
Architecture and Design Intent

© 2006, Dewayne E. Perry

State of the Art in Software Engineering 2006

June 16, 2006

Architecture and Design Intent

Dewayne E. Perry
(perry@ece.utexas.edu)

Paul S Grisham
(grisham@ece.utexas.edu)

Empirical Software Engineering Laboratory (ESEL)
The University of Texas at Austin

2

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Overview of this Research
Explore approaches of capturing design “intent”

Documenting design, decisions, and decision processes
Explore approaches of applying design “intent”
Study the nature of architectural design

Relationship between high level abstractions and low level
details in problem solving

Relationship between opportunistic and rational design
Relationship between initial and evolutionary design

Describe new design methods and documentation
systems
Goal-oriented prescriptive architectures
Methodical exploratory test and design
Intent-based refactoring and reification systems

3

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

“The issue is not documentation,
the issue is understanding.”

Jim Highsmith
Agile Software Development Ecosystems (2003)

4

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Basic Issues
 In creating systems we make choices because we have some

intent in mind
Some requirements over others
One architecture instead of another
A specific algorithm or data structure over others

 When we create a product or component we have some idea of
how we intend it to be used
May be specific or it may be general

 We use products or components with specific intent in mind
If a general product or component, may only use a part of it
If a specialized product or component may still use only a part of it

 In evolving systems
We often have to divine the original intent to understand how to

make changes
We change things because we have some new intent in mind

5

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Definitions of Intent
Functional Intent

Describe WHAT a program element is and does
 Functional Requirements
 Functional Specifications

Design Intent
Describe HOW a program element interacts with other

program elements
Scenarios / Use-cases
 Contracts
Obligations

Design Rationale
Describe WHY program element was designed a certain way

Selection Criteria
 Plans and Methods
Alternatives
Non-functional Requirements (?)

6

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Traditional Approaches to Intent
Documentation as a shared model of intent

Requirements – a shared model of the problem
Architecture – a shared model of the basic solution

structure
Design and code – shared model of the machine - more

detail

But . . . everything changes
World changes: uses and requirements change
Technology changes
Operating context changes
System itself changes: improvements, faults fixed

Difficulties result:
Not clear how requirements changes impact the system
Not clear how structural changes impact the system
Not clear how code changes impact the arch/system
Not clear how context changes impact the arch/system

7

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Earlier Work
The Inscape Environment

Constructive approach based on
 Formal interface specifications
Semantic interconnections determined during construction
Set of propagation rules

Basic rule: all preconditions and obligations must be satisfied
or propagated to the interface

Preconditions or obligations unpropagated and unsatisfied
represent faults
 Called precondition ceilings and obligations floors

Specification contributions
Obligations
Multiple results, some of which are considered as exceptions

Set of rules for handling them
Useful for fault tolerance and reliability

Predicate based retrieval of components

8

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Earlier Work
Perry/Wolf Architecture model

Architecture = (elements, form, rationale)
Components and connectors the basic elements
Form is properties and relationships (ie, interactions) and

constraints on those properties and relationships
Rationale is the justification for the elements and form

The primary carrier of architectural intent
Architecture styles codify basic aspects of intent to be

applied to elements and form
Rationale and styles are critical for managing evolution

9

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Earlier Work
Architectural Prescriptions

Transforming software requirements into architecture
prescriptions

KAOS Preskriptor
 Goals constraints
Architect has freedom to chose how goals are distributed

among architectural elements as constraints
 Goals are a means of expressing requirements intent
 Prescriptions as a means of expressing architectural intent

Architectural styles important as a form of constraint
codification
 Incomplete architecture prescriptions
Applied to specific elements, collections of elements of the

entire system
Also capture architecture intent

10

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Earlier Work
Intent-based Architectures

Introduces architecture intent as a key concept
Intent of an element encapsulates its functional purpose
Intent associated with roles in architecture

 Elements with similar intent can be substituted for each other
 Based on higher levels of abstraction
Direct link between requirements and architecture

