
Snugglebug
Work-In-Progress

Stephen Fink
Satish Chandra
Manu Sridharan

IBM T. J. Watson Research Center
March 28, 2008

What’s wrong with current bug finding tools?

1. False positives. Lots of them.
Mostly local pattern matching

Fragile ad hoc ranking heuristics

Hundreds of “rules”

So all we need is better analysis technology?
• precise, scalable interprocedural analysis to move beyond local
scope and eliminate false positives??

? What if God provided infinitely precise analysis ?

What specifications do tools check?

Claim: If you read bug trackers,
vast majority of critical
defects discovered in the
field are below the
waterline.

foo(x) {
 if (x == null) BOOM;
}

“The form did not
resize correctly

when using a
Korean font”

“The ATM was not supposed to
e-mail my PIN to my ex-wife”.

Null Derefs

Buffer overflows Misc. “rules”

Our goals:
1. Eliminate FALSE ALARM

Always generate concrete
witnesses (JUnit tests)

2. Attack BUGGY SPECS with
analysis-driven feedback loop to
acquire specifications

Reduce Costs
Increase Benefits

Developer can step
through with debugger,
understand cause completely

Can add test to regression suite

Machine infers specifications.
Simple UI for developer to
Accept/reject specifications

Generate counterexamples that
violate accepted specifications

When a tool reports a finding, it means either:
BUGGY CODE: The code is buggy. 
BUGGY SPEC: The specification is buggy. 
FALSE ALARM: The analysis is inexact. 

Specifications manifest as
assertions in source language

Give up on verification

JML?

Program Spec

Checker

This sounds like …
Agitator, Alloy, Boogie, CUTE, DART, Daikon,
DIDUCE, DSD-Crasher, Dynamine, DySy, ESC,
Korat, Java Pathfinder, JCrasher, jCUTE, Jex,
JML, Houdini, MAPO, Metal, Miniatur,
Perracotta, Pex, PreFIX, PR-Miner, Randoop,
Saturn, SMART, TestEra, SPEC#, Symestra,
Synergy,
Your Project (egregiously omitted) …

Generic
“rules”

Code

Analysis Report

NPE, OOB , etc

Today’s workflow:

Generic
“rules”

Code

Analysis

Report
and

Tests

NPE, OOB , etc

Accepted
Specifications

Snugglebug workflow:

Suggested
Specifications

DEMO?

Technology Overview

Candidate
identification

Witness
Generation

Specification
Acquisition

UI

Program
Analysis

Identify program states (goals)
we would like to reach

Generate a unit test that
reaches a goal state

Acquire some formal
specification

of kosher and
trief (non-kosher)

program states

What are the risks?
Analysis Technology Inadequate

Concrete test case generation, respecting public APIs,
over huge code bases, testing non-trivial properties

Can we really learn powerful specs? Can we express them in ways that
a human will relate to?

Typestate,
contracts

Object constraints,
global invariants

Functional
specification

NPE,
asserts

fropen

fwritefwrite

Risk and reward

Analysis Technology

Candidate
identification

Witness
Generation

Specification
Acquisition

UI

Program
Analysis

Symbolic Search
Via Weakest
Precondition

Symbolic Search via Weakest Precondition (Intro)

void foo (int x) {

 if (x > 7) {

 int y = x -3;

 if (y > 9) {

 BOOM;
 }
}

φ= wp(φ) = (x-3 > 9) Λ x>7

φ:= wp(φ)= φ[x-3|y] = (x-3 > 9)

φ:= wp(φ) = (y > 9)

φ:= true

wp(φ) = (x-3 > 9) Λ x>7 SMT
Solver

simplified φ x>7
(candidate specification)

satisfying assignment x=12
basis for test case: foo(12)

IPA WP Via (Partial) Tabulation
Reps-Horwitz-Sagiv POPL 95 Tabulation Solver (WALA)
• explore all paths at once, IPA with underapproximate abstraction

x = min(1,2);

Y = min(x,3);

z = min(x,4);

if (z > 3)
 BOOM;

int min(a, b) {

 if (a <= b)
 r = a;
 else
 r = b;
 return r;
}

φ:= wp(φ) = (z > 3)

φ:= true

φ:= r > 3

φ:= b > 3

φ:= a > 3
φ1:= a > 3 Λ a ≤ b φ2:= b > 3 Λ a > b

φ:= x > 3 Λ x ≤ 4
φ:= T

φ:= T

φ Wp(min,φ)
r > 3 a > 3 Λ a ≤ b

b > 3 Λ a > br > 3

φ:= x > 3

T T

φ:= 1 > 3 Λ 1 ≤ 2

φ:= x > 3

Effective Modular Analysis?

Tabulation is fully automatic

Maintain (large?) database of partial transfer functions
Precompute partial predicate transformers for standard

libraries
• WP(true), WP(throws an exception)
• WP(other common conditions?)

Key issue: Separation. What is the frame condition?
“logical mod/ref”
abstract interpretation

Open question: degree of reuse?

