2

PDA3

Link4

Link1

Link3

Link2

 A set N of network links
 N={Link1, Link2, Link3, Link4}

 A set NP of network link parameters
 NP={reliability, bandwidth}

 A function nParam:N×NP→R
 nParam(Link1, bandwidth)=256kb/s

11

Model of the Software Architecture

ResourcesMap DisplayMap

ModifyResourcesSendMessage

AutonomousNavigattion
PlayVideo

ResourcesMap DisplayMap

ModifyResourcesSendMessage

AutonomousNavigattion
PlayVideo

R
unning

 System
Softw

are
A

rchitecture

 A set C of software components
 C={ResourcesMap, DisplayMap, …}

 A set CP of component parameters
 CP={size, CPU usage}

 A function cParam:C×CP→R
 cParam(DisplayMap, size)=50Kb

 A set I of logical links
 I={renderMap, updateMap, …}

 A set IP of logical link parameters
 IP={frequency, average event size, …}

 A function IParam:I×IP→R
 IParam(renderMap,freqency)=20

 A set DepSpace={d1, d2, …} of all possible deployment mappings

12

Model of the System Services
 A set S of service

 S={Chat, Scheduler Resources, Exchange Plan}

 A function sParam:S × {H ∪ C ∪ N ∪ I} × {HP ∪ CP ∪ NP ∪ IP} → R of
values for service-specific system parameters
 sParam(Schedule Resources, renderMap, frequency of execution) = 3

Chat
Schedule

Resources
Exchange

Plan

13

Model of the QoS Dimensions
 A set Q of quality of service dimensions

 Q={security, durability, latency}

 A function qValue:S×Q×DepSpace → R that
quantifies the achieved level of QoS
 qValue(chat, latency, d1)=5ms

 A function qType:Q → {-1,1}
 -1 denotes it is desirable to minimize the QoS
 1 denotes it is desirable to maximize the QoS

14

Model of the System Users
 A set U of users

 U={Troop, Commander, Dispatcher}

 A function qosRate:U×S×Q → [MinRate,1]
 represents the rate of change in QoS

 A complementary function
qosUtil:U×S×Q → [0,MaxUtil]
 represents the utility for that rate of change

 A user’s priority can be expressed as the
ratio of MaxUtil to MinRate

15

Model of the Constraints
 A set PC of parameter constraints

 PC={memory, bandwidth,…}

 A function pcSatisfied:PC×DepSpace → [0,1]
 1 if constraint is satisfied
 0 if constraint is not satisfied

 Functions that restrict locations of software components
 loc:C×H → [0,1]

 loc(c,h)=1 if c can be deployed on h
 loc(c,h)=0 if c cannot be deployed on h

 colloc:C×C → [-1,1]
 colloc(c1,c2)=1 if c1 has to be on the same host as c2
 colloc(c1,c2)=-1 if c1 cannot be on the same host as c2
 colloc(c1,c2)=0 if there are no restrictions

 …

16

Problem Definition
Given the current deployment of the system d’, find an improved
deployment d such that the users’ overall utility defined as the function

is maximized and specific conditions are satisfied:
∀c∈C, loc(c,Hc)=1
∀c1∈C, ∀c2∈C, if (colloc(c1,c2)=1)(Hc1= Hc2),

 if (colloc(c1,c2)=-1) (Hc1≠ Hc2)
∀constr∈PC pcSatisfied(constr,d)=1
 …

 qqTypeqsuqosUtil
qsuqosRate

dqsqValue

dqsqValuedqsqValue

ddloverallUti
U

u

S

s

Q

q

!!!
= = =

"
"
"
"
"

#

$

%
%
%
%
%

&

'
""
#

$
%%
&

'

(

()

=(
1 1 1

)(*),,(*
),,(

),,(

),,(),,(

),(

Amount of
improvement over
deployment d’

Rate of improvement
Utility of improvement

+1 for maximizing QoS

-1 for minimizing QoS

All location constraints are satisfied

All collocation
constraints are
satisfied

All system parameter
constraints are
satisfied

17

Framework Instantiation

 The engineer needs to specify the “loosely”
defined elements of the model
Define the pertinent properties of the application

scenario
Define QoS dimensions in terms of system

properties

Define system parameter constraints

!!
= =

=
s sC

c

C

c
c

H
c

Hcc ,rel)ram(N,freq)*nPasParam(s,Id) ty,availabili qValue(s,
11 12

2
,
1

2,1

18

Proposed Solution

A framework that provides
 an extensible system model

 inclusion of arbitrary system parameters
 definition of QoS dimensions using the parameters
 specification of users’ QoS preferences

 multiple QoS improvement algorithms
 different algorithm suited to different classes of systems

 extensible tool support
 deployment, execution, and runtime redeployment
 parameter monitoring and visualization

19

Algorithms
 MINLP – polynomial (?)

