
Users as Oracles:
Semi-automatically
Corroborating User Feedback

Andy Podgurski (with Vinay Augustine)
Electrical Eng. & Computer Science Dept.
Case Western Reserve University
Cleveland, Ohio

User Failure Reporting

 Semi-automatic crash reporting is
now commonplace
  Report contains “mini-dump”
  Facilitates grouping and prioritization

 Similar mechanisms for reporting
“soft” failures are not
  Would employ users as oracles
  Would facilitate automatic failure

classification and fault localization

Issue: Users Are Unreliable
Oracles

 They overlook real failures
 They report spurious ones

  Often misunderstand product
functionality

 Developers don’t want to waste time
investigating bogus reports

Handling Noisy User Labels:
Corroboration-Based Filtering (CBF)
  Exploits user labels
  Seeks to corroborate

them by pooling similar
executions
  Executions profiled

and clustered
  Developers review only

“suspect” executions:
  Labeled FAILURE by

users or
  Close to confirmed

failures or
  Have unusual profile

Data Collection and Analysis

  Need four kinds of information about
each beta execution:
1.  User label: SUCCESS or FAILURE
2.  Execution profile
3.  I/O history or capture/replay
4. Diagnostic information, e.g.,

  Internal event history
  Capture/replay

Relevant Forms of Profiling

 Indicate or count runtime events that
reflect causes/effects of failures, e.g.,
  Function calls
  Basic block executions
  Conditional branches
  Predicate outcomes
  Information flows
  Call sequences
  States and state transitions

Filtering Rules
  All executions in small clusters (|C| ≤ T)

reviewed
  All executions with user label FAILURE

reviewed
  All executions in clusters with confirmed

failures reviewed

Empirical Evaluation of CBF

 Research issues:
  How effective CBF is, as measured by

 Number Fd of actual failures discovered
 Number Dd of defects discovered

  How costly CBF is, as measured by
 Number R of executions reviewed by

developers

Methodology
  CBF applied to test sets for three open source subject

programs (actual failures known)
  Executions mislabeled randomly to simulate users

  Mislabeling probability varied from 0 to 0.2
  For each subject program and test set, Fd, Dd, and R

determined for
  Three clusterings of the test executions:

  10%, 20%, 30% of test set size
  Threshold T = 1, 2, …, 5

  Same figures determined for three alternative techniques:
  Cluster filtering with one-per-cluster (OPC) sampling
  Review-all-failures (RAF) strategy
  RAF+ extension of RAF

  Additional executions selected for review randomly, until total
is the same as for CBF

Subject Programs and Tests
  GCC compiler for C (version 2.45.2)

  Ran GCC 3.0.2 tests that execute compiled code
(3333 self-validating tests)

  136 failures due to 26 defects
  Javac compiler (build 1.3.1_02-b02)

  Jacks test suite (3140 self-validating tests)
  233 failures due to 67 defects

  JTidy pretty printer (version 3)
  4000 HTML and XML files crawled from Web
  Checked trigger conditions of known defects
  154 failures due to 8 defects

  Profiles: function call execution counts

Assumptions

 Each actual failure selected would be
recognized as such if reviewed

 The defect causing each such failure
would be diagnosed with certainty

Mean Failures Discovered (b)

GCC (T = 1)

Mean Failures Discovered (c)

Javac (T = 1)

Mean Failures Discovered (d)

JTidy (T = 1)

Mean Executions Reviewed (b)

GCC (T = 1)

New Family of Techniques:
RAF+k-Nearest-Neighbors (kNN)

 Compromise between low cost of RAF
and power of CBF

 Require stronger evidence of failure
than CBF
  All executions with user label FAILURE

reviewed
  If actual failure confirmed, k nearest

neighbors reviewed
  Isolated SUCCESSes not reviewed

RAF+kNN: Executions Reviewed

Rome RSS/Atom Parser

RAF+kNN: Failures Discovered

JTidy

RAF+kNN: Defects Discovered

Subject Method 10% 30% 50%

CBF 7.99±.1 7.92±.27 7.73±.46

RAF+3NN 7.91±.10 7.91±.29 7.73±.46

JTidy

RAF 7.91±.26 7.71±.46 7.55±.54

CBF 6±0 6±0 5.97±.17

RAF+1NN 6±0 6±0 5.93±.26

ROME

RAF 6±0 6±0 5.85±.36

CBF 16.96±.28 16.80±.60 16.46±.89

RAF+5NN 16.98±.20 16.62±.60 16.19±1.02

Xerces

RAF 16.96±.58 15.77±1.04 14.99±.89

Current & Future Work
  Further empirical study

  Additional subject programs
  Operational inputs
  Alternative mislabeling models
  Other forms of profiling

  Prioritization of executions for review
  Use of supervised and semi-supervised learners
  Multiple failures classes
  Exploiting structured user feedback
  Handling missing labels

Related Work
  Podgurski et al:

  Observation-based testing
  Cluster filtering and failure pursuit
  Failure classification

  Michail and Xie: Stabilizer tool for avoiding bugs
  Chen et al: Pinpoint tool for problem determination
  Liblit et al: bug isolation
  Liu and Han: R-proximity metric
  Mao and Lu: priority-ranked n-per cluster sampling
  Gruschke; Yemini et al; Bouloutas et al: event

correlation in distributed systems

General Approach to Solution

 Record I/O online
  Ideally with capture/replay tool

 Profile executions, online or offline
  Capture/replay permits offline profiling

 Mine recorded data
 Provide guidance to developers

concerning which executions to
review

Approach #1: Cluster Filtering
[FSE 93, TOSEM 99, ICSE 01, … TSE 07]
  Intended for beta testing
  Execution profiles

automatically clustered
  1+ are selected from each

cluster or small clusters
  Developers replay and review

sampled executions
  Empirical results:

  Reveals more failures &
defects than random
sampling

  Failures tend to be found in
small clusters

  Complements coverage
maximization

  Enables more accurate
reliability estimation

  Not cheap
  Does not exploit user labels

Approach #2: Failure Classification
[ICSE 2003, ISSRE 2004]
  Goal is to group related

failures
  Prioritize and assist debugging

  Does exploit user labels
  Assumes they are accurate
  Combines

  Supervised feature selection
  Clustering
  Visualization (MDS)

  Only failing executions
clustered & visualized

  Empirical results:
  Often groups failures with

same cause together
  Clusters can be refined using

dendrogram and heuristics
  Does not exploit user labels

Data Analysis
  GNU R statistical package
  k-means clustering algorithm

  Proportional binary dissimilarity metric

  CBF, RAF, RAF+ applied to 100 randomly generated
mislabelings of test set

  OPC used to select 100 stratified random samples
from each clustering

  Computed mean numbers of failures and defects
discovered and executions reviewed

Mean Failures Discovered (a)

GCC (30% clustering)

Mean Executions Reviewed (a)

GCC (30% clustering)

Mean Failures Discovered with OPC
Sampling

Analysis
  CBF with T = 1 revealed significantly more failures

than RAF and OPC for all clusterings
  Difference between CBF and RAF increased with

mislabeling probability
  CBF entailed reviewing substantially more executions

than RAF did
  Held even with T = 1
  Did not account for the additional failures discovered

with CBF
  CBF and RAF each revealed most defects

  OPC was less effective
  RAF would not perform as well without “perfect”

debugging

