A Natural Programming
Model for Distributed
Computing

Yannis Smaragdakis
Georgia Tech (— University of Oregon)

(with Eli Tilevich)

research supported by NSF grants
CCR-0220248 and CCR-0238289

My Research cos

e The systems and languages end of SE
ﬂﬂ:> language tools for distributed computing

NRMI, J-Orchestra, GOTECH
ICDCS’03, ECOOP’02, Middleware’04, ICSM’05, IEEE PervComp, ASE’03, ICSE’05, ..
automatic testing

JCrasher, Check-n-Crash (CnC), DSD-Crasher
Softw.Prac.&Exp., ICSE’'05, ICSE’'06 ER, ISSTA06, ...

program generators and domain-specific languages

Meta-Aspectd (MAJ), SafeGen, JTS, DiSTIL
GPCE’04 (best paper), ICSE’06 ER, PEPM’04, GPCE'05, ICSR’98, ...

multiparadigm programming

FC++, LC++
ICFP’00, JFP, Softw.Prac.&Exp., ...

software components

mixin layers, layered libraries
ECOOP’98, ICSR’98, ICSR’02, TOSEM, ...

memory management

EELRU, compressed VM, trace reduction, adaptive replacement
SIGMETRICS’99 (2x), Usenix’99 (best paper), TOMACS, Usenix’00, ISMM’04, ...

Yannis Smaragdakis 2

This Talk

e NRMI: a middleware facility that makes
distributed systems programming easier

solves a long standing, well-known open problem!

Yannis Smaragdakis 3

Language Tools for Distributed ::
Computing

e \What does “language tools” mean?

middleware libraries, compiler-level tools,
program generators, domain-specific languages

e What is a distributed system?

“A collection of independent computers that
appears to users as a single, coherent
system”

Yannis Smaragdakis 4

Why Language Tools for ses
Distributed Computing?

e Why Distributed Computing?

networks changed the way computers are used
programming distributed systems is hard!

partial failure, different semantics (distinct memory
spaces), high latency, natural multi-threading

are there simple programming models to make our
life easier?

e “The future is distributed computation, but the
language community has done very little to address
that possibility.”

Rob Pike—"Systems Software Research is Irrelevant”, 2000

Yannis Smaragdakis 5

Programming Distributed H:
Systems
e I - R -

o

A Eunction C

Function BijFunction D Function Bg|Function D} {

e A very common model is RPC middleware:

hide network communication behind a procedure call (“remote
procedure call”)

execute call on server, but make it look to client like a local call
only, not quite: need to be aware of different memory space

e Our problem: make remote calls more like local calls!

Yannis Smaragdakis 6

Common RPC Programming T
Model (call semantics): Call-by-copy

e [o call a remote procedure, copy argument-

reachable data to server site, return value back
= data packaged and sent over net (“pickling”, “serialization™)

sum(t); int sum(Tree tree) {...}
t tree
4 4
24
DU ITET
9 I 9 /
1 3 1 3

Client site NETELS Server site

Yannis Smaragdakis 7

Other Calling Semantics: Ses
Call-by-Copy-Restore

e Call-by-copy (cal-by-vaiue) works fine when the remote
procedure does not need to modify arguments
otherwise, changes not visible to caller, unlike local calls

In general, not easy to change shared state with non-shared
address spaces

e Call-by-copy-restore is a common idea in distributed
systems (and in some languages, as call-by-value-result).

copy arguments to remote procedure, copy results of
execution back, restore them in original variables

resembles call-by-reference on a single address space

Yannis Smaragdakis 8

Copy-Restore Example

swap(n,m); void swap(Obj a, Obj b) {...}
m b
N d
s \E 7 ™ >
Z 715
o

a
a b Network

Yannis Smaragdakis

A Long Standing Challenge

e Works ok for single variables, but not complex data!

e The distributed systems community has long tried to

define call-by-copy-restore as a general model, for
all data e 2>

L ®] ~
Rig,,,
=
“UTE
Pr'”"b/ef s D &)

\ \ - % —'11/(/1.‘ TEp
. o Bl Sy
o Atextbog's XS “‘,‘,x\“%\) over 15 s sy,
‘ e‘ V I : (%@(F@RA IeE = 5'/('((‘[,[,1111
(13 I h s‘e -ty OE0GR
.
2 S5V PR = WS
’ ,
simple ar S ¥ il A1
N, £ i S RN
’{ : gy 74 T
" ('
¢ 5 inter e kST i g
. \ <] - :
. - ,;'.,» b
= |
(s

it

The DCE RPC design tried to solve it but did not

Yannis Smaragdakis 10

Our Contribution: NRMi

e The NRMI ("Natural RMI”) middleware facility
solves the general problem efficiently
a drop-in replacement of Java RMI, also supporting full
call-by-copy-restore semantics

invariant: all changes from the server are visible to
client when RPC returns
no matter what data are used and how they are linked
this is the hallmark property of copy-restore

e The difficulty:

having pointers means having aliasing: multiple ways
to reach the same object—need to correctly update all

