
1SE Day @ Rutgers 4/22/08TAXITAXI

Systematic document generation from
XML Schema

Antonia Bertolino, Jinghua Gao, Eda Marchetti, Andrea Polini

name.surname@isti.cnr.it

Istituto di Scienza e Tecnologie dell'Informazione “A. Faedo"
(ISTI-CNR), Pisa

2SE Day @ Rutgers 4/22/08TAXITAXI

Agenda

 XML and XML Schema
 Motivating XML-based Partition Testing (XPT)
 Category Partition(CP) & Mapping from CP to

XPT
 XPT Methodology
 TAXI Tool
 Applications
 Conclusion

3SE Day @ Rutgers 4/22/08TAXITAXI

The eXtensible Markup Language(XML)

<?xml version="1.0"
encoding="ISO88591"?>
<card>
<name>John Doe</name>
<title>CEO, Widget Inc.</title>
<email>john.doe@widget.com</email>
<phone>(202) 4561414</phone>
</card>

card

name title phoneemail

John Doe CEO, Widget
 Inc

john.doe@
widget.com

(202)
4561414

 The eXtensible Markup Language (XML) is a Markup
Language which is today a de-facto standard to store
information and data.

 XML documents are tree structured documents in
which data are formatted/organised using tags

4SE Day @ Rutgers 4/22/08TAXITAXI

XML & XML Schema

 XML Schema provides a means for defining the structure and
content of XML documents

 In the open networked world, XML Schema support
interoperability between independently developed applications

Chinese

Italian

5SE Day @ Rutgers 4/22/08TAXITAXI

Automatic XML-Based Testing and
Benchmarking

What we would like
to achieve

6SE Day @ Rutgers 4/22/08TAXITAXI

Automatic XML-Based Testing and
Benchmarking

Some tools like that exist: XMLSpy, sunXMLGenerator, …

EASY WAY

7SE Day @ Rutgers 4/22/08TAXITAXI

Our proposal:
A Systematic Automatic Approach

The approach has been inspired at-large by the well-known
Category Partition methodology for systematic semi-automated
test generation …

..or, you can think of it as grammar-based generation, on the XSD
syntax, although we have also introduced practical rules

XML-based Partition
Testing XPT

8SE Day @ Rutgers 4/22/08TAXITAXI

Mapping CP to XPT

 CP XPT

 Analyze Specifications  Preprocessor
 Identify Functional Units  Identify Sub-Schema Sets
 Partition Categories  Identify Types
 Selecte Choices  Partition Values and Structures
 Determine Constraints  Determine “valid/invalid” constraints
 Generate Test Specification  Generate Intermediate Instances
 Generate Test Cases  Generate Final Instances

9SE Day @ Rutgers 4/22/08TAXITAXI

Identification of
 Sub-Schema Sets

 <choice> elements partition the XML Schema into
distinct set corresponding to the CP functional units

XML Schema

choice A
B

1
2choice

XML Schema

sequence A

1sequence

XML Schema

sequence A

2sequence

XML Schema

sequence B

1sequence

XML Schema

sequence B

2sequence

preprocessorAnalyze
Specifications

Mapping from CP to XPT

Identify
Functional Units

Identify Sub-
Schema Sets

Partition
Categories

Identify Types

Selecte Choices
Partition

Values and
Structures

Determine
Constraints

Determine
“valid/invalid”
 Constraints

Generate Test
 Specification

Generate
 Intermediate

Instances

Generate Test
 Specification

Generate
Final Instances

10SE Day @ Rutgers 4/22/08TAXITAXI

Identification of Types

The CP categories in XPT
correspond to the
occurrence and types of
XML elements.
 EX: String, sequence, all

preprocessorAnalyze
Specifications

Identify
Functional Units

Identify Sub-
Schema Sets

Partition
Categories

Identify Types

Selecte Choices
Partition

Values and
Structures

Determine
Constraints

Determine
“valid/invalid”
 Constraints

Generate Test
 Specification

Generate
 Intermediate

Instances

Generate Test
 Specification

Generate
Final Instances

Mapping from CP to XPT

11SE Day @ Rutgers 4/22/08TAXITAXI

Partition of Values and
 Structures

 Values of the elements:
 Element attributes: fixed, default …
 Restrictions: “minInclusive”, “maxInclusive”,

“minExclusive”, “maxExclusive”,
“minLength”, “maxLength”

 Information of the structure of
the final instances
 Element: “minOccurs”, “maxOccurs”
 Attribute: “use”

preprocessorAnalyze
Specifications

Identify
Functional Units

Identify Sub-
Schema Sets

Partition
Categories

Identify Types

Selecte Choices
Partition

Values and
Structures

Determine
Constraints

Determine
“valid/invalid”
 Constraints

Generate Test
 Specification

Generate
 Intermediate

Instances

Generate Test
 Specification

Generate
Final Instances

Mapping from CP to XPT

12SE Day @ Rutgers 4/22/08TAXITAXI

Constraints of
“valid/invalid”

 Two types of constraints can
be identified
 Valid: values in choices conform

to the specification of the
XML Schema

 Invalid: values in choices do
not conform to the declaration
of XML Schema.

