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My Research
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This Talk

 NRMI: a middleware facility that makes
distributed systems programming easier
 solves a long standing, well-known open problem!
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Language Tools for Distributed
Computing

 What does “language tools” mean?
 middleware libraries, compiler-level tools,

program generators, domain-specific languages
 What is a distributed system?

 “A distributed system is one in which the failure of
a computer you didn’t even know existed can
render your own computer unusable.”

“A collection of independent computers that
appears to users as a single, coherent
system”
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Why Language Tools for
Distributed Computing?
 Why Distributed Computing?

 networks changed the way computers are used
 programming distributed systems is hard!

 partial failure, different semantics (distinct memory
spaces), high latency, natural multi-threading

 are there simple programming models to make our
life easier?

 “The future is distributed computation, but the
language community has done very little to address
that possibility.”
        Rob Pike—“Systems Software Research is Irrelevant”, 2000



Yannis Smaragdakis 6

Programming Distributed
Systems

 A very common model is RPC middleware:
 hide network communication behind a procedure call (“remote

procedure call”)
 execute call on server, but make it look to client like a local call

 only, not quite: need to be aware of different memory space
 Our problem: make remote calls more like local calls!
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Common RPC Programming
Model (call semantics): Call-by-copy
 To call a remote procedure, copy argument-

reachable data to server site, return value back
 data packaged and sent over net (“pickling”, “serialization”)

Network
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Client site Server site

int sum(Tree tree) {...}sum(t);

24
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Other Calling Semantics:
Call-by-Copy-Restore
 Call-by-copy (call-by-value) works fine when the remote

procedure does not need to modify arguments
 otherwise, changes not visible to caller, unlike local calls
 in general, not easy to change shared state with non-shared

address spaces

 Call-by-copy-restore is a common idea in distributed
systems (and in some languages, as call-by-value-result):
 copy arguments to remote procedure, copy results of

execution back, restore them in original variables
 resembles call-by-reference on a single address space
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Copy-Restore Example
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void swap(Obj a, Obj b) {...}swap(n,m);
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A Long Standing Challenge
 Works ok for single variables, but not complex data!
 The distributed systems community has long tried to

define call-by-copy-restore as a general model, for
all data

 A textbook problem for over 15 years:
 “… Although [call-by-copy-restore] can handle pointers to

simple arrays and structures, we still cannot handle the
most general case of a pointer to an arbitrary data structure
such as a complex graph.”
           Tanenbaum and Van Steen,
               Distributed Systems, Prentice Hall, 2002

 The DCE RPC design tried to solve it but did not
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Our Contribution: NRMI
 The NRMI (“Natural RMI”) middleware facility

solves the general problem efficiently
 a drop-in replacement of Java RMI, also supporting full

call-by-copy-restore semantics
 invariant: all changes from the server are visible to

client when RPC returns
 no matter what data are used and how they are linked
 this is the hallmark property of copy-restore

 The difficulty:
 having pointers means having aliasing: multiple ways

to reach the same object—need to correctly update all
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Solution Idea (by example)

alias2
  t
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void foo (Tree tree) {
 tree.left.data = 0;
 tree.right.data = 9;
 tree.right.right.data = 8;
 tree.left = null;
 Tree temp =
    new Tree(2, tree.right.right,
null);
 tree.right.right = null;
 tree.right = temp;
}

tree

 Consider what changes a procedure can make
foo(t); ...
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Previous Attempts: DCE RPC
 DCE RPC is the foremost example of a middleware

design that supports restoring remote changes
 The most widespread DCE RPC implementation is

Microsoft RPC (the base of middleware for the
Microsoft operating systems)

 Supports “full pointers” (ptr) which can be aliased
 No true copy-restore: aliases not correctly updated

 for complex structures, it’s not enough to copy back and
restore the value of arguments
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DCE RPC: stops short!
Network
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Solution Idea (by example)
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 Key insight: the changes we
care about are all changes to
objects reachable from objects
that were originally reachable
from arguments to the call

 Three critical cases:
 changes may be made to data

now unreachable from t, but
reachable through other
aliases

 new objects may be created
and linked

 modified data may now be
reachable only through new
objects
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Algorithm (by example):
execute remote procedure
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Algorithm (by example):
send back all reachable
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Algorithm (by example):
match reachable maps
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Algorithm (by example):
update original objects
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Algorithm (by example):
adjust links out of original objects
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Algorithm (by example):
adjust links out of new objects
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Algorithm (by example):
garbage collect
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Usability and Performance
 NRMI makes programming easier

 no need to even know aliases
 even if all known, eliminates many lines of code (~50 per remote

call/argument type—26% or more of the program for our
benchmarks)

 common scenarios:
 GUI patterns like MVC: many views alias same model
 multiple indexing (e.g., customers + transactions crossreferenced)

 We have a highly optimized implementation
 algorithm implemented by tapping into existing

serialization mechanism, optimized with Java 1.4+
“unsafe” facility for direct memory access
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Experimental Results
Tree of 256 nodes
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Java RMI, remote
 ref. (no extra code)
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Retrospective:
What Helped Solve the Problem?

 An instance of “looking at things from the right angle”
 a languages background helped a lot:

 with defining precisely what copy-restore means
 with identifying the key insight
 with coming up with an efficient algorithm
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Expert Testimony
 “I found your paper quite

interesting...there are some
clever things that you have
done, and for the kinds of
applications you are talking
about, I think NRMI would
be quite useful.”

Jim Waldo (via email)
        [first ORB, Java RMI, Jini]
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Summary: This Talk

 NRMI: a middleware facility that makes
distributed systems programming easier
 solves a long standing, well-known open problem!
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Higher-level Distributed
Programming Facilities
 NRMI is a medium-level facility: it gives the

programmer full control, imposes requirements
 good for performance and flexibility
 low automation

 For single-threaded clients and stateless servers,
NRMI semantics is (provably) identical to local
procedure calls
 but statelessness is restrictive

 There are higher-level models for programming
distributed systems
 the higher the level, the more automation
 the higher the level, the smaller the domain of

applicability
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