Applications of Machine Learning
in Software Testing

Lionel C. Briand
Simula Research Laboratory
and

University of Oslo

(e) 2004 TU2F ANDK

| simula . research laboratory |

Acknowledgments

 Yvan labiche
« Xutao Liu
e Zaheer Bawar

« Kambiz Frounchi

000000000

| simula . research laboratory |

Motivations

* There are many examples of ML applications in
the testing literature, but not always where it
could be the most useful or practical

* Limited usage of ML in commercial testing
tools and practice

* Application of ML in testing has not reached its
full potential

« Examples: Applications of machine learning for
supporting test specifications, test oracles, and
debugging

» General conclusions from these experiences

000000000

| simula . research laboratory |

Black-box Test Specifications

« Context: Black-box, specification testing

« Black-box, specification testing is the most common
practice for large components, subsystems, and
systems. But it is error-prone.

» Learning objective: relationships between inputs &
execution conditions and outputs

« Usage: detect anomalies in black-box test specifications,
iterative improvement

« User’s role: define/refine categories and choices
(Category-partition)

« Just learning from traces is unlikely to be practical in
many situations: Exploit test specifications

000000000

| simula . research laboratory |

Iterative Improvement Process

(5) Update Category-Partition
Category Abstract Test Suite (ATS)

Partition

|
-T t Suit
— Decision Tree (DT)
(4) Update Test Suite

Manual activity (with heuristic support)

March 2008 5

| simula . research laboratory |

Abstract Test Cases

« Using Category and choices to derive
abstract test cases

— Categories (e.g., triangle side s1 = s2),
choices (e.g., true/false)

— CP definitions must be sufficiently precise
- (1,2,2) => (s1 <>s2, s2 = s3, s1<>s3)
— Output equivalence class: Isosceles, etc.

— Abstract test cases make important
properties of test cases explicit

— Facilitate learning

000000000

| simula . research laboratory |

Examples with Triangle Program

Abstract test suite
(a vs. b) = a!=b Catizcécej\
(c vs. atb) = c<=a+tb
(a vs. btc) = a<=b+c //\
| (b vs. atc) = b<=a+t+c OEC1 OEC2
| | (b vs. ¢c) = b=c
| | | (a) = a>0: Isosceles (22.0)

o U b W N

Example 1: Example 2:

(a vs. b) = a=b (a vs. b) = a=b
| (b vs. c) =Dbl=c | (c) = >0

| | (a vs. btc) = a<=btc | | (b vs. c)=Db!=c: Isosceles (24.0/2.0)
| | | (c vs. atb) = c<=ath: Isosceles (24.0/2.0)

Examples of Detected Problems: Misclassifications

March 2008 7

| simula . research laboratory |

Example: ill-defined Choices

* |ll-defined choices make render a
category a poor predictor of output
equivalence classes

 Example: Category (c vs. a+b)

c < a+ b (should be <=)

c >= a +b (should be >)

 Misclassifications where ¢ = a+b

000000000

| simula . research laboratory |

Linking Problems to Potential
Causes

Problems Causes
Missclassifications Missing Category
Too Many Test lll-defined Choices
Cases for a Rule

Missing Test Cases

Unused Categories Redundant Test Cases

Missing Combinations Useless Categories
of Choices

Impossible Combinations
of Choices

March 2008

| simula . research laboratory |

Case Study: Summary of Results

« Experiments with students defining and refining test
case specifications using category partition

« Taxonomies of decision tree problems and causes
complete

« Student achieved a good CP specification in two or three
iterations

« Reasonable increase in test cases led to a significant
number of additional faults.

* Our heuristic to remove redundant test cases leads to
significant reduction in test suite size (~50%), but a small
reduction in the number of faults detected may also be
observed.

000000000

| simula . research laboratory |

Test Oracles

« Context: Iterative development and testing, no
precise test oracles

« Learning objectives: Model expert knowledge
in terms of output correctness and similarity

« Usage: avoid expensive (automate) re-testing
of previously successful test cases
(segmentations)

» User's role: Expert must help devise a training
set to feed the ML algorithm.

« Example is image segmentation algorithms for
heart ventricles

000000000

.research laboratory |

Heart Ventricle Segmentation

'
]
"
]

et ventricle

o

000000000

| simula . research laboratory |

Iterative Development of
Segmentation Algorithms

Devise Image
Segmentation Algorithm

image segmentation algorithm

v
[Segment subjects](
v

segmented subjects set

v

[Manual Verification J

v

verification results set

revised image segmentation
algorithm

Modify Image
Segmentation Algorithm

[pass])\
@—

[fail]

| simula . research laboratory |

Study

* Many (imperfect) similarity measures
between segmentations in the literature

* Oracle: Are two segmentations of the same
image similar enough to be confidently
considered equivalent or consistent?

