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Motivations

* There are many examples of ML applications in
the testing literature, but not always where it
could be the most useful or practical

* Limited usage of ML in commercial testing
tools and practice

* Application of ML in testing has not reached its
full potential

« Examples: Applications of machine learning for
supporting test specifications, test oracles, and
debugging

» General conclusions from these experiences
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Black-box Test Specifications

« Context: Black-box, specification testing

« Black-box, specification testing is the most common
practice for large components, subsystems, and
systems. But it is error-prone.

» Learning objective: relationships between inputs &
execution conditions and outputs

« Usage: detect anomalies in black-box test specifications,
iterative improvement

« User’s role: define/refine categories and choices
(Category-partition)

« Just learning from traces is unlikely to be practical in
many situations: Exploit test specifications

000000000



| simula . research laboratory |

Iterative Improvement Process

(5) Update Category-Partition
Category Abstract Test Suite (ATS)

Partition

|
-T t Suit
— Decision Tree (DT)
(4) Update Test Suite

Manual activity (with heuristic support)
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Abstract Test Cases

« Using Category and choices to derive
abstract test cases

— Categories (e.g., triangle side s1 = s2),
choices (e.g., true/false)

— CP definitions must be sufficiently precise
- (1,2,2) => (s1 <>s2, s2 = s3, s1<>s3)
— Output equivalence class: Isosceles, etc.

— Abstract test cases make important
properties of test cases explicit

— Facilitate learning

000000000



| simula . research laboratory |

Examples with Triangle Program

Abstract test suite
(a vs. b) = a!=b Catizcécej\
(c vs. atb) = c<=a+tb
(a vs. btc) = a<=b+c //\
| (b vs. atc) = b<=a+t+c OEC1 OEC2
| | (b vs. ¢c) = b=c
| | | (a) = a>0: Isosceles (22.0)

o U b W N

Example 1: Example 2:

(a vs. b) = a=b (a vs. b) = a=b
| (b vs. c) =Dbl=c | (c) = >0

| | (a vs. btc) = a<=btc | | (b vs. c)=Db!=c: Isosceles (24.0/2.0)
| | | (c vs. atb) = c<=ath: Isosceles (24.0/2.0)

Examples of Detected Problems: Misclassifications
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Example: ill-defined Choices

* |ll-defined choices make render a
category a poor predictor of output
equivalence classes

 Example: Category (c vs. a+b)

c < a+ b (should be <=)

c >= a +b (should be >)

 Misclassifications where ¢ = a+b
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Linking Problems to Potential
Causes

Problems Causes
Missclassifications Missing Category
Too Many Test lll-defined Choices
Cases for a Rule

Missing Test Cases

Unused Categories Redundant Test Cases

Missing Combinations Useless Categories
of Choices

Impossible Combinations
of Choices
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Case Study: Summary of Results

« Experiments with students defining and refining test
case specifications using category partition

« Taxonomies of decision tree problems and causes
complete

« Student achieved a good CP specification in two or three
iterations

« Reasonable increase in test cases led to a significant
number of additional faults.

* Our heuristic to remove redundant test cases leads to
significant reduction in test suite size (~50%), but a small
reduction in the number of faults detected may also be
observed.
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Test Oracles

« Context: Iterative development and testing, no
precise test oracles

« Learning objectives: Model expert knowledge
in terms of output correctness and similarity

« Usage: avoid expensive (automate) re-testing
of previously successful test cases
(segmentations)

» User's role: Expert must help devise a training
set to feed the ML algorithm.

« Example is image segmentation algorithms for
heart ventricles
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Heart Ventricle Segmentation
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Iterative Development of
Segmentation Algorithms

Devise Image
Segmentation Algorithm

image segmentation algorithm

v
[Segment subjects](
v

segmented subjects set

v

[ Manual Verification J

v

verification results set

revised image segmentation
algorithm

Modify Image
Segmentation Algorithm

[pass] )\
@—

[fail]
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Study

* Many (imperfect) similarity measures
between segmentations in the literature

* Oracle: Are two segmentations of the same
image similar enough to be confidently
considered equivalent or consistent?

