
A Natural Programming
Model for Distributed

Computing
Yannis Smaragdakis

Georgia Tech (→ University of Oregon)

(with Eli Tilevich)

research supported by NSF grants
CCR-0220248 and CCR-0238289

Yannis Smaragdakis 2

My Research
 The systems and languages end of SE

 language tools for distributed computing
 NRMI, J-Orchestra, GOTECH

 automatic testing
 JCrasher, Check-n-Crash (CnC), DSD-Crasher

 program generators and domain-specific languages
 Meta-AspectJ (MAJ), SafeGen, JTS, DiSTiL

 multiparadigm programming
 FC++, LC++

 software components
 mixin layers, layered libraries

 memory management
 EELRU, compressed VM, trace reduction, adaptive replacement

ICDCS’03, ECOOP’02, Middleware’04, ICSM’05, IEEE PervComp, ASE’03, ICSE’05, ...

Softw.Prac.&Exp., ICSE’05, ICSE’06 ER, ISSTA’06, ...

GPCE’04 (best paper), ICSE’06 ER, PEPM’04, GPCE’05, ICSR’98, ...

ICFP’00, JFP, Softw.Prac.&Exp., ...

ECOOP’98, ICSR’98, ICSR’02, TOSEM, ...

SIGMETRICS’99 (2x), Usenix’99 (best paper), TOMACS, Usenix’00, ISMM’04, ...

Yannis Smaragdakis 3

This Talk

 NRMI: a middleware facility that makes
distributed systems programming easier
 solves a long standing, well-known open problem!

Yannis Smaragdakis 4

Language Tools for Distributed
Computing

 What does “language tools” mean?
 middleware libraries, compiler-level tools,

program generators, domain-specific languages
 What is a distributed system?

 “A distributed system is one in which the failure of
a computer you didn’t even know existed can
render your own computer unusable.”

“A collection of independent computers that
appears to users as a single, coherent
system”

Yannis Smaragdakis 5

Why Language Tools for
Distributed Computing?
 Why Distributed Computing?

 networks changed the way computers are used
 programming distributed systems is hard!

 partial failure, different semantics (distinct memory
spaces), high latency, natural multi-threading

 are there simple programming models to make our
life easier?

 “The future is distributed computation, but the
language community has done very little to address
that possibility.”
 Rob Pike—“Systems Software Research is Irrelevant”, 2000

Yannis Smaragdakis 6

Programming Distributed
Systems

 A very common model is RPC middleware:
 hide network communication behind a procedure call (“remote

procedure call”)
 execute call on server, but make it look to client like a local call

 only, not quite: need to be aware of different memory space
 Our problem: make remote calls more like local calls!

Yannis Smaragdakis 7

Common RPC Programming
Model (call semantics): Call-by-copy
 To call a remote procedure, copy argument-

reachable data to server site, return value back
 data packaged and sent over net (“pickling”, “serialization”)

Network

4

1 3

9 7

t
4

1 3

9 7

tree

Client site Server site

int sum(Tree tree) {...}sum(t);

24

Yannis Smaragdakis 8

Other Calling Semantics:
Call-by-Copy-Restore
 Call-by-copy (call-by-value) works fine when the remote

procedure does not need to modify arguments
 otherwise, changes not visible to caller, unlike local calls
 in general, not easy to change shared state with non-shared

address spaces

 Call-by-copy-restore is a common idea in distributed
systems (and in some languages, as call-by-value-result):
 copy arguments to remote procedure, copy results of

execution back, restore them in original variables
 resembles call-by-reference on a single address space

Yannis Smaragdakis 9

Copy-Restore Example

5 7

n
m

7

a
b

void swap(Obj a, Obj b) {...}swap(n,m);

Network
5
a b

7 5

7 5
a’ b’

Yannis Smaragdakis 10

A Long Standing Challenge
 Works ok for single variables, but not complex data!
 The distributed systems community has long tried to

define call-by-copy-restore as a general model, for
all data

 A textbook problem for over 15 years:
 “… Although [call-by-copy-restore] can handle pointers to

simple arrays and structures, we still cannot handle the
most general case of a pointer to an arbitrary data structure
such as a complex graph.”
 Tanenbaum and Van Steen,
 Distributed Systems, Prentice Hall, 2002

 The DCE RPC design tried to solve it but did not

Yannis Smaragdakis 11

Our Contribution: NRMI
 The NRMI (“Natural RMI”) middleware facility

solves the general problem efficiently
 a drop-in replacement of Java RMI, also supporting full

call-by-copy-restore semantics
 invariant: all changes from the server are visible to

client when RPC returns
 no matter what data are used and how they are linked
 this is the hallmark property of copy-restore

 The difficulty:
 having pointers means having aliasing: multiple ways

to reach the same object—need to correctly update all

Yannis Smaragdakis 12

Solution Idea (by example)

alias2
 t

4

1 3

9 7
alias1

void foo (Tree tree) {
 tree.left.data = 0;
 tree.right.data = 9;
 tree.right.right.data = 8;
 tree.left = null;
 Tree temp =
 new Tree(2, tree.right.right,
null);
 tree.right.right = null;
 tree.right = temp;
}

tree

 Consider what changes a procedure can make
foo(t); ...