Yannis Smaragdakis 11

Solution Idea (by example)

e Consider what changes a procedure can make

foo(t); ... ree
void foo (Tree tree) { t
tree.left.data = 0; —> 4 alias2
tree.right.data = 9;
tree.right.right.data = 8; alias1
tree.left = null: !
Tree temp =
new Tree(2, tree.right.right,
null); 1 3

tree.right.right = null;
tree.right = temp,

}

Yannis Smaragdakis 12

Solution Idea (by example)

e Consider what changes a procedure can make

foo(t); ... ree
void foo (Tree tree) { t
=) tree.left.data = 0; —> 4 alias2
tree.right.data = 9;
tree.right.right.data = 8; alias1
tree.left = null: !
Tree temp =
new Tree(2, tree.right.right,
null); 1 3

tree.right.right = null;
tree.right = temp,

}

Yannis Smaragdakis 13

Solution Idea (by example)

e Consider what changes a procedure can make

foo(t); ... ree

void foo (Tree tree) { t

tree.left.data = 0; —> 4 alias2
=) tree.right.data = 9;

tree.right.right.data = 8; alias1

tree.left = null; 9

Tree temp =

new Tree(2, tree.right.right,
null); 1 3

tree.right.right = null;
tree.right = temp,

}

Yannis Smaragdakis 14

Solution Idea (by example)

e Consider what changes a procedure can make

foo(t); ... ree
void foo (Tree tree) { t
tree.left.data = 0; —> 4 alias2
tree.right.data = 9;
=) tree.right.right.data = 8; alias1
tree.left = null; 9
Tree temp =
new Tree(2, tree.right.right,
null); 1 g

tree.right.right = null;
tree.right = temp,

}

Yannis Smaragdakis 15

Solution Idea (by example)

e Consider what changes a procedure can make
foo(t); ... ree
void foo (Tree tree) { t
tree.left.data = 0; —> 4 alias2
tree.right.data = 9;
tree.right.right.data = 8; alias1
=) tree.left = null; >0 9

Tree temp =
new Tree(2, tree.right.right,

null); 1)
tree.right.right = null;

tree.right = temp,

}

Yannis Smaragdakis 16

Solution Idea (by example)

e Consider what changes a procedure can make

foo(t); ... ree

void foo (Tree tree) { t
tree.left.data = 0; —> 4 alias2

tree.right.data = 9; temp
tree.right.right.data = 8; alias1
tree.left = null; >0 9 2

==> Tree temp =
new Tree(2, tree.right.right,

null); 1 3
tree.right.right = null;

tree.right = temp,

}

Yannis Smaragdakis 17

Solution Idea (by example)

e Consider what changes a procedure can make
foo(t); ...

tree

void foo (Tree tree) { t

tree.left.data = 0; —> 4 alias2

tree.right.data = 9; temp

tree.right.right.data = 8; alias

tree.left = null; >0 9 2

Tree temp =

new Tree(2, tree.right.right, !

|::>I7Ull),' 1 8

tree.right.right = null;
tree.right = temp,

}

Yannis Smaragdakis 18

Solution Idea (by example)

e Consider what changes a procedure can make
foo(t); ...

tree

void foo (Tree tree) { t
tree.left.data = 0; —> 4 alias2
tree.right.data = 9; — temp
tree.right.right.data = 8; alias
tree.left = null; >0 9 2
Tree temp =

new Tree(2, tree.right.right, !
null); 1 8

—) tree.right.right = null;
tree.right = temp,

}

Yannis Smaragdakis 19

Previous Attempts: DCE RPC

e DCE RPC is the foremost example of a middleware
design that supports restoring remote changes

e The most widespread DCE RPC implementation is
Microsoft RPC (the base of middleware for the
Microsoft operating systems)

e Supports “full pointers™ (ptr) which can be aliased

e No true copy-restore: aliases not correctly updated

for complex structures, it's not enough to copy back and
restore the value of arguments

Yannis Smaragdakis 20

DCE RPC: stops short! e
Network
t 4 alias2 e 4
aliasj . . f
1

Server site

Yannis Smaragdakis 21

Solution Idea (by example)

e Key insight: the changes we
care about are all changes to

objects reachable from objects

that were originally reachable
from arguments to the call

e | hree critical cases:

changes may be made to data
now unreachable from t, but
reachable through other
aliases

new objects may be created
and linked

modified data may now be
reachable only through new
objects

t

—

alias1

—

Yannis Smaragdakis

/

tree

ZT/ alias?

