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User Failure Reporting 

 Semi-automatic crash reporting is 
now commonplace 
  Report contains “mini-dump” 
  Facilitates grouping and prioritization 

 Similar mechanisms for reporting 
“soft” failures are not 
  Would employ users as oracles 
  Would facilitate automatic failure 

classification and fault localization 



Issue: Users Are Unreliable 
Oracles 

 They overlook real failures 
 They report spurious ones 

  Often misunderstand product 
functionality 

 Developers don’t want to waste time 
investigating bogus reports 



Handling Noisy User Labels: 
Corroboration-Based Filtering (CBF) 
  Exploits user labels 
  Seeks to corroborate 

them by pooling similar 
executions 
  Executions profiled 

and clustered 
  Developers review only 

“suspect” executions: 
  Labeled FAILURE by 

users or 
  Close to confirmed 

failures or 
  Have unusual profile 



Data Collection and Analysis 

  Need four kinds of information about 
each beta execution: 
1.  User label: SUCCESS or FAILURE 
2.  Execution profile 
3.  I/O history or capture/replay 
4. Diagnostic information, e.g., 

  Internal event history 
  Capture/replay 



Relevant Forms of Profiling 

 Indicate or count runtime events that 
reflect causes/effects of failures, e.g., 
  Function calls 
  Basic block executions 
  Conditional branches 
  Predicate outcomes 
  Information flows 
  Call sequences 
  States and state transitions 



Filtering Rules 
  All executions in small clusters (|C| ≤ T) 

reviewed 
  All executions with user label FAILURE 

reviewed 
  All executions in clusters with confirmed 

failures reviewed 



Empirical Evaluation of CBF 

 Research issues: 
  How effective CBF is, as measured by  

 Number Fd of actual failures discovered 
 Number Dd of defects discovered 

  How costly CBF is, as measured by  
 Number R of executions reviewed by 

developers 



Methodology 
  CBF applied to test sets for three open source subject 

programs (actual failures known) 
  Executions mislabeled randomly to simulate users 

  Mislabeling probability varied from 0 to 0.2 
  For each subject program and test set, Fd, Dd, and R 

determined for 
  Three clusterings of the test executions: 

  10%, 20%, 30% of test set size 
  Threshold T = 1, 2, …, 5 

  Same figures determined for three alternative techniques: 
  Cluster filtering with one-per-cluster (OPC) sampling 
  Review-all-failures (RAF) strategy 
  RAF+ extension of RAF 

  Additional executions selected for review randomly, until total 
is the same as for CBF 



Subject Programs and Tests 
  GCC compiler for C (version 2.45.2) 

  Ran GCC 3.0.2 tests that execute compiled code 
(3333 self-validating tests) 

  136 failures due to 26 defects 
  Javac compiler (build 1.3.1_02-b02) 

  Jacks test suite (3140 self-validating tests) 
  233 failures due to 67 defects 

  JTidy pretty printer (version 3) 
  4000 HTML and XML files crawled from Web 
  Checked trigger conditions of known defects 
  154 failures due to 8 defects 

  Profiles: function call execution counts 



Assumptions 

 Each actual failure selected would be 
recognized as such if reviewed 

 The defect causing each such failure 
would be diagnosed with certainty 



Mean Failures Discovered (b) 

GCC (T = 1) 



Mean Failures Discovered (c) 

Javac (T = 1) 



Mean Failures Discovered (d) 

JTidy (T = 1) 



Mean Executions Reviewed (b) 

GCC (T = 1) 



New Family of Techniques: 
RAF+k-Nearest-Neighbors (kNN) 