— Vi Correct & Vi+1 consistent => Vi+1 correct
— Vi Correct & Vi+1 inconsistent => Vi+1 incorrect
— Vi Incorrect & Vi+1 consistent => Vi+1 incorrect

« Machine learning uses training set of
iInstances where that question was
answered by experts + similarity measures

000000000

| simula.researc

h laboratory |

Classification Tree Predicting
Consistency of Segmentations

Consistency

All Rows T
| Slmllarlty measures
Count GA2 LogWorth
215 297.49025 41.362539
DSC_MF<0.84987577 DSC_MF>=0.84987577
[[
Count GA2 LogWorth Count GA2 LogWorth
79 42.464569 4.5957099 136 140.9536 14.275805
ANVD>=0.2903414|| ANVD<0.2903414 AVD>=9.169 AVD<9.169
Y || [Y | ([e || ——
Count GA2 Count GA2 Count GA2 Count GA2
63 0 16 21.170024 47 64.622912 89 26.237865

March 2008

| simula . research laboratory |

Results

« Three similarity measures selected
* Cross-validation ROC area: 94%

* For roughly 75% of comparisons, the decision
tree can be trusted with a high level of
confidence

* For 25% of comparisons, the expert will
probably have to perform manual checks

* More similarity measures to consider

« Similar results with other rule generation
algorithms (PART, Ripper)

000000000

| simula . research laboratory |

Fault Localization (Debugging)

« Context: Black-box, specification testing

» Learning objective: relationships between inputs &
execution conditions and failure occurrences

« Usage: Learn about failure conditions, refine statement
ranking techniques in the presence of multiple faults

« User’s role: define categories and choices (Category-
partition)

« Techniques ranking statements are unlikely to be of
sufficient help for debugging

« Still need to address the case of multiple faults (failures
caused by different faults)

* Failure conditions must be characterized in an easily
understood form

000000000

| simula . research laboratory |

Generating Rules - Test case
classification

« Using C4.5 to analyze abstract test cases

— A failing rule generated by the C4.5 models a possible condition of
failure

— Failing test cases associated with a same C4.5 rule (similar conditions)
are likely to fail due to the same faults

000000000

| simula . research laboratory |

Accuracy of Fail Rules (Space)

Pre dlCted Rules length TC Fail Probability
Fail Pass F109 1 30 100.00%

F025 5 667 | 99.55%
. F104 2 240 | 98.75%
Actual Fail 6045 335 106 | 1 3041 98.36%
F105 2 158 | 97.47%
Pass 550 6655 F107 1 114 | 97.37%
F009 12 147 | 97.28%
* FO10 12 132 | 96.97%
F003 12 37 94.59%
F004 11 200 [94.50%
FO12 11 97 93.81%
F005 11 548 | 93.80%
F070 10 271 93.73%
F069 9 116 | 92.24%
F087 9 199 | 91.96%
FO16 7 12 91.67%
F086 8 700 | 91.57%

Table 1 Example Fail rules with Fail

probabilities and test case coverage

March 2008 19

| simula . research laboratory |

Statement ranking strategy

« Select high accuracy rules based on a
sufficiently large number of (abstract) test cases

« Consider test cases in each rule separately

* In each test case set matching a failing rule, the
more test cases executing a statement, the more

suspicious it is, and the smaller its weight:
Weight(R,s) € [-1 0]

* For passing rules, the more test cases executing
a statement, the safer it is: Weight(R,s) € [0 1]

Weight(s)
<0 0 >0
— : —>
more suspicious less suspicious

000000000

[simule

.research laboratory |

Statement Ranking: Space

Scenario: for each iteration, fix all the faults in

reachable statements

% of Faulty Statements Covered

= NW OO N WO O
OO0 OO0 OO0 o

o

0

1

LI L L L L L
0 20 30 40 50 60 70 80 90

% of Statements Covered

Tarantula

s Covered

% of Faulty Statement

1007

907
807
707
607
507
407
307
207
10

O_

IIll'
4

_"“i

0

10 2

! 1 ' |
30 40 50 60 70 80 90
% of Statements Covered

RUBAR

March 2008

21

| simula . research laboratory |

Case studies: summary

« RUBAR more effective than Tarantula at ranking faulty
statements thanks to the C4.5 classification rules

* The generated C4.5 classification rules based on CP
choices characterizing failure conditions accurately
predict failures

« Experiments with human debuggers are needed to
assess the cost-effectiveness of the approach

000000000

| simula . research laboratory |

Lessons Learned

« |In all considered applications, it is difficult to imagine
how the problem could have been solved without human
iInput, e.g., categories and choices

* Machine learning has shown to help decision making --
but it does not help fully automate solutions to the test
specification, oracle, and fault localization problems.

« Search for full automation is often counter-productive: It
leads to impractical solutions.

* Important question: What is best handled/decided by the
expert and what is best automated (through ML
algorithms)

« Solutions that best combine human expertise and
automated support

000000000

| simula . research laboratory |

References

L.C. Briand, Y. Labiche, X. Liu, "Using Machine Learning
to Support Debugging with Tarantula”, IEEE

International Symposium on Software Reliability
Engineering (ISSRE 2007), Sweden

L.C. Briand, Y. Labiche, Z. Bawar, "Using Machine
Learning to Refine Black-box Test Specifications and
Test Suites", Technical Report SCE-07-05, Carleton
University, May 2007

K. Frounchi, L. Briand, Y. Labiche, “Learning a Test
Oracle Towards Automating Image Segmentation
Evaluation”, Technical Report SCE-08-02, Carleton
University, March 2008

000000000

? Questions ?

| simula . research laboratory |

RUBAR iterative debugging
process

Category Partition
“— definition

System under Test suite

‘teﬁ/
Execution/Coverage
Analysis Test case
transformation
@ N ¥
Abstract

Program slice Test result
by TC

test sui

Rule generation

| C4.5 rules

RUBAR algorithm

(4)y

Statement
rankin

(5) Gult removing>< Fault removing M

strate
March 2008

