
Applications of Machine Learning
in Software Testing

Lionel C. Briand

Simula Research Laboratory

and

University of Oslo

March 2008 2

Acknowledgments

• Yvan labiche

• Xutao Liu

• Zaheer Bawar

• Kambiz Frounchi

March 2008 3

Motivations

• There are many examples of ML applications in
the testing literature, but not always where it
could be the most useful or practical

• Limited usage of ML in commercial testing
tools and practice

• Application of ML in testing has not reached its
full potential

• Examples: Applications of machine learning for
supporting test specifications, test oracles, and
debugging

• General conclusions from these experiences

March 2008 4

Black-box Test Specifications

• Context: Black-box, specification testing

• Black-box, specification testing is the most common
practice for large components, subsystems, and
systems. But it is error-prone.

• Learning objective: relationships between inputs &
execution conditions and outputs

• Usage: detect anomalies in black-box test specifications,
iterative improvement

• User’s role: define/refine categories and choices
(Category-partition)

• Just learning from traces is unlikely to be practical in
many situations: Exploit test specifications

March 2008 5

Iterative Improvement Process

(4) Update Test Suite

(5) Update Category-Partition

Abstract Test Suite (ATS)

Decision Tree (DT)
Test Suite

(3) Analysis of
DT

(2) C4.5 Decision Tree

Category

Partition
(1) Generate Abstract

Test Suite

Automated activity Partially automated activity Manual activity (with heuristic support)

March 2008 6

Abstract Test Cases

• Using Category and choices to derive
abstract test cases
– Categories (e.g., triangle side s1 = s2),

choices (e.g., true/false)
– CP definitions must be sufficiently precise
– (1,2,2) => (s1 <> s2, s2 = s3, s1<>s3)
– Output equivalence class: Isosceles, etc.
– Abstract test cases make important

properties of test cases explicit
– Facilitate learning

March 2008 7

Examples with Triangle Program

Examples of Detected Problems: Misclassifications

1 (a vs. b) = a!=b
2 | (c vs. a+b) = c<=a+b
3 | | (a vs. b+c) = a<=b+c
4 | | | (b vs. a+c) = b<=a+c
5 | | | | (b vs. c) = b=c
6 | | | | | (a) = a>0: Isosceles (22.0)

OEC1 OEC2

…

Cat i = Choice j

Abstract test suite

March 2008 8

Example: ill-defined Choices

• Ill-defined choices make render a
category a poor predictor of output
equivalence classes

• Example: Category (c vs. a+b)
c < a+ b (should be <=)

c >= a +b (should be >)

• Misclassifications where c = a+b

March 2008 9

Linking Problems to Potential
Causes

Problems Causes

Missclassifications

Too Many Test
Cases for a Rule

Unused Categories

Missing Combinations
of Choices

Missing Category

Ill-defined Choices

Missing Test Cases

Redundant Test Cases

Useless Categories

Impossible Combinations
of Choices

March 2008 10

Case Study: Summary of Results

• Experiments with students defining and refining test
case specifications using category partition

• Taxonomies of decision tree problems and causes
complete

• Student achieved a good CP specification in two or three
iterations

• Reasonable increase in test cases led to a significant
number of additional faults.

• Our heuristic to remove redundant test cases leads to
significant reduction in test suite size (~50%), but a small
reduction in the number of faults detected may also be
observed.

March 2008 11

Test Oracles

• Context: Iterative development and testing, no
precise test oracles

• Learning objectives: Model expert knowledge
in terms of output correctness and similarity

• Usage: avoid expensive (automate) re-testing
of previously successful test cases
(segmentations)

• User’s role: Expert must help devise a training
set to feed the ML algorithm.

• Example is image segmentation algorithms for
heart ventricles

March 2008 12

Heart Ventricle Segmentation

March 2008 13

Iterative Development of
Segmentation Algorithms

March 2008 14

Study

• Many (imperfect) similarity measures
between segmentations in the literature

• Oracle: Are two segmentations of the same
image similar enough to be confidently
considered equivalent or consistent?
– Vi Correct & Vi+1 consistent => Vi+1 correct
– Vi Correct & Vi+1 inconsistent => Vi+1 incorrect
– Vi Incorrect & Vi+1 consistent => Vi+1 incorrect

• Machine learning uses training set of
instances where that question was
answered by experts + similarity measures

March 2008 15

Classification Tree Predicting
Consistency of Segmentations

Similarity measures

Consistency

March 2008 16

Results

• Three similarity measures selected

• Cross-validation ROC area: 94%

• For roughly 75% of comparisons, the decision
tree can be trusted with a high level of
confidence