Yannis Smaragdakis 13

Solution Idea (by example)

alias2
 t

4

1 3

0 7
alias1

void foo (Tree tree) {
 tree.left.data = 0;
 tree.right.data = 9;
 tree.right.right.data = 8;
 tree.left = null;
 Tree temp =
 new Tree(2, tree.right.right,
null);
 tree.right.right = null;
 tree.right = temp;
}

tree

 Consider what changes a procedure can make
foo(t); ...

Yannis Smaragdakis 14

Solution Idea (by example)

alias2
 t

4

1 3

0 9
alias1

void foo (Tree tree) {
 tree.left.data = 0;
 tree.right.data = 9;
 tree.right.right.data = 8;
 tree.left = null;
 Tree temp =
 new Tree(2, tree.right.right,
null);
 tree.right.right = null;
 tree.right = temp;
}

tree

 Consider what changes a procedure can make
foo(t); ...

Yannis Smaragdakis 15

Solution Idea (by example)

alias2
 t

4

1 8

0 9
alias1

void foo (Tree tree) {
 tree.left.data = 0;
 tree.right.data = 9;
 tree.right.right.data = 8;
 tree.left = null;
 Tree temp =
 new Tree(2, tree.right.right,
null);
 tree.right.right = null;
 tree.right = temp;
}

tree

 Consider what changes a procedure can make
foo(t); ...

Yannis Smaragdakis 16

Solution Idea (by example)

alias2
 t

4

1 8

0 9
alias1

void foo (Tree tree) {
 tree.left.data = 0;
 tree.right.data = 9;
 tree.right.right.data = 8;
 tree.left = null;
 Tree temp =
 new Tree(2, tree.right.right,
null);
 tree.right.right = null;
 tree.right = temp;
}

tree

 Consider what changes a procedure can make
foo(t); ...

Yannis Smaragdakis 17

Solution Idea (by example)

alias2
 t

4

1 8

0 9
alias1

void foo (Tree tree) {
 tree.left.data = 0;
 tree.right.data = 9;
 tree.right.right.data = 8;
 tree.left = null;
 Tree temp =
 new Tree(2, tree.right.right,
null);
 tree.right.right = null;
 tree.right = temp;
}

tree

 Consider what changes a procedure can make

2

temp

foo(t); ...

Yannis Smaragdakis 18

Solution Idea (by example)

alias2
 t

4

1 8

0 9
alias1

void foo (Tree tree) {
 tree.left.data = 0;
 tree.right.data = 9;
 tree.right.right.data = 8;
 tree.left = null;
 Tree temp =
 new Tree(2, tree.right.right,
null);
 tree.right.right = null;
 tree.right = temp;
}

tree

 Consider what changes a procedure can make

2

foo(t); ...

temp

Yannis Smaragdakis 19

Solution Idea (by example)

alias2
 t

4

1 8

0 9
alias1

void foo (Tree tree) {
 tree.left.data = 0;
 tree.right.data = 9;
 tree.right.right.data = 8;
 tree.left = null;
 Tree temp =
 new Tree(2, tree.right.right,
null);
 tree.right.right = null;
 tree.right = temp;
}

tree

 Consider what changes a procedure can make

2

foo(t); ...

temp

Yannis Smaragdakis 20

Previous Attempts: DCE RPC
 DCE RPC is the foremost example of a middleware

design that supports restoring remote changes
 The most widespread DCE RPC implementation is

Microsoft RPC (the base of middleware for the
Microsoft operating systems)

 Supports “full pointers” (ptr) which can be aliased
 No true copy-restore: aliases not correctly updated

 for complex structures, it’s not enough to copy back and
restore the value of arguments

Yannis Smaragdakis 21

DCE RPC: stops short!
Network

tree 4

1 8

0 9 2

alias2
 t

4

1 8

9 7
alias1

2

Client site Server site
Completely

inconsistent!