preprocessorAnalyze
Specifications

Identify
Functional Units

Identify Sub-
Schema Sets

Partition
Categories

Identify Types

Selecte Choices
Partition

Values and
Structures

Determine
Constraints

Determine
“valid/invalid”
 Constraints

Generate Test
 Specification

Generate
 Intermediate

Instances

Generate Test
 Specification

Generate
Final Instances

Mapping from CP to XPT

13SE Day @ Rutgers 4/22/08TAXITAXI

Example of “valid/invalid” contraints

Sequence:

 The same sequence of element as the specification of XML Schema [Valid]

 The sequence of element is differnt from the XML Schema specification [Invalid]

String:

 Any strings confrom to the specification of XML Schema [Valid]

 Any strings do not conform to the specification of XML schema. [Invalid]

Numeric:

 Any digitals confrom to the specification of XML Schema [Valid]

 Any digitals do not conform to the specification of XML schema. [Invalid]

Occurrence:

 Occurrence value ∈ (-∞ , minOccurs) [Invalid]

 Occurrrence value ∈ [minOccurs, maxOccurs] [Valid]

 Occurrence value ∈ (maxOccurs, ∞) [Invalid]

14SE Day @ Rutgers 4/22/08TAXITAXI

Intermediate Instances
Generate intermediate instance by combining the values of
“minOccurs” and “maxOccurs”.

We apply the conventional Boundary Condition test approach
to reduce the combinations

sub-Schema

minOccurs=0

maxOccurs=3

minOccurs=2

maxOccurs=4

A

B

Intermediate Instance

B occurs=2

Intermediate Instance

Intermediate Instance

Intermediate Instance

A occurs=0 A occurs=3

B occurs=2

A occurs=0

B occurs=4

A occurs=3

B occurs=4

preprocessorAnalyze
Specifications

Identify
Functional Units

Identify Sub-
Schema Sets

Partition
Categories

Identify Types

Selecte Choices
Partition

Values and
Structures

Determine
Constraints

Determine
“valid/invalid”
 Constraints

Generate Test
 Specification

Generate
 Intermediate

Instances

Generate Test
 Specification

Generate
Final Instances

Mapping from CP to XPT

15SE Day @ Rutgers 4/22/08TAXITAXI

Instance Derivation

 The set of final instances
is generated by giving the
proper value to each
element.
 The values are selected

from the choices according
to the restrictions
expressed in the XML
Schema.

preprocessorAnalyze
Specifications

Identify
Functional Units

Identify Sub-
Schema Sets

Partition
Categories

Identify Types

Selecte Choices
Partition

Values and
Structures

Determine
Constraints

Determine
“valid/invalid”
 Constraints

Generate Test
 Specification

Generate
 Intermediate

Instances

Generate Test
 Specification

Generate
Final Instances

Mapping from CP to XPT

16SE Day @ Rutgers 4/22/08TAXITAXI

Instance Derivation(2)

 The problem of CP method: Too many
generations!

 Our solution:
 Apply Pair-wise testing during the

occurrence generation
 Weighted Test Strategies

preprocessorAnalyze
Specifications

Identify
Functional Units

Identify Sub-
Schema Sets

Partition
Categories

Identify Types

Selecte Choices
Partition

Values and
Structures

Determine
Constraints

Determine
“valid/invalid”
 Constraints

Generate Test
 Specification

Generate
 Intermediate

Instances

Generate Test
 Specification

Generate
Final Instances

Mapping from CP to XPT

17SE Day @ Rutgers 4/22/08TAXITAXI

Main Interface of TAXI

18SE Day @ Rutgers 4/22/08TAXITAXI

 TAXI

 The mapping from the CP to the XML Schema Partition Testing
has been partially implemented in a proof-of-concept tool called
TAXI : Testing by Automatically generated XML Instances

 TAXI includes four components
 Schema Analyzer (XSA)

 Expands and preprocesses the XML Schema,
 Prepares the intermediate instance frames
 Provides a set of final instances

 Test Strategy Selector (TSS)
 Implements a set of test strategies.
 Manages the weight assignment for the elements in the

identified functional units
 Values Storage (VS)

 Manages a database for occurrences and values assignment
 User Interface (UI)

19SE Day @ Rutgers 4/22/08TAXITAXI

Potential Applications

 For validating database management systems
 automatically generate valid XML instances for populating

database in a systematic
 evaluate the performance and the quality of the associated

management systems
 For testing the inter-operability between applications and

for enabling the correct interactions among the interfaces
used by remote components in distributed systems.
 Automatic and controlled generation of valid and invalid

instances enables the automated testing of I/O behavior
 For verifying the proper communication protocols between

web-services.
 SOAP-based interaction between services can be reconducted

to the corresponding XML Schemas

20SE Day @ Rutgers 4/22/08TAXITAXI

Black-box testing

21SE Day @ Rutgers 4/22/08TAXITAXI

100% automatic
XSLT testing

22SE Day @ Rutgers 4/22/08TAXITAXI

Conclusions

 TAXI tool can automatically derive a set of
instances that systematically covers a XSD

 It can be applied for interoperability validation,
database benchmarking, black-box testing, …

Future work
 Invalid instance generation: Robustness testing
 Tool refinement
 Experimental validation

23SE Day @ Rutgers 4/22/08TAXITAXI

Thank you!
To get TAXI, or for joint experimentation

• Beta Version of TAXI on line at http://labse.isti.cnr.it/
Or

• send an email to antonia.bertolino@isti.cnr.it