• For 25% of comparisons, the expert will
probably have to perform manual checks

• More similarity measures to consider

• Similar results with other rule generation
algorithms (PART, Ripper)

March 2008 17

Fault Localization (Debugging)

• Context: Black-box, specification testing

• Learning objective: relationships between inputs &
execution conditions and failure occurrences

• Usage: Learn about failure conditions, refine statement
ranking techniques in the presence of multiple faults

• User’s role: define categories and choices (Category-
partition)

• Techniques ranking statements are unlikely to be of
sufficient help for debugging

• Still need to address the case of multiple faults (failures
caused by different faults)

• Failure conditions must be characterized in an easily
understood form

March 2008 18

Generating Rules - Test case
classification

• Using C4.5 to analyze abstract test cases
– A failing rule generated by the C4.5 models a possible condition of

failure

– Failing test cases associated with a same C4.5 rule (similar conditions)
are likely to fail due to the same faults

equals(s1,s2)

(1)

equals(s3,s1)

(2)

equals(s2,s3)

(3)

Fail

(4)

Pass

(5)

Pass

(6)

Pass

(7)

s1=s2 s1>s2

s3=s1 s3>s1 s2=s3 s2>s3

Rule: s1=s2 and

s3=s1

March 2008 19

Accuracy of Fail Rules (Space)

 Predicted
 Fail Pass

Fail 6045 335 Actual
Pass 550 6655

1. defines a triangular grid of antennas (condition 1),
2. defines a uniform amplitude and phase of the antennas (conditions 2 and 3),
3. defines the triangular grid with angle coordinates or Cartesian coordinates, and a value is

missing when providing the coordinates (conditions 4 and 5);

•Fail test cases:

92% precision, 95% recall

•Similar for Pass test cases

March 2008 20

Statement ranking strategy

• Select high accuracy rules based on a
sufficiently large number of (abstract) test cases

• Consider test cases in each rule separately

• In each test case set matching a failing rule, the
more test cases executing a statement, the more
suspicious it is, and the smaller its weight:
Weight(Ri,s) ∈ [-1 0]

• For passing rules, the more test cases executing
a statement, the safer it is: Weight(Ri,s) ∈ [0 1]

!
"

=
RR

i

i

sRWeightsWeight),()(
more suspicious less suspicious

<0 0 >0
Weight(s)

March 2008 21

Statement Ranking: Space

• Scenario: for each iteration, fix all the faults in
reachable statements

0
10
20
30
40
50
60
70
80
90

100

%
 o

f F
au

lty
 S

ta
te

m
en

ts
 C

ov
er

ed
0 10 20 30 40 50 60 70 80 90

% of Statements Covered

RUBAR

0
10
20
30
40
50
60
70
80
90

100

%
 o

f F
au

lty
 S

ta
te

m
en

ts
 C

ov
er

ed

0 10 20 30 40 50 60 70 80 90
% of Statements Covered

Tarantula

2nd
iteration

March 2008 22

Case studies: summary

• RUBAR more effective than Tarantula at ranking faulty
statements thanks to the C4.5 classification rules

• The generated C4.5 classification rules based on CP
choices characterizing failure conditions accurately
predict failures

• Experiments with human debuggers are needed to
assess the cost-effectiveness of the approach

March 2008 23

Lessons Learned

• In all considered applications, it is difficult to imagine
how the problem could have been solved without human
input, e.g., categories and choices

• Machine learning has shown to help decision making --
but it does not help fully automate solutions to the test
specification, oracle, and fault localization problems.

• Search for full automation is often counter-productive: It
leads to impractical solutions.

• Important question: What is best handled/decided by the
expert and what is best automated (through ML
algorithms)

• Solutions that best combine human expertise and
automated support

March 2008 24

References

• L.C. Briand, Y. Labiche, X. Liu, "Using Machine Learning
to Support Debugging with Tarantula", IEEE
International Symposium on Software Reliability
Engineering (ISSRE 2007), Sweden

• L.C. Briand, Y. Labiche, Z. Bawar, "Using Machine
Learning to Refine Black-box Test Specifications and
Test Suites", Technical Report SCE-07-05, Carleton
University, May 2007

• K. Frounchi, L. Briand, Y. Labiche, “Learning a Test
Oracle Towards Automating Image Segmentation
Evaluation”, Technical Report SCE-08-02, Carleton
University, March 2008

? Questions ?

March 2008 26

RUBAR iterative debugging
process

Abstract
test suite

Test case
transformation

Rule generation

C4.5 rules

(1)

(3)

Program slice
by TC

Test result

(2)

 System under
test

Execution/Coverage
Analysis

Category Partition
definitionTest suite

Fault removing

RUBAR algorithm

Statement
ranking

Fault removing
strategy

(4)

(5)