Enables reification of an architecture in one or more
functionally equivalent implementations

Basis for self-configuring adaptive systems
 Respond to changes in environmental or operational conditions
 By reconfiguring – subject to functional and nonfunctional

constraints

11

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Design Intent Modeling
Cited Benefits:

Design Analysis
 Claim: Formalizing decisions facilitates identifying and avoiding

early mistakes
Communication and Coordination

 Claim: Formalizing decisions prevents large teams from making
incompatible decisions

Maintenance and Evolution
 Claim: Documenting decisions captures the designer’s thoughts

Aids program comprehension
Prevents architectural mismatch in new components
Assists in impact of additive and corrective changes

When needs and contexts change over time,
designers can see which design decisions can or must
be changed

12

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

How We Use Documented Intent
Replication

Use existing patterns and processes to build something new
Strategies, Patterns and Idioms

Be sure we are replicating the important things
 Cutting off the end of the ham

Reuse
Include legacy modules in new systems

 Identify opportunities for reuse
Make sure we use those modules correctly
 Identify assumptions about usage

Modification
Perform risk analysis

 Explore semantic and operational dependencies

Maintenance
Identify out-of-date or invalidated assumptions

13

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Problem Structuring
Well-Structured Problems:

Relationship between problem, solution methods, and criteria
 Coding a well-defined algorithm

Ill-Structured Problems:
Not well-structured (i.e., no domain guidance on solution

methods or evaluation)
Deciding what to build (requirements selection)

Problem Structuring:
The act of turning ISPs into WSPs
Software Analysis and Design:

Select requirements to implement
 Given a requirement, decompose into a set of goals
Transform goal into a detailed design
Treat design as a WSP, and abstract its complexity, and use

to solve another goal

14

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Designers and Decisions
Opportunistic Decision Making

Decisions made with partial knowledge influence later decisions
as fact

Emergent knowledge and partial solutions
Discovery of partial Well-Structured Problems from domain

knowledge
Emergent requirements need attention

 Immediate Structuring ISP into WSP
Drifting

 Explore dependencies and assumptions
Scenario exploration

Make ill-structured requirements concrete
 Verify partial solutions
 Confirm inferred requirements

Early design activities are opportunistic, rather than
methodical or rational

15

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Designers and Decisions
Rational Decision-Making

Made based on criteria and rationale
 Consequential choice of an alternative
Set of possible options are known
 Probabilities of outcomes are known

Natural Decision-Making
Situational decisions using partial knowledge + personal

experience
Ill-defined tasks or goals
Situational assessment over consequential choice
Alternatives not considered until rejection

Satisficing solutions

Software design decisions are cross-cutting
May operate on multiple levels of abstraction simultaneously

 E.g., arch. style impacts implementation language and
technology infrastructure selection

16

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Software Design Decisions
So, in the life of a piece of software

Some decisions were rational
 E.g., Technology vendor selection

Some decisions were opportunistic
 E.g., Spike solution, then integrate if possible

Some decisions were arbitrary
 E.g., Requirement prioritized as “low-hanging fruit”

Some decisions were deferred
Over time:

As rationale is lost, distinction between decision types is lost
 Rational decisions relate to well-structuredness and optimality
Natural decisions were situationally satisficing based on partial

solutions and incomplete knowledge
Assumptions and Dependencies are forgotten or ignored

Problem: Many design decisions happen without
designers being aware of them

17

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Faking It
Because there is something satisfying about rational

decisions, treat all decisions as rational
In mature engineering professions, many tasks are WSP
We want to believe that Software Engineering is an

engineering profession
Express SE problems as WSP with well-defined goals and

decision processes (i.e., that it is rational)
Emphasis on design methods

“We will never find a process that allows us to design
software in a perfectly rational way… [but] we can
present our system to others as if we had been rational
designers and it pays to pretend do so during
development and maintenance.”
D. Parnas and P. Clements. “A Rational Design Process: How and Why to Fake It”

18

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Problems with Faking Design Rationale
Natural decisions are situational

Difficult to differentiate between essential domain criteria
and dynamic or volatile criteria

Faked rationale tends to be uniform
What level of abstraction / granularity to use?