9

temp

2

/

8

22

NRMI Algorithm (by example): | s::

identify all reachable

t

4

alias1

N\
i
\

alias?2

3

/

Client site

Network

B

3

/

Server site

Algorithm (by example):
execute remote procedure

4

. A
alias1

(o

1

W
/
\

alias?2

/

Client site

3

Network

tree

o

Yannis Smaragdakis

Server site

24

Algorithm (by example): oot
send back all reachable

tree Network

: i alias? ZT/

alias P \a t geme
9 A7 0 A9 2
/ /
1 3 1 8
L/ L/

Client site

Yannis Smaragdakis 25

Algorithm (by example):

match reachable maps

alias1

(o

4

A

1

W
/
\

alias?2

/

Client site

3

tree

o

Yannis Smaragdakis

Network

temp

v

/

26

Algorithm (by example): oot
update original objects

4

. A
alias1

o

1

W
/
\

alias?2

8

/

Client site

tree Network

. temp

I v

2
3

o
(©

Yannis Smaragdakis 27

Algorithm (by example): X
adjust links out of original objects

tree Network
t

_>T‘ alias2 4
. . temp
alias1 _ ‘
—0 é/ /ﬂ 2
1 8 1 38

||/ \ |/

Client site

o

Yannis Smaragdakis

Algorithm (by example): oot
adjust links out of new objects

—

alias1

|

4]

alias?2

Y/

1

|

Client site

tree Network

et
hiw;

Yannis Smaragdakis

Algorithm (by example): oot
garbage collect

Network

alias?2

j/{ k

alias1

Client site

Yannis Smaragdakis 30

Usability and Performance

e NRMI makes programming easier
no need to even know aliases

even if all known, eliminates many lines of code (~50 per remote
call/argument type—26% or more of the program for our
benchmarks)

common scenarios:
GUI patterns like MVC: many views alias same model
multiple indexing (e.g., customers + transactions crossreferenced)

e \We have a highly optimized implementation

algorithm implemented by tapping into existing
serialization mechanism, optimized with Java 1.4+
“‘unsafe” facility for direct memory access

Yannis Smaragdakis 31

Experimental Results

Bench3

Bench2

Benchl

Tree of 256 nodes

0 NRMI
/] Java RMI +
extra code

mp Java RMI, remote
ref. (no extra code)

-

100 150 200 250
Time in ms

Yannis Smaragdakis 32

Retrospective: ~C
What Helped Solve the Problem?

e An instance of “looking at things from the right angle”

a languages background helped a lot:
with defining precisely what copy-restore means
with identifying the key insight
with coming up with an efficient algorithm

server does not generate requests to the client. (This would
be dramatically less efficient than our approach. as our
measurements show.) We do not “generate special code in
the server” for using pointers: the server code can proceed
at full speed—mnot even the overhead of a local read or
write barrier 1s necessary.

We implemented our ideas 1n the form of NRMT (Nat-

Yannis Smaragdakis 33

Expert Testimony

e ‘| found your paper quite
interesting...there are some
clever things that you have
done, and for the kinds of
applications you are talking
about, | think NRMI would
be quite useful.”

Jim Waldo (via email)
[first ORB, Java RMI, Jini]

Yannis Smaragdakis

34

Summary: This Talk

e NRMI: a middleware facility that makes
distributed systems programming easier

solves a long standing, well-known open problem!

Yannis Smaragdakis 35

Higher-level Distributed T
Programming Facilities

e NRMI is a medium-level facility: it gives the
programmer full control, imposes requirements

good for performance and flexibility
low automation

e For single-threaded clients and stateless servers,
NRMI semantics is (provably) identical to local
procedure calls

but statelessness is restrictive

e There are higher-level models for programming
distributed systems

the higher the level, the more automation
the higher the level, the smaller the domain of
applicability

Yannis Smaragdakis 36

My Research cos

e The systems and languages end of SE
language tools for distributed computing

NRMI, J-Orchestra, GOTECH
ICDCS’03, ECOOP’02, Middleware’04, ICSM’05, IEEE PervComp, ASE’03, ICSE’05, ..
automatic testing

JCrasher, Check-n-Crash (CnC), DSD-Crasher
Softw.Prac.&Exp., ICSE’'05, ICSE’'06 ER, ISSTA06, ...

program generators and domain-specific languages

Meta-Aspectd (MAJ), SafeGen, JTS, DiSTIL
GPCE’04 (best paper), ICSE’06 ER, PEPM’04, GPCE'05, ICSR’98, ...

multiparadigm programming

FC++, LC++
ICFP’00, JFP, Softw.Prac.&Exp., ...

software components

mixin layers, layered libraries
ECOOP’98, ICSR’98, ICSR’02, TOSEM, ...

memory management

EELRU, compressed VM, trace reduction, adaptive replacement
SIGMETRICS’99 (2x), Usenix’99 (best paper), TOMACS, Usenix’00, ISMM’04, ...

Yannis Smaragdakis 37

Thank you!

Questions?

