Applications of Machine Learning in Software Testing

Lionel C. Briand Simula Research Laboratory and University of Oslo

Acknowledgments

- Yvan labiche
- Xutao Liu
- Zaheer Bawar
- Kambiz Frounchi

2

Motivations

- There are many examples of ML applications in the testing literature, but not always where it could be the most useful or practical
- Limited usage of ML in commercial testing tools and practice
- Application of ML in testing has not reached its full potential
- Examples: Applications of machine learning for supporting test specifications, test oracles, and debugging
- General conclusions from these experiences

Black-box Test Specifications

- Context: Black-box, specification testing
- Black-box, specification testing is the most common practice for large components, subsystems, and systems. But it is error-prone.
- Learning objective: relationships between inputs & execution conditions and outputs
- Usage: detect anomalies in black-box test specifications, iterative improvement
- User's role: define/refine categories and choices (Category-partition)
- Just learning from traces is unlikely to be practical in many situations: Exploit test specifications

Iterative Improvement Process

5

Abstract Test Cases

- Using Category and choices to derive abstract test cases
 - Categories (e.g., triangle side s1 = s2), choices (e.g., true/false)
 - CP definitions must be sufficiently precise
 - (1,2,2) => (s1 <> s2, s2 = s3, s1<>s3)
 - Output equivalence class: Isosceles, etc.
 - Abstract test cases make important properties of test cases explicit
 - Facilitate learning

Examples with Triangle Program

Example 1:	Example 2:
(a vs. b) = a=b	(a vs. b) = a=b
(b vs. c) = b!=c	(c) = c > 0
	(b vs. c) = b!=c: Isosceles (24.0/2.0)
(c vs. a+b) = c<=a+b: Isosceles (24.0/2.0)	

Examples of Detected Problems: Misclassifications

Example: ill-defined Choices

- Ill-defined choices make render a category a poor predictor of output equivalence classes
- Example: Category (c vs. a+b)
 - c < a+ b (should be <=)
 - c >= a + b (should be >)
- Misclassifications where c = a+b

Linking Problems to Potential Causes

9

Case Study: Summary of Results

- Experiments with students defining and refining test case specifications using category partition
- Taxonomies of decision tree problems and causes complete
- Student achieved a good CP specification in two or three iterations
- Reasonable increase in test cases led to a significant number of additional faults.
- Our heuristic to remove redundant test cases leads to significant reduction in test suite size (~50%), but a small reduction in the number of faults detected may also be observed.

Test Oracles

- Context: Iterative development and testing, no precise test oracles
- Learning objectives: Model expert knowledge in terms of output correctness and similarity
- Usage: avoid expensive (automate) re-testing of previously successful test cases (segmentations)
- User's role: Expert must help devise a training set to feed the ML algorithm.
- Example is image segmentation algorithms for heart ventricles

Heart Ventricle Segmentation

12

Iterative Development of Segmentation Algorithms

Study

- Many (imperfect) similarity measures between segmentations in the literature
- Oracle: Are two segmentations of the same image similar enough to be confidently considered equivalent or consistent?
 - Vi Correct & Vi+1 consistent => Vi+1 correct
 - Vi Correct & Vi+1 inconsistent => Vi+1 incorrect
 - Vi Incorrect & Vi+1 consistent => Vi+1 incorrect
- Machine learning uses training set of instances where that question was answered by experts + similarity measures

Classification Tree Predicting Consistency of Segmentations

Results

- Three similarity measures selected
- Cross-validation ROC area: 94%
- For roughly 75% of comparisons, the decision tree can be trusted with a high level of confidence
- For 25% of comparisons, the expert will probably have to perform manual checks
- More similarity measures to consider
- Similar results with other rule generation algorithms (PART, Ripper)

Fault Localization (Debugging)

- Context: Black-box, specification testing
- Learning objective: relationships between inputs & execution conditions and failure occurrences
- Usage: Learn about failure conditions, refine statement ranking techniques in the presence of multiple faults
- User's role: define categories and choices (Categorypartition)
- Techniques ranking statements are unlikely to be of sufficient help for debugging
- Still need to address the case of multiple faults (failures caused by different faults)
- Failure conditions must be characterized in an easily understood form

Generating Rules - Test case classification

- Using C4.5 to analyze abstract test cases
 - A failing rule generated by the C4.5 models a possible condition of failure
 - Failing test cases associated with a same C4.5 rule (similar conditions) are likely to fail due to the same faults

18

March 2008

Accuracy of Fail Rules (Space)

- 1. defines a triangular grid of antennas (condition 1),
- 2. defines a uniform amplitude and phase of the antennas (conditions 2 and 3),
- 3. defines the triangular grid with angle coordinates or Cartesian coordinates, and a value is missing when providing the coordinates (conditions 4 and 5);

Statement ranking strategy

- Select high accuracy rules based on a sufficiently large number of (abstract) test cases
- Consider test cases in each rule separately
- In each test case set matching a failing rule, the more test cases executing a statement, the more suspicious it is, and the smaller its weight: $Weight(R_i, s) \in [-1 \ 0]$
- For passing rules, the more test cases executing a statement, the safer it is: $Weight(R_i, s) \in [0 \ 1]$

$$Weight(s) = \sum_{R_i \in R} Weight(R_i, s) \xrightarrow{<0 \qquad 0 \qquad >0}$$

more suspicious less suspicious

March 2008

Statement Ranking: Space

• Scenario: for each iteration, fix all the faults in reachable statements

Case studies: summary

- RUBAR more effective than Tarantula at ranking faulty statements thanks to the C4.5 classification rules
- The generated C4.5 classification rules based on CP choices characterizing failure conditions accurately predict failures
- Experiments with human debuggers are needed to assess the cost-effectiveness of the approach

Lessons Learned

- In all considered applications, it is difficult to imagine how the problem could have been solved without human input, e.g., categories and choices
- Machine learning has shown to help decision making -but it does not help fully automate solutions to the test specification, oracle, and fault localization problems.
- Search for full automation is often counter-productive: It leads to impractical solutions.
- Important question: What is best handled/decided by the expert and what is best automated (through ML algorithms)
- Solutions that best combine human expertise and automated support

References

- L.C. Briand, Y. Labiche, X. Liu, "Using Machine Learning to Support Debugging with Tarantula", IEEE International Symposium on Software Reliability Engineering (ISSRE 2007), Sweden
- L.C. Briand, Y. Labiche, Z. Bawar, "Using Machine Learning to Refine Black-box Test Specifications and Test Suites", Technical Report SCE-07-05, Carleton University, May 2007
- K. Frounchi, L. Briand, Y. Labiche, "Learning a Test Oracle Towards Automating Image Segmentation Evaluation", Technical Report SCE-08-02, Carleton University, March 2008

? Questions ?

RUBAR iterative debugging process

26