 Compromise between low cost of RAF 
and power of CBF 

 Require stronger evidence of failure 
than CBF 
  All executions with user label FAILURE 

reviewed 
  If actual failure confirmed, k nearest 

neighbors reviewed 
  Isolated SUCCESSes not reviewed 



RAF+kNN: Executions Reviewed 

Rome RSS/Atom Parser 



RAF+kNN: Failures Discovered 

JTidy 



RAF+kNN: Defects Discovered 

Subject Method 10% 30% 50% 

CBF 7.99±.1 7.92±.27 7.73±.46 

RAF+3NN 7.91±.10 7.91±.29 7.73±.46 

JTidy 

RAF 7.91±.26 7.71±.46 7.55±.54 

CBF 6±0 6±0 5.97±.17 

RAF+1NN 6±0 6±0 5.93±.26 

ROME 

RAF 6±0 6±0 5.85±.36 

CBF 16.96±.28 16.80±.60 16.46±.89 

RAF+5NN 16.98±.20 16.62±.60 16.19±1.02 

Xerces 

RAF 16.96±.58 15.77±1.04 14.99±.89 

 



Current & Future Work 
  Further empirical study 

  Additional subject programs 
  Operational inputs 
  Alternative mislabeling models 
  Other forms of profiling 

  Prioritization of executions for review 
  Use of supervised and semi-supervised learners 
  Multiple failures classes 
  Exploiting structured user feedback 
  Handling missing labels 



Related Work 
  Podgurski et al: 

  Observation-based testing 
  Cluster filtering and failure pursuit 
  Failure classification 

  Michail and Xie: Stabilizer tool for avoiding bugs 
  Chen et al: Pinpoint tool for problem determination 
  Liblit et al: bug isolation 
  Liu and Han: R-proximity metric 
  Mao and Lu: priority-ranked n-per cluster sampling 
  Gruschke; Yemini et al; Bouloutas et al: event 

correlation in distributed systems 



General Approach to Solution 

 Record I/O online 
  Ideally with capture/replay tool 

 Profile executions, online or offline 
  Capture/replay permits offline profiling 

 Mine recorded data 
 Provide guidance to developers 

concerning which executions to 
review 



Approach #1: Cluster Filtering 
[FSE 93, TOSEM 99, ICSE 01, … TSE 07] 
  Intended for beta testing 
  Execution profiles 

automatically clustered 
  1+ are selected from each 

cluster or small clusters 
  Developers replay and review 

sampled executions 
  Empirical results: 

  Reveals more  failures & 
defects than random 
sampling 

  Failures tend to be found in 
small clusters 

  Complements coverage 
maximization 

  Enables more accurate 
reliability estimation 

  Not cheap 
  Does not exploit user labels 



Approach #2: Failure Classification 
[ICSE 2003, ISSRE 2004] 
  Goal is to group related 

failures 
  Prioritize and assist debugging 

  Does exploit user labels 
  Assumes they are accurate 
  Combines 

  Supervised feature selection 
  Clustering 
  Visualization (MDS) 

  Only failing executions 
clustered & visualized 

  Empirical results: 
  Often groups failures with 

same cause together 
  Clusters can be refined using 

dendrogram and heuristics 
  Does not exploit user labels 



Data Analysis 
  GNU R statistical package 
  k-means clustering algorithm 

  Proportional binary dissimilarity metric 

  CBF, RAF, RAF+ applied to 100 randomly generated 
mislabelings of test set 

  OPC used to select 100 stratified random samples 
from each clustering 

  Computed mean numbers of failures and defects 
discovered and executions reviewed 



Mean Failures Discovered (a) 

GCC (30% clustering) 



Mean Executions Reviewed (a) 

GCC (30% clustering) 



Mean Failures Discovered with OPC 
Sampling 



Analysis 
  CBF with T = 1 revealed significantly more failures 

than RAF and OPC for all clusterings 
  Difference between CBF and RAF increased with 

mislabeling probability 
  CBF entailed reviewing substantially more executions 

than RAF did 
  Held even with T = 1 
  Did not account for the additional failures discovered 

with CBF 
  CBF and RAF each revealed most defects 

  OPC was less effective 
  RAF would not perform as well without “perfect” 

debugging 