Dealing with exponential explosion
(Without even worrying about loops …)

if (c1)

T1;S1;

if (c2)

T2;S2;

if (c3)

T3;S3;

Paths

x = …
y = x + x
z = y + y
w = z + z
v = w + w

Substitution run
amuck (FS POPL02)

s = x.toString();
s += y.toString();
s += z.toString();
s += w.toString();

Dynamic Dispatch

y.f = x;
z.f = y;
w.g = z;

Aliasing and Destructive
Updates

Dealing with exponential explosion
Merge Functions & Search Heuristics

if (P)

if (c3)

h = 5;g = 4;

assert z < 3

z ≥ 3

z ≥ 3 Λ c3 z ≥3 Λ ¬c3

z ≥ 3

y ≥ 3

z ≥ 3

x ≥3

x≥3 Λ P y≥3 Λ ¬P

z = x z = y

if (P)

x = y

 y≥3 Λ P x≥3 Λ P Λ ¬P y≥3 Λ P Λ ¬P y≥3 Λ ¬P

 y≥3 Λ P

 y ≥ 3

Generating API-conformant test cases.

static void foo(Bar b) {
 if (b.getF() == 1) {
 BOOM;
 }
}

wp(φ) = (b.f == 1)

class Bar {
 private int f; // f == 0 or 2
 public int getF() { return f; }
 private Bar(int f) {
 this.f = f;
 }
 public static Bar make0() {
 return new Bar(0);
 }
 public static Bar make2() {
 return new Bar(2);
 }
}

Solution: Universal Driver

Encodes all reasonable ways
of driving the method
under test.

Parameterized in a way
to facilitate search by an
SMT solver.

Partial evaluation of universal
driver w.r.t. a satisfying
assignment gives a unit test.

Generating API-conformant test cases.

static void foo(Bar b) {
 if (b.getF() == 1) {
 BOOM;
 }
}

wp(φ) = (b.f == 1)

class Bar {
 private int f; // f == 0 or 2
 public int getF() { return f; }
 private Bar(int f) {
 this.f = f;
 }
 public static Bar make0() {
 return new Bar(0);
 }
 public static Bar make2() {
 return new Bar(2);
 }
}

 Universal Driver

public static void driveFoo(int[] x) {
 int length = x[0];
 int[] y = x[1 : length];
 Bar b = makeBar(y);
 foo(b);
}

public static Bar makeBar(int[] y) {
 switch(y[0]) {
 case 0: return Bar.make0();
 case 1: return Bar.make2();
 }
}

SMT: no satisfying assignment for
 driveFoo().

Generating API-conformant test cases.

static void foo(Bar b) {
 if (b.getF() == 1) {
 BOOM;
 }
}

wp(φ) = (b.f == 1)

class Bar {
 private int f;
 public int getF() { return f; }
 private Bar(int f) {
 this.f = f;
 }
 public static Bar make0() {
 return new Bar(0);
 }
 public static Bar make2() {
 return new Bar(2);
 }
 public static Bar make(int y) {
 return new Bar(y);
 }
}

 Universal Driver

public static void driveFoo(int[] x) {
 int length = x[0];
 int[] y = x[1 … length];
 Bar b = makeBar(y);
 foo(b);
}

public static Bar makeBar(int[] y) {
 switch(y[0]) {
 case 0: return Bar.make0();
 case 1: return Bar.make2();
 case 2: return Bar.make(y[1]);
 }
}

SMT: satisfying assignment for
 driveFoo(): [2, 2, 1]

Generating API-conformant test cases.
 Universal Driver

public static void driveFoo(int[] x) {
 int length = x[0];
 int[] y = x[1 … length];
 Bar b = makeBar(y);
 foo(b);
}

public static Bar makeBar(int[] y) {
 switch(y[0]) {
 case 0: return Bar.make0();
 case 1: return Bar.make2();
 case 2: return Bar.make(y[1]);
 }
}

SMT: satisfying assignment for
 driveFoo(): [2, 2, 1]

Partially evaluate driveFoo()
w.r.t. [2, 2, 1]:

public void testFoo() {
 Bar b = Bar.make(1);
 foo(b);
}

Other technologies of interest

Abstraction to guide search, skip loops/recursion
Speculation and dynamic checking
From WP to specifications

Requires effective formulae simplification, not just satisfying assignments
“lifting” predicates from points to larger scopes (e.g. invariants)

Lots of ways to improve specification acquisition
Tests as specifications
Mining client codes for example specifications
Mining the web for specifications
Other stuff to be invented

Milestone 2: Somebody else
judges the snugglebug tool
useful enough us to adopt it.

Milestone 1: We judge the
snugglebug tool useful enough
for us to adopt it into our
own daily development.

Milestone n: Total worldMilestone n: Total world
domination. Retire to Tahiti.domination. Retire to Tahiti.

BACKUP SLIDES

What’s
New?

Everyone wants a piece of the pie … and “Finding Bugs is Easy” …

Typical Interaction between
Analysis Tools and Developers

Your method foo can
throw a null pointer
exception at line 25

Oh really?

Yes, really, when the
parameter p is such that

p.next == null

Oh yeah?

Really. Here is a JUnit test
case that exercises this

bug I know for sure
that

p.next != null

Have we changed the world yet?

Maturity is a bitter disappointment for which no remedy
exists, unless laughter can be said to remedy anything.

- Vonnegut

These tools report a lot of things
I don’t care about and few things

I do care about

