
1SE Day @ Rutgers 4/22/08TAXITAXI

Systematic document generation from
XML Schema

Antonia Bertolino, Jinghua Gao, Eda Marchetti, Andrea Polini

name.surname@isti.cnr.it

Istituto di Scienza e Tecnologie dell'Informazione “A. Faedo"
(ISTI-CNR), Pisa

2SE Day @ Rutgers 4/22/08TAXITAXI

Agenda

 XML and XML Schema
 Motivating XML-based Partition Testing (XPT)
 Category Partition(CP) & Mapping from CP to

XPT
 XPT Methodology
 TAXI Tool
 Applications
 Conclusion

3SE Day @ Rutgers 4/22/08TAXITAXI

The eXtensible Markup Language(XML)

<?xml version="1.0"
encoding="ISO88591"?>
<card>
<name>John Doe</name>
<title>CEO, Widget Inc.</title>
<email>john.doe@widget.com</email>
<phone>(202) 4561414</phone>
</card>

card

name title phoneemail

John Doe CEO, Widget
 Inc

john.doe@
widget.com

(202)
4561414

 The eXtensible Markup Language (XML) is a Markup
Language which is today a de-facto standard to store
information and data.

 XML documents are tree structured documents in
which data are formatted/organised using tags

4SE Day @ Rutgers 4/22/08TAXITAXI

XML & XML Schema

 XML Schema provides a means for defining the structure and
content of XML documents

 In the open networked world, XML Schema support
interoperability between independently developed applications

Chinese

Italian

5SE Day @ Rutgers 4/22/08TAXITAXI

Automatic XML-Based Testing and
Benchmarking

What we would like
to achieve

6SE Day @ Rutgers 4/22/08TAXITAXI

Automatic XML-Based Testing and
Benchmarking

Some tools like that exist: XMLSpy, sunXMLGenerator, …

EASY WAY

7SE Day @ Rutgers 4/22/08TAXITAXI

Our proposal:
A Systematic Automatic Approach

The approach has been inspired at-large by the well-known
Category Partition methodology for systematic semi-automated
test generation …

..or, you can think of it as grammar-based generation, on the XSD
syntax, although we have also introduced practical rules

XML-based Partition
Testing XPT

8SE Day @ Rutgers 4/22/08TAXITAXI

Mapping CP to XPT

 CP XPT

 Analyze Specifications Preprocessor
 Identify Functional Units Identify Sub-Schema Sets
 Partition Categories Identify Types
 Selecte Choices Partition Values and Structures
 Determine Constraints Determine “valid/invalid” constraints
 Generate Test Specification Generate Intermediate Instances
 Generate Test Cases Generate Final Instances

9SE Day @ Rutgers 4/22/08TAXITAXI

Identification of
 Sub-Schema Sets

 <choice> elements partition the XML Schema into
distinct set corresponding to the CP functional units

XML Schema

choice A
B

1
2choice

XML Schema

sequence A

1sequence

XML Schema

sequence A

2sequence

XML Schema

sequence B

1sequence

XML Schema

sequence B

2sequence

preprocessorAnalyze
Specifications

Mapping from CP to XPT

Identify
Functional Units

Identify Sub-
Schema Sets

Partition
Categories

Identify Types

Selecte Choices
Partition

Values and
Structures

Determine
Constraints

Determine
“valid/invalid”
 Constraints

Generate Test
 Specification

Generate
 Intermediate

Instances

Generate Test
 Specification

Generate
Final Instances

10SE Day @ Rutgers 4/22/08TAXITAXI

Identification of Types

The CP categories in XPT
correspond to the
occurrence and types of
XML elements.
 EX: String, sequence, all

preprocessorAnalyze
Specifications

Identify
Functional Units

Identify Sub-
Schema Sets

Partition
Categories

Identify Types

Selecte Choices
Partition

Values and
Structures

Determine
Constraints

Determine
“valid/invalid”
 Constraints

Generate Test
 Specification

Generate
 Intermediate

Instances

Generate Test
 Specification

Generate
Final Instances

Mapping from CP to XPT

11SE Day @ Rutgers 4/22/08TAXITAXI

Partition of Values and
 Structures

 Values of the elements:
 Element attributes: fixed, default …
 Restrictions: “minInclusive”, “maxInclusive”,

“minExclusive”, “maxExclusive”,
“minLength”, “maxLength”

 Information of the structure of
the final instances
 Element: “minOccurs”, “maxOccurs”
 Attribute: “use”

preprocessorAnalyze
Specifications

Identify
Functional Units

Identify Sub-
Schema Sets

Partition
Categories

Identify Types

Selecte Choices
Partition

Values and
Structures

Determine
Constraints

Determine
“valid/invalid”
 Constraints

Generate Test
 Specification

Generate
 Intermediate

Instances

Generate Test
 Specification

Generate
Final Instances

Mapping from CP to XPT

12SE Day @ Rutgers 4/22/08TAXITAXI

Constraints of
“valid/invalid”

 Two types of constraints can
be identified
 Valid: values in choices conform

to the specification of the
XML Schema

 Invalid: values in choices do
not conform to the declaration
of XML Schema.