 Represented the problem as a set of (non-)linear constraint functions
 Does not guarantee the optimal solution or convergence

 MIP – exponential: O(2|H|2|C|2)
 Devised an approach to transform our MINLP problem to MIP
 Developed heuristics to decrease complexity to O(|H||C|)

 Greedy – polynomial: O(|S|3 (|C| |U| |Q|)2)
 An iterative algorithm that leverages several heuristics for

– Ranking elements of our problem (services, hosts, components, …)
– Assigning software components to hardware hosts

 Makes local decisions that often maximize the global objective
 Genetic – linear: O(#populations × #evolutions × #individuals × |S| |U| |Q|)

 An individual represents a solution composed of a sequence of genes
 A population contains a pool of individuals which are evolved via cross-

overs and mutations
 The accuracy on the representation depends on the ability to promote

“good” genes
– Bad representation does not promote “good” genes  random search

 Market-Based (Auctioning)
 Under development and evaluation

20

Algorithms’ Performance

1

10

100

1000

10000

100000

Problem Size

E
xe

cu
tio

n
T

im
e

in
 S

ec
.

x

 (
lo

ga
rit

hm
ic

 s
ca

le
)

 x

MIP 17 350 5000

MINLP 7 78 350 7520 25600

Greedy 2 7 8 11 44 124

Genetic 20 28 29 45 62 150

8C, 4H, 4S,

4U

12C, 5H,

5S, 5U

14C, 6H,

6S, 6U

20C, 8H,

8S, 8U

25C, 10H,

10S, 10U

40C, 15H,

15S, 15U

Efficiency

1

10

100

1000

Problem Size

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

x

(lo
ga

rit
hm

ic
 s

ca
le

)

MIP 17 70 147

MINLP 14 64 122 152 235

Greedy 15 64 136 157 226 670

Genetic 14 56 128 136 198 533

8C, 4H,

4S, 4U

12C, 5H,

5S, 5U

14C, 6H,

6S, 6U

20C, 8H,

8S, 8U

25C, 10H,

10S, 10U

40C, 15H,

15S, 15U

Accuracy

1

10

100

1000

10000

Number of QoS dimensions

E
xe

cu
tio

n
T

im
e

in
 S

ec
on

ds

x

(lo
ga

rit
hm

ic
 s

ca
le

)

MIP 130 192 250 400 602 1017

MINLP 20 41 81 132 226 410

Greedy 4 7 11 20 37 49

Genetic 13 16 20 25 27 31

1 QoS 2 QoS 3 QoS 4 QoS 5 QoS 6 QoS

Impact of QoS Dimensions

21

Impact of Heuristics

1

10

100

1000

10000

Problem Size

E
xe

cu
tio

n
T

im
e

in
 S

ec
on

ds

x

(lo
ga

rit
hm

ic
 s

ca
le

)

MIP w ith no variable ordering 43 520 6600 9430

MIP w ith variable ordering 25 120 720 2580

10C, 4H, 4S, 4U,

4Q

12C, 4H, 4S, 4U,

4Q

14C, 5H, 5S, 5U,

4Q

16C, 5H, 5S, 5U,

4Q

Variable Ordering in MIP

0

50

100

150

200

250

300

350

400

450

500

Problem Size

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

x

Greedy w ithout sw ap 30 110 113 200 315

Greedy w ith sw ap 48 145 178 350 480

10C, 4H, 4S, 4U,

4Q

20C, 6H, 6S, 6U,

4Q

30C, 8H, 8S, 8U,

4Q

40C, 12H, 12S,

12U, 4Q

50C, 15H, 15S,

15U, 4Q

Swapping in Greedy

0

100

200

300

400

500

Problem Size

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

x

Genetic without mapping 13 57 73 65 102

Genetic with mapping 48 150 130 192 285

Genetic with mapping and three

parallel executing populations

51 156 132 210 294

10C, 4H, 4S,

4U, 4Q

20C, 8H, 6S,

6U, 4Q

30C, 8H, 8S,

8U, 4Q

40C, 12H, 12S,

12U, 4Q

50C, 15H, 15S,

15U, 4Q

Mapping in Genetic

22

Algorithms in Practice

 Results of running the algorithms on an example scenario of 12 Comps, 5
Hosts, 8 Services, and 8 Users

