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User Failure Reporting

Semi-automatic crash reporting is
now commonplace

B Report contains "mini-dump”

B Facilitates grouping and prioritization
Similar mechanisms for reporting
“soft” failures are not

B Would employ users as oracles

B \Would facilitate automatic failure
classification and fault localization




Issue: Users Are Unreliable
Oracles

hey overlook real failures

hey report spurious ones

B Often misunderstand product
functionality

Developers don’t want to waste time
investigating bogus reports




Handling Noisy User Labels:
Corroboration-Based Filtering (CBF)

Exploits user labels

O
[0 Seeks to corroborate

them by pooling similar
executions

B Executions profiled
and clustered

[0 Developers review only
“suspect” executions: ~ %
.

B |abeled FAILURE by
users or

B Close to confirmed —

failures or
B Have unusual profile




Data Collection and Analysis

Need four kinds of information about

each beta execution:
N caE e e e o e E e

2. Execution profile
3. I/O history or capture/replay
4. Diagnostic information, e.qg.,
[0 Internal event history
0 Capture/replay




Relevant Forms of Profiling

Indicate or count runtime events that
reflect causes/effects of failures, e.qg.,

Function calls

Basic block executions
Conditional branches
Predicate outcomes
Information flows

Call sequences

States and state transitions




Filtering Rules

All executions in small clusters (|C| < T)
reviewed

All executions with user label FAILURE
reviewed

All executions in clusters with confirmed
failures reviewed




Empirical Evaluation of CBF

[1 Research issues:

B How effective CBF is, as measured by
EEE R e il EniiEl Bl e e
EEfEEn e e EEe = e eas 2

B How costly CBF is, as measured by

[0 Number R of executions reviewed by
developers




Methodology

[0 CBF applied to test sets for three open source subject
programs (actual failures known)

[0 Executions mislabeled randomly to simulate users
B Mislabeling probability varied from 0 to 0.2
0 For each subject program and test set, F,, D,, and R
determined for
B Three clusterings of the test executions:
1 10%, 20% . 30% of test set size
W hareshollli =12 5
[0 Same figures determined for three alternative techniques:
B Cluster filtering with one-per-cluster (OPC) sampling
B Review-all-failures (RAF) strategy

B RAF+ extension of RAF

O Additional executions selected for review randomly, until total
is the same as for CBF




Subject Programs and Tests

GCC compiler for C (version 2.45.2)

B Ran GCC 3.0.2 tests that execute compiled code
(3333 self-validating tests)

B 136 failures due to 26 defects

Javac compiler (build 1.3.1_02-b02)

B Jacks test suite (3140 self-validating tests)
B 233 failures due to 67 defects

JTidy pretty printer (version 3)

B 4000 HTML and XML files crawled from Web
B Checked trigger conditions of known defects
B 154 failures due to 8 defects

Profiles: function call execution counts




Assumptions

Each actual failure selected would be
recognized as such if reviewed

'he defect causing each such failure
would be diagnosed with certainty




Mean Failures Discovered (b)
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Mean Failures Discovered (c)
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Mean Failures Discovered (d)
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Mean Executions Reviewed (b)
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New Family of Techniques:
RAF+k-Nearest-Neighbors (KNN)

Compromise between low cost of RAF
and power of CBF

Require stronger evidence of failure
than CBF

B All executions with user label FAILURE
reviewed

B If actual failure confirmed, k nearest
neighbors reviewed

B Isolated SUCCESSes not reviewed




RAF+AKNN: Executions Reviewed

Differential Mislabeling Uniform Mislabeling
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RAF+kNN: Failures Discovered

kS Method
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RAF+AKNN: Defects Discovered

Subject Method 10% 30% 50%
JTidy CBF 7.99+.1 7.92+.27 7.73+£.46
RAF+3NN 7.91+.10 7.91+.29 7.73+£.46
RAF FIE26 7.71+.46 7.55+.54
ROME | CBF 6=+0 6=+0 S599E 17
RAF+1NN 6=+0 6+0 5.93+.26
RAF 6+0 6+0 5.85+.36
Xerces | CBF 16.96+.28 16.80+.60 16.46+.89
RAF+5NN 16.98+.20 16.62+.60 | 16.19+1.02
RAF e = 5 T B0 14.99+.89




Current & Future Work

[0 Further empirical study

B Additional subject programs

B Operational inputs

B Alternative mislabeling models

B Other forms of profiling

Prioritization of executions for review

Use of supervised and semi-supervised learners
Multiple failures classes

Exploiting structured user feedback

Handling missing labels

D)




Related Work

O

DO

Podgurski et al:

B Observation-based testing

B Cluster filtering and failure pursuit

B Failure classification

Michail and Xie: Stabilizer tool for avoiding bugs
Chen et al: Pinpoint tool for problem determination
Liblit et al: bug isolation

Liu and Han: R-proximity metric

Mao and Lu: priority-ranked n-per cluster sampling

Gruschke; Yemini et al; Bouloutas et al: event
correlation in distributed systems




General Approach to Solution

Record I/O online

B Ideally with capture/replay tool
Profile executions, online or offline
B Capture/replay permits offline profiling
Mine recorded data

Provide guidance to developers
concerning which executions to
review




Approach #1: Cluster Filtering
[FSE 93, TOSEM 99, ICSE 01, ... TSE 07]

Intended for beta testing
Execution profiles -

automatically clustered ~

1+ are selected from each :
cluster or small clusters

Developers replay and review
sampled executions

Empirical results:

B Reveals more failures &
defects than random
sampling —

B Failures tend to be found in
small clusters

eI

[ Complements coverage
maximization

[ Enables more accurate
reliability estimation

Not cheap
Does not exploit user labels

Ll el




Approach #2: Failure Classification
[ICSE 2003, ISSRE 2004]

O Goal is to group related
failures

u Prioritize and assist debugging o
Does exploit user labels
Assumes they are accurate

Combines

u Supervised feature selection
u Clustering
m  Visualization (MDS) ™~

Only failing executions ‘
clustered & visualized  —
Empirical results: f
B Often groups failures with S

T

same cause together
B Clusters can be refined using
dendrogram and heuristics

0 Does not exploit user labels




Data Analysis

O
O

GNU R statistical package
k-means clustering algorithm
B Proportional binary dissimilarity metric

Dn,m = \/E(Pn,k _Pm,k)2 +
k

CBF, RAF, RAF+ applied to 100 randomly generated
mislabelings of test set

OPC used to select 100 stratified random samples
from each clustering

Computed mean numbers of failures and defects
discovered and executions reviewed

Bn,k - Bm,k‘




Mean Failures Discovered (a)
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Mean Executions Reviewed (a)
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Mean Failures Discovered with OPC
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Analysis

[0 CBF with T = 1 revealed significantly more failures
than RAF and OPC for all clusterings

B Difference between CBF and RAF increased with
mislabeling probability

[0 CBF entailed reviewing substantially more executions
than RAF did

B Held evenwith 7T=1

B Did not account for the additional failures discovered
with CBF

[0 CBF and RAF each revealed most defects
B OPC was less effective

B RAF would not perform as well without “perfect”
debugging