preprocessorAnalyze
Specifications

Identify
Functional Units

Identify Sub-
Schema Sets

Partition
Categories

Identify Types

Selecte Choices
Partition

Values and
Structures

Determine
Constraints

Determine
“valid/invalid”
 Constraints

Generate Test
 Specification

Generate
 Intermediate

Instances

Generate Test
 Specification

Generate
Final Instances

Mapping from CP to XPT

13SE Day @ Rutgers 4/22/08TAXITAXI

Example of “valid/invalid” contraints

Sequence:

 The same sequence of element as the specification of XML Schema [Valid]

 The sequence of element is differnt from the XML Schema specification [Invalid]

String:

 Any strings confrom to the specification of XML Schema [Valid]

 Any strings do not conform to the specification of XML schema. [Invalid]

Numeric:

 Any digitals confrom to the specification of XML Schema [Valid]

 Any digitals do not conform to the specification of XML schema. [Invalid]

Occurrence:

 Occurrence value ∈ (-∞ , minOccurs) [Invalid]

 Occurrrence value ∈ [minOccurs, maxOccurs] [Valid]

 Occurrence value ∈ (maxOccurs, ∞) [Invalid]

14SE Day @ Rutgers 4/22/08TAXITAXI

Intermediate Instances
Generate intermediate instance by combining the values of
“minOccurs” and “maxOccurs”.

We apply the conventional Boundary Condition test approach
to reduce the combinations

sub-Schema

minOccurs=0

maxOccurs=3

minOccurs=2

maxOccurs=4

A

B

Intermediate Instance

B occurs=2

Intermediate Instance

Intermediate Instance

Intermediate Instance

A occurs=0 A occurs=3

B occurs=2

A occurs=0

B occurs=4

A occurs=3

B occurs=4

preprocessorAnalyze
Specifications

Identify
Functional Units

Identify Sub-
Schema Sets

Partition
Categories

Identify Types

Selecte Choices
Partition

Values and
Structures

Determine
Constraints

Determine
“valid/invalid”
 Constraints

Generate Test
 Specification

Generate
 Intermediate

Instances

Generate Test
 Specification

Generate
Final Instances

Mapping from CP to XPT

15SE Day @ Rutgers 4/22/08TAXITAXI

Instance Derivation

 The set of final instances
is generated by giving the
proper value to each
element.
 The values are selected

from the choices according
to the restrictions
expressed in the XML
Schema.

preprocessorAnalyze
Specifications

Identify
Functional Units

Identify Sub-
Schema Sets

Partition
Categories

Identify Types

Selecte Choices
Partition

Values and
Structures

Determine
Constraints

Determine
“valid/invalid”
 Constraints

Generate Test
 Specification

Generate
 Intermediate

Instances

Generate Test
 Specification

Generate
Final Instances

Mapping from CP to XPT

16SE Day @ Rutgers 4/22/08TAXITAXI

Instance Derivation(2)

 The problem of CP method: Too many
generations!

 Our solution:
 Apply Pair-wise testing during the

occurrence generation
 Weighted Test Strategies

preprocessorAnalyze
Specifications

Identify
Functional Units

Identify Sub-
Schema Sets

Partition
Categories

Identify Types

Selecte Choices
Partition

Values and
Structures

Determine
Constraints

Determine
“valid/invalid”
 Constraints

Generate Test
 Specification

Generate
 Intermediate

Instances

Generate Test
 Specification

Generate
Final Instances

Mapping from CP to XPT

17SE Day @ Rutgers 4/22/08TAXITAXI

Main Interface of TAXI

18SE Day @ Rutgers 4/22/08TAXITAXI

 TAXI

 The mapping from the CP to the XML Schema Partition Testing
has been partially implemented in a proof-of-concept tool called
TAXI : Testing by Automatically generated XML Instances

 TAXI includes four components
 Schema Analyzer (XSA)

 Expands and preprocesses the XML Schema,
 Prepares the intermediate instance frames
 Provides a set of final instances

 Test Strategy Selector (TSS)
 Implements a set of test strategies.
 Manages the weight assignment for the elements in the

identified functional units
 Values Storage (VS)

 Manages a database for occurrences and values assignment
 User Interface (UI)

19SE Day @ Rutgers 4/22/08TAXITAXI

Potential Applications

 For validating database management systems
 automatically generate valid XML instances for populating

database in a systematic
 evaluate the performance and the quality of the associated

management systems
 For testing the inter-operability between applications and

for enabling the correct interactions among the interfaces
used by remote components in distributed systems.
 Automatic and controlled generation of valid and invalid

instances enables the automated testing of I/O behavior
 For verifying the proper communication protocols between

web-services.
 SOAP-based interaction between services can be reconducted

to the corresponding XML Schemas

20SE Day @ Rutgers 4/22/08TAXITAXI

Black-box testing

21SE Day @ Rutgers 4/22/08TAXITAXI

100% automatic
XSLT testing

22SE Day @ Rutgers 4/22/08TAXITAXI

Conclusions

 TAXI tool can automatically derive a set of
instances that systematically covers a XSD

 It can be applied for interoperability validation,
database benchmarking, black-box testing, …

Future work
 Invalid instance generation: Robustness testing
 Tool refinement
 Experimental validation

23SE Day @ Rutgers 4/22/08TAXITAXI

Thank you!
To get TAXI, or for joint experimentation

• Beta Version of TAXI on line at http://labse.isti.cnr.it/
Or

• send an email to antonia.bertolino@isti.cnr.it

