
assertion-driven analyses
from compile-time checking to runtime error recovery

sarfraz khurshid
the university of texas at austin

state of the art in software testing and analysis day, 2008
rutgers university

assertion-driven analyses 2

overview

programmers have long used assertions
• runtime checks
• documentation

assertions are lightweight specifications
• written using the underlying programming language

we envision a much broader use of assertions
• developers assert designs
• static analyses check conformance to designs
• systematic approaches test executable code
• runtime checks monitor for erroneous executions
• error recovery repairs as desired

assertion-driven analyses 3

assertion-based repair [elkarablieh et al ASE’07]

an assertion violation indicates a corrupt program state
traditional approach to handle an assertion violation:

1. terminate the program
2. debug it (if possible) and re-execute it

at times however, terminate/debug/re-boot may not be feasible,
e.g., when persistent data is corrupted

our approach to handle a violation:
1. repair the state of the program
2. let it continue to execute

repair tries to bring the system/data in an acceptable state
(possibly without re-booting) to continue execution

assertion-driven analyses 4

examples of structurally complex data

1

0 3

2

root

servicecity

washington

building

whitehouse

wing

west

room

oval-office

camera

data-type

picture

resolution

640 x 480

accessibility

public

assertion-driven analyses 5

structural integrity constraints

violation of integrity constraints is a likely form of corruption
assertions readily express complex constraints

• e.g., a graph traversal that checks for acyclicity
in OO programs, repOk predicates express class invariants

• good programming practice advocates writing repOk’s
enable automated checking, e.g., via test generation
can be synthesized, even for complex structures [TACAS’07]

assertion-driven analyses 6

repair examples

corrupt repaired

binary search tree
1

2 3

5 46

binary search tree
4

2 5

3 61

doubly-linked circular listdoubly-linked circular list

assertion-driven analyses 7

what does repair mean?

given a structure s and a repOk where !s.repOk(), generate s’
such that s’.repOk() and s’ is similar to s
• similarity is a heuristic notion

• worst-case repair may generate a structure quite
different from the original one

does not aim to generate a structure that a hypothetical
correct program would have computed

aims to generate a structure that is within an acceptable
envelope of computation

can be specified using a specification (cf. postconditions)
• e.g., the repaired structure contains all data elements

reachable from the root of the corrupt structure

assertion-driven analyses 8

overview of our repair algorithm

uses the violated assertion as a basis of performing repair
• executes repOk and monitors its execution to

isolate a component that is necessarily corrupt
systematically searches a neighborhood of the corrupt structure
uses a hybrid form of symbolic execution

• treats symbolically only a dynamic subset of all object
fields---the remaining fields have concrete values

performs efficient and effective repair

assertion-driven analyses 9

outline

overview
background: symbolic execution
our approach
discussion

assertion-driven analyses 10

forward symbolic execution

technique for executing a program on symbolic input values
• pioneered three decades ago [boyer+75, king76]

explore program paths
• for each path, build a path condition
• check satisfiability of path condition

various applications
• test generation and program verification

traditional use focused on programs with fixed number of
integer variables

recent generalizations handle more general java/C++ code
[khurshid+03, pasareanu+04, visser+04, xie+04, csallner+05,
 godefroid+05, cadar+05, sen+05]

assertion-driven analyses 11

concrete execution path (example)

x = 1, y = 0

1 >? 0

x = 1 + 0 = 1

y = 1 – 0 = 1

x = 1 – 1 = 0

0 – 1 >? 0

int x, y;

if (x > y) {

 x = x + y;

 y = x – y;

 x = x – y;

 if (x – y > 0)

 assert(false);

}

assertion-driven analyses 12

symbolic execution tree (example)

x = X, y = Y

X >? Y

[X > Y] y = X + Y – Y = X

[X > Y] x = X + Y – X = Y

[X > Y] Y - X >? 0

[X <= Y] END [X > Y] x = X + Y

[X > Y, Y – X <= 0] END [X > Y, Y – X > 0] END

int x, y;

if (x > y) {

 x = x + y;

 y = x – y;

 x = x – y;

 if (x – y > 0)

 assert(false);

}

assertion-driven analyses 13

outline

overview
background: symbolic execution
our approach
discussion

assertion-driven analyses 14

algorithm: outline

to repair structure s
• execute s.repOk() and monitor the execution

• note the order in which object fields in s are accessed
• when execution evaluates to false, backtrack and modify

the value of the last field accessed
• modify the value to a new (symbolic) value that is

not equal to the original one
• re-execute repOk

algorithm based on korat [ISSTA’02] and generalized symbolic
execution [TACAS’03]

assertion-driven analyses 15

algorithm: field value update

primitive field
• assume field f originally has value v
• assign f a symbolic value S
• add to path condition the constraint S != v

reference field
• non-deterministically assign

• null (if original value is non-null)
• an object of a compatible type already encountered

during the current execution (if the field was not
originally pointing to this object)