Yannis Smaragdakis 22

Solution Idea (by example)

alias2
 t

4

1 8

0 9
alias1

tree

 Key insight: the changes we
care about are all changes to
objects reachable from objects
that were originally reachable
from arguments to the call

 Three critical cases:
 changes may be made to data

now unreachable from t, but
reachable through other
aliases

 new objects may be created
and linked

 modified data may now be
reachable only through new
objects

2

temp

Yannis Smaragdakis 23

4

1 3

9 7

tree

NRMI Algorithm (by example):
identify all reachable

Network

Client site Server site

alias2
 t

4

1 3

9 7
alias1

Yannis Smaragdakis 24

Algorithm (by example):
execute remote procedure

4

1 8

0 9

tree

2

alias2
 t

4

1 3

9 7
alias1

Network

Client site Server site

temp

Yannis Smaragdakis 25

Algorithm (by example):
send back all reachable

4

1 8

0 9

tree

2

alias2
 t

4

1 3

9 7
alias1

Network

Client site

temp

Yannis Smaragdakis 26

Algorithm (by example):
match reachable maps

4

1 8

0 9

tree

2

alias2
 t

4

1 3

9 7
alias1

Network

Client site

temp

Yannis Smaragdakis 27

Algorithm (by example):
update original objects

4

1 8

0 9

tree

2

alias2
 t

4

1 8

0 9
alias1

Network

Client site

temp

Yannis Smaragdakis 28

Algorithm (by example):
adjust links out of original objects

4

1 8

0 9

tree

2

alias2
 t

4

1 8

0 9
alias1

Network

Client site

temp

Yannis Smaragdakis 29

Algorithm (by example):
adjust links out of new objects

4

1 8

0 9

tree

2

alias2
 t

4

1 8

0 9
alias1

Network

Client site

temp

Yannis Smaragdakis 30

Algorithm (by example):
garbage collect

2

alias2
 t

4

1 8

0 9
alias1

Network

Client site

Yannis Smaragdakis 31

Usability and Performance
 NRMI makes programming easier

 no need to even know aliases
 even if all known, eliminates many lines of code (~50 per remote

call/argument type—26% or more of the program for our
benchmarks)

 common scenarios:
 GUI patterns like MVC: many views alias same model
 multiple indexing (e.g., customers + transactions crossreferenced)

 We have a highly optimized implementation
 algorithm implemented by tapping into existing

serialization mechanism, optimized with Java 1.4+
“unsafe” facility for direct memory access

Yannis Smaragdakis 32

Experimental Results
Tree of 256 nodes

0 50 100 150 200 250
Time in ms

Bench1

Bench2

Bench3
NRMI

Java RMI +
extra code

Java RMI, remote
 ref. (no extra code)

Yannis Smaragdakis 33

Retrospective:
What Helped Solve the Problem?

 An instance of “looking at things from the right angle”
 a languages background helped a lot:

 with defining precisely what copy-restore means
 with identifying the key insight
 with coming up with an efficient algorithm

Yannis Smaragdakis 34

Expert Testimony
 “I found your paper quite

interesting...there are some
clever things that you have
done, and for the kinds of
applications you are talking
about, I think NRMI would
be quite useful.”

Jim Waldo (via email)
 [first ORB, Java RMI, Jini]

Yannis Smaragdakis 35

Summary: This Talk

 NRMI: a middleware facility that makes
distributed systems programming easier
 solves a long standing, well-known open problem!

Yannis Smaragdakis 36

Higher-level Distributed
Programming Facilities
 NRMI is a medium-level facility: it gives the

programmer full control, imposes requirements
 good for performance and flexibility
 low automation

 For single-threaded clients and stateless servers,
NRMI semantics is (provably) identical to local
procedure calls
 but statelessness is restrictive

 There are higher-level models for programming
distributed systems
 the higher the level, the more automation
 the higher the level, the smaller the domain of

applicability

Yannis Smaragdakis 37

My Research
 The systems and languages end of SE

 language tools for distributed computing
 NRMI, J-Orchestra, GOTECH

 automatic testing
 JCrasher, Check-n-Crash (CnC), DSD-Crasher

 program generators and domain-specific languages
 Meta-AspectJ (MAJ), SafeGen, JTS, DiSTiL

 multiparadigm programming
 FC++, LC++

 software components
 mixin layers, layered libraries

 memory management
 EELRU, compressed VM, trace reduction, adaptive replacement

ICDCS’03, ECOOP’02, Middleware’04, ICSM’05, IEEE PervComp, ASE’03, ICSE’05, ...

Softw.Prac.&Exp., ICSE’05, ICSE’06 ER, ISSTA’06, ...

GPCE’04 (best paper), ICSE’06 ER, PEPM’04, GPCE’05, ICSR’98, ...

ICFP’00, JFP, Softw.Prac.&Exp., ...

ECOOP’98, ICSR’98, ICSR’02, TOSEM, ...

SIGMETRICS’99 (2x), Usenix’99 (best paper), TOMACS, Usenix’00, ISMM’04, ...

Thank you!

Questions?