 Significant improvements for all the four QoS dimensions by all the algorithms

 The more important QoS dimensions of services have improved significantly
more than others

23

Algorithmic Trade-Offs
 Architectural style

 E.g., Client-Server vs. Peer-to-Peer
 MIP algorithm for very constrained architectures
 One of the optimization algorithms for flexible and large architectures

 Large number of QoS dimensions
 Genetic outperforms the greedy
 Genetic is only linearly affected by the number of QoS dimensions

 Stable vs. unstable systems
 For small and stable systems, MIP algorithm is worth the time and

resources required to compute a solution
 For large and unstable systems, genetic or greedy is more applicable

 Resource constrained systems
 Genetic algorithm can execute in parallel on multiple devices

 Sharing the overhead among many hosts
 Centralized vs. decentralized systems

 Market-based algorithms could also be leveraged in a decentralized
setting

24

Proposed Solution

A framework that provides
 an extensible system model

 inclusion of arbitrary system parameters
 definition of QoS dimensions using the parameters
 specification of users’ QoS preferences

 multiple QoS improvement algorithms
 different algorithm suited to different classes of systems

 extensible tool support
 deployment, execution, and runtime redeployment
 parameter monitoring and visualization

25

Modeling and Analysis Support – DeSi
 DeSi is a visual environment for analyzing deployment architectures
 It allows for modeling a distributed system in terms of four basic

elements
 Software components
 Hardware devices
 Network links
 Logical (interaction) links

 Each of these elements has
an associated set of parameters
 Accessed via property sheets

 DeSi is extensible
 Allows for modeling of new

parameters and properties
 Views are completely

separated from the model

26

DeSi – Control Panel

27

Implementation and Execution Support
– Prism-MW

 Prism-MW is an extensible
architectural middleware

 PL-level constructs
architectural concepts

 components
 connectors
 ports, etc.

 Facilities for monitoring and
(re)deployment of a
distributed system

 Allows for the addition of
new monitoring and
deployment facilities

Admin

34

31

18

2
615

16

4 12

21

Admin

8

3 9

29 1

Admin

28

20
30

17

14

0

Admin

22
26

13

27

10

33

7

24

25

32

19

23

11

Deployer

5

28

Tool Suite Integration

Admin

34

31

18

2 615

16

4 12

21

Admin

8

3 9

29 1

Admin

28

20
30

17

14

0

Admin

22
26

13

27

10

33

7

24

25

32

19

23

11

Deployer

5

DeSi

Effector

DeSi
Monitor

Prism-MW

Adapter

Monitoring Data

(Re)Deployment Data

C
on

st
ru

ct
 D

ep
. M

od
el

Do
m

ain
 K

no
wl

ed
ge

Analyze

M
on

ito
r

29

Contributions
 Address system deployment as a multidimensional

optimization problem
 Leverages users’ preferences to resolve inherent trade-offs in

conflicting QoS dimensions
 Explicitly consider system’s high-level services and their

internal architecture
 An extensible modeling approach that can be leveraged

across different application scenarios
 Specify arbitrary system parameters
 Define arbitrary QoS dimensions in terms of system parameters

 A suite of generic multidimensional optimization
algorithms
 Operate on top of an instantiated model of a system

 A suite of customizable tools
 A number of extension points are leveraged to configure the tools to

the application scenario at hand
 Promotes reuse and cross-evaluation of solutions to this problem

30

On-Going Work
 Further profiling of the algorithms

 Determine which algorithms are suitable to what classes of
systems

 Several on-going enhancements to DeSi
 Addition of new modeling elements: users, user preferences,

services, etc.
 Complete the integration of Prism-MW, DeSi, and

ArchStudio
 Develop the support for autonomically selecting

appropriate redeployment algorithms
 Evaluate the approach on real distributed systems

 Troops Deployment System (TDS)
 Midas

31

Questions