• a new object (if the field was not originally pointing to
an object different from those previously encountered)

assertion-driven analyses 16

illustration: binary tree

class BinaryTree {
 int size;
 Node root;

 static class Node {
 int info;
 Node left, right;
 }

 boolean repOk() { ... }

 void add(int e) {
 assert repOk();
 ...
 }
}

assertion-driven analyses 17

example execution
 boolean repOk() {
 if (root == null) return size == 0; // empty tree

 Set visited = new HashSet();
 LinkedList workList = new LinkedList();
 visited.add(root);
 workList.add(root);
 while (!workList.isEmpty()) {
 Node current = (Node)workList.removeFirst();
 if (current.left != null) {
 if (!visited.add(current.left)) return false; // sharing
 workList.add(current.left);
 }
 if (current.right != null) {
 if (!visited.add(current.right)) return false; // sharing
 workList.add(current.right);
 }
 }
 if (visited.size() != size) return false; // inconsistent size
 return true;
 }

size: 2T0

N0

N1

root

right
left

field accesses:
[T0.root, N0.left, N0.right]

assertion-driven analyses 18

backtracking on [T0.root, N0.left, N0.right]

produces next candidate structure

• which satisfies repOk

repair action

T0 N0 N1

root size left right rightleft

N0 N1 N1 null null2

T0 N0 N1

root size left right rightleft

N0 N1 null null null2

size: 2T0

N0

N1

root

right
left

size: 2T0

N0

N1

root

left

assertion-driven analyses 19

implementation

written in java
has three main components

• search
• implements systematic backtracking

• symbolic execution
• implements library classes for hybrid symbolic execution
• uses CVC-lite for constraint solving

• program instrumentation
• translates java bytecode using BCEL and javassist

can handle complex structures

assertion-driven analyses 20

optimizations

efficiency
• heuristics

effectiveness
• preserve reachability of data values
• abstraction functions to compare pre/post repair structures

usefulness
• abstract repair log

assertion-driven analyses 21

performance

evaluated on a suite of text-book data structures
• singly/doubly-linked lists, binary search trees, etc.

for a small number of faults (<= 10), algorithm can repair
structures with a few hundred nodes in less than 10 sec

does not scale to large data structures
• but we are working on several optimizations

assertion-driven analyses 22

outline

overview
background: symbolic execution
our approach
discussion

assertion-driven analyses 23

applicability: how hard is it to write assertions?

any technique for repair has a cost, e.g., the cost of writing a
repair routine correctly

assertion-based repair has minimal cost
• assertions are written in the programming language
• assertion describes what; repair routine describes how
• properties are known at time of implementation but

efficient repair routines may not be
• e.g., red-black tree invariants are well-known but

there are no text-book algorithms to repair them
• assertions may already be present in code

• e.g., due to systematic testing or defensive programming

assertion-driven analyses 24

scalability: how efficient can repair be?

repair considers the problem of generating one (large) structure
korat [ISSTA’02], TestEra [ASE’01] show feasibility of exhaustive

generation of a large number of small structures
results from analogous SAT problems indicate repair should be

easier than exhaustive generation
• finding one solution is easier than model counting [Wei+05]
• moreover, w.h.p. we expect the repaired structure to lie

in a close neighborhood of the corrupt structure
• repair is therefore analogous to finding one solution

to a SAT formula that is satisfiable w.h.p.
• local search is expected to work well [Hoos99]

assertion-driven analyses 25

our recent work

static analysis for repair [OOPSLA 2007]
• uses cahoon and mckinley’s recurrent field analysis
• prioritizes repair actions based on whether a field recurs
• enables repair of larger structures

constraint-based generation of large test inputs [ECOOP 2007]
• repairs randomly generated object graphs of a desired size
• enables efficient generation of larger test inputs

repairing programs [UT-TR 2006]
• translates repair actions in code that performs repair

assertion-driven analyses 26

related work

fault-tolerance and error recovery have featured in software
systems for a long time

most of the past work has been on specialized repair routines
• file system utilities, such as fsck

• commercial systems, such as IBM MVS operating system
and lucent 5ESS switch

demsky and rinard’s constraint-based framework [OOPSLA’03]
• constraints in first-order logic define desired structures
• mapping defines data translations
• repair is ad hoc
• requires users to provide mappings and learn a new

constraint language

assertion-driven analyses 27

summary of assertion-based repair

a novel view of assertions
• use violated assertions as basis for repair

an algorithm for repair using symbolic execution
• a non-conventional application of backtracking search

still not practical for very large structures in deployed systems
opens a promising direction for future work

• a unified framework for verification and error recovery
• systematic testing before deployment
• systematic repair once deployed

khurshid@ece.utexas.edu

http://www.ece.utexas.edu/~khurshid