Does not necessarily reflect real alternatives
How should alternative solutions should be faked?
Are these alternatives realistic or practical?
Are these alternatives desirable under emergent criteria?

Bad or failed solutions are interesting
Faked rationale describes successful designs
“The best prototype is a failed project” (Curtis, et.al.)

Faked rationale uses “timeless” inferential reasoning
Argumentation-based rationale studies emphasize

“reconstructing” rationale
If you can infer rationale, why document faked rationale?

19

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Research Issues
Initial Design:

Use and documentation of design methods which apply prior
design knowledge

Methods of documenting and analyzing exploratory techniques
 Early specification
Test-driven design

Structuring requirements and methodically driving design
 Requirements structuring and prioritization is a design activity

Evolutionary Design:
The software understanding problem is an attempt to

reconstruct:
The rationale for rational design decisions
The situational context and expert knowledge for opportunistic

decisions
The relationship between design elements and design decisions
 Prioritization of criteria for proscribing and prescribing change

20

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Science of Design
Guindon’s studies of designers (late 80s)

Applied generally whenever we talk about software design
activities

Are they still relevant? Do they describe arch. design?
 Low level of abstraction
Developers working in isolation
Small projects (one-sitting projects)
 Initial design only

We need current studies of architectural designers
Teams of architects and lower-level designers

Study the interactions between them
Study the cognitive issues of architectural (high-level) design

and low level design
Currently interviewing software architects on a number of

issues
Differentiate between activities of initial and evolutionary

design

21

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Exploratory Design and Design Artifacts
Inspired by agile development and designs:

Use executable specifications to drive design
Tests are internally consistent, but not complete
Tool support to record historical relationships between test

evolution and design evolution
Exploratory testing:

Use tests to describe problem to be solved piecemeal
Exploratory tests bind subsequent design and refactoring
Test suites are reduced into regression tests or

specifications
Current approaches:

Treat integration tests as design intent model
Explore relationship between operational tests and semantic

interconnection models (as in Inscape)
Develop a design framework in eclipse to support evolutionary

test design

22

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Using Test to Drive Design
Traditional approach

Design Implement Test
Test-First Design or Test-Driven Development

Test Implement Iterate Refactor
Since we treat requirements structuring as a design

activity:
Test selection and design is a design activity
Tests constrain and guide development
Test evolution is a record of design changes

Tool support:
Integrate test management to version control
Use tests to describe corrective and additive changes

Tests as Program Comprehension
Integration tests are scenarios that describe intent

23

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Incremental Design and Iterative Specification

Problem: Generalize correctness for ill-defined task
Requirements prioritization and structuring a design activity
Tests and scenarios only describe a part of the problem
We want some way to relate specifications to tests and vice

versa
Goal: Methodical approach to test design

Prescriptive guidance on test selection
Structured/annotated tests for program analysis and

specification building
As tests are added, specification becomes more complete

Test Maintenance
Process of minimizing test suite to reduce testing costs
As tests are eliminated, intent is lost

Specification Generate Test
Tests Specification Building Coverage Test Suite

24

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Prescriptive Architectures
Knowledge about design implicit in architecture

Descriptive models show the results of those decisions
Requirement prioritization is lost
Relationship between decisions is lost

Prescriptions restricts design elements and
relationships
Essential constraints are differentiated and specified

 Essential design intent architecture prescription
Opportunistic decision traceability between prescription and

detailed architecture or design
Describes classes of solutions

 Including future adaptive, perfective, and corrective changes
Supports incremental and exploratory design activities
We need mechanisms and tool support for enforcing and

checking constraint satisfaction

25

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Rationale Reification
Basic idea:

Begin with formally specified requirements and architecture
 E.g., KAOS requirements specifications and architecture

prescriptions
Requirements are in problem domain terms; architecture

often in solution domain terms
Systems drivers such as user needs, business goals, strategies

are incorporated in requirements
Currently no connection between the two

No rationale, even informally
Mapping from problem domain to solution is problematic

Current focus of architecture:
 Elements and form
 Rationale, if treated at all, is informal and general

Rationale reification
 Capture refinements and transformations used by architects in

creating the architecture from the requirements

26

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Rationale Reification
 Basis for systematic requirements and architecture based

evolution
Changing requirements lead to changes in rationale and associated

changes in the architecture
Requirements become an integrated part of the system structure

rather than something separate and apart
 Rationale determines the mapping between the functional and

non-functional requirements and the architecture
Abstract architecture in terms of problem domain (ala Preskriptor)

and models functional intent
Concrete architecture then related to abstract via intent
Refinement used to decompose functionality into smaller functional

elements
Transformations used functional structure into an architecture that

satisfies the non-functional requirements
Requirements (rationale) architecture

 Captures semantics and conditions for mappings
 Enables traceability from goals to structure

27

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Approaches to Design Intent
Capture Intent through:

Maintenance and reuse of existing design artifacts
 Incremental and evolutionary design histories

Methodical, prescriptive approaches that relate domain,
design, and constraints, reusing design knowledge
 Process model (a priori)
 Input knowledge (method by-product)
 Intermediate and final models (method by-product)
 Justification for overriding method where appropriate

Apply best practices of intentional design
 E.g., styles, patterns, and idioms
 Intent can be identified through metonymic clues

Understand the difference between initial design
documentation needs and evolutionary design needs
 Prefer approaches that address both needs
Treat all design as incremental

28

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

New Graduate Course
Architecture and Design Intent (Spring 2006)

Emphasis on representing designs along with various types of
intent

Covered published research and state of the art in:
 Cognitive and social interactions in software design
 Empirical studies of design and designers
Design rationale modeling (representations and tools)
Architecture design rationale and design drivers
Styles, patterns, idioms
Using design histories and intent models in evolution
Design reuse and design process reuse
Opportunistic vs. rational decision-making

Students used architecture design methods to solve an
evolution/maintenance problem for a well-defined
architecture
What information was useful in understanding the design

issues?
What information was missing?

29

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Results from Class
Comments from Students about the project:

Need multiple paths/views to information
Single representation, but ability to form different queries

Tool support is critical to maintain relationships between
design elements and decisions

Low-level details were later discovered to be unnecessary
However, initial comprehension searches involved finding those

details
 It takes experience to know what’s relevant

Difficult to differentiate between what is planned and what
is actually implemented

Hard to differentiate between:
 Enhancement requirements
Domain requirements
 General-purpose requirements
 Requirements driven by the existing application

30

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

Experiences with CBSP and Archium
Problem: Evolve the design of a browser accessibility

module
Initial undocumented attempt at design failed
Very general idea problem; no specific designs for a solution

Approach: Use CBSP and Archium to structure
requirements and evaluate design possibilities

Conclusions:
CBSP

Useful in constraining requirements and providing traceability
No support for selecting architecture elements
 Led to rejecting a candidate solution

Archium
 Explicit capture of candidate solution evaluation
No methodical support for selecting candidate solutions

31

Architecture and Design Intent State of the Art in Software Engineering 2006

© 2006, Dewayne E. Perry June 16, 2006

FSE 2006 Workshop on
Architecture and Design Intent

 Portland, Oregon – November 5, 2006
 Discussion format
 Invitation on the basis of position papers (5 pages)
 Topics Include

Design decisions, rationale and intent in the context of initial and
evolutionary design

Using intent and rationale to manage evolution
Decision support and capture tools
Design of empirical studies for measuring the usefulness of intent

and rationale in design and maintenance activities
 Full-day workshop with presentations and discussion

Digital library publication of position papers

See you all there!