— Vi Correct & Vi+1 consistent => Vi+1 correct
— Vi Correct & Vi+1 inconsistent => Vi+1 incorrect
— Vi Incorrect & Vi+1 consistent => Vi+1 incorrect

« Machine learning uses training set of
iInstances where that question was
answered by experts + similarity measures
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Classification Tree Predicting
Consistency of Segmentations

Consistency

All Rows T
| Slmllarlty measures
Count GA2 LogWorth
215 297.49025 41.362539
DSC_MF<0.84987577 DSC_MF>=0.84987577
[ [
Count GA2 LogWorth Count GA2 LogWorth
79 42.464569 4.5957099 136 140.9536 14.275805
ANVD>=0.2903414|| ANVD<0.2903414 AVD>=9.169 AVD<9.169
Y || [ Y | ([ e || ——
Count GA2 Count GA2 Count GA2 Count GA2
63 0 16 21.170024 47 64.622912 89 26.237865
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Results

« Three similarity measures selected
* Cross-validation ROC area: 94%

* For roughly 75% of comparisons, the decision
tree can be trusted with a high level of
confidence

* For 25% of comparisons, the expert will
probably have to perform manual checks

* More similarity measures to consider

« Similar results with other rule generation
algorithms (PART, Ripper)

000000000



| simula . research laboratory |

Fault Localization (Debugging)

« Context: Black-box, specification testing

» Learning objective: relationships between inputs &
execution conditions and failure occurrences

« Usage: Learn about failure conditions, refine statement
ranking techniques in the presence of multiple faults

« User’s role: define categories and choices (Category-
partition)

« Techniques ranking statements are unlikely to be of
sufficient help for debugging

« Still need to address the case of multiple faults (failures
caused by different faults)

* Failure conditions must be characterized in an easily
understood form
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Generating Rules - Test case
classification

« Using C4.5 to analyze abstract test cases

— A failing rule generated by the C4.5 models a possible condition of
failure

— Failing test cases associated with a same C4.5 rule (similar conditions)
are likely to fail due to the same faults
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Accuracy of Fail Rules (Space)

Pre dlCted Rules length TC Fail Probability
Fail Pass F109 1 30 100.00%

F025 5 667 | 99.55%
. F104 2 240 | 98.75%
Actual  Fail 6045 335 106 | 1 3041 98.36%
F105 2 158 | 97.47%
Pass 550 6655 F107 1 114 | 97.37%
F009 12 147 | 97.28%
* FO10 12 132 | 96.97%
F003 12 37 94.59%
F004 11 200 [ 94.50%
FO12 11 97 93.81%
F005 11 548 | 93.80%
F070 10 271 93.73%
F069 9 116 | 92.24%
F087 9 199 | 91.96%
FO16 7 12 91.67%
F086 8 700 | 91.57%

Table 1 Example Fail rules with Fail

probabilities and test case coverage
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Statement ranking strategy

« Select high accuracy rules based on a
sufficiently large number of (abstract) test cases

« Consider test cases in each rule separately

* In each test case set matching a failing rule, the
more test cases executing a statement, the more

suspicious it is, and the smaller its weight:
Weight(R,s) € [-1 0]

* For passing rules, the more test cases executing
a statement, the safer it is: Weight(R,s) € [0 1]

Weight(s)
<0 0 >0
— : —>
more suspicious less suspicious
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Statement Ranking: Space

Scenario: for each iteration, fix all the faults in

reachable statements

% of Faulty Statements Covered
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Case studies: summary

« RUBAR more effective than Tarantula at ranking faulty
statements thanks to the C4.5 classification rules

* The generated C4.5 classification rules based on CP
choices characterizing failure conditions accurately
predict failures

« Experiments with human debuggers are needed to
assess the cost-effectiveness of the approach
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Lessons Learned

« |In all considered applications, it is difficult to imagine
how the problem could have been solved without human
iInput, e.g., categories and choices

* Machine learning has shown to help decision making --
but it does not help fully automate solutions to the test
specification, oracle, and fault localization problems.

« Search for full automation is often counter-productive: It
leads to impractical solutions.

* Important question: What is best handled/decided by the
expert and what is best automated (through ML
algorithms)

« Solutions that best combine human expertise and
automated support
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RUBAR iterative debugging
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