
Users as Oracles:
Semi-automatically
Corroborating User Feedback

Andy Podgurski (with Vinay Augustine)
Electrical Eng. & Computer Science Dept.
Case Western Reserve University
Cleveland, Ohio

User Failure Reporting

 Semi-automatic crash reporting is
now commonplace
  Report contains “mini-dump”
  Facilitates grouping and prioritization

 Similar mechanisms for reporting
“soft” failures are not
  Would employ users as oracles
  Would facilitate automatic failure

classification and fault localization

Issue: Users Are Unreliable
Oracles

 They overlook real failures
 They report spurious ones

  Often misunderstand product
functionality

 Developers don’t want to waste time
investigating bogus reports

Handling Noisy User Labels:
Corroboration-Based Filtering (CBF)
  Exploits user labels
  Seeks to corroborate

them by pooling similar
executions
  Executions profiled

and clustered
  Developers review only

“suspect” executions:
  Labeled FAILURE by

users or
  Close to confirmed

failures or
  Have unusual profile

Data Collection and Analysis

  Need four kinds of information about
each beta execution:
1.  User label: SUCCESS or FAILURE
2.  Execution profile
3.  I/O history or capture/replay
4. Diagnostic information, e.g.,

  Internal event history
  Capture/replay

Relevant Forms of Profiling

 Indicate or count runtime events that
reflect causes/effects of failures, e.g.,
  Function calls
  Basic block executions
  Conditional branches
  Predicate outcomes
  Information flows
  Call sequences
  States and state transitions

Filtering Rules
  All executions in small clusters (|C| ≤ T)

reviewed
  All executions with user label FAILURE

reviewed
  All executions in clusters with confirmed

failures reviewed

Empirical Evaluation of CBF

 Research issues:
  How effective CBF is, as measured by

 Number Fd of actual failures discovered
 Number Dd of defects discovered

  How costly CBF is, as measured by
 Number R of executions reviewed by

developers

Methodology
  CBF applied to test sets for three open source subject

programs (actual failures known)
  Executions mislabeled randomly to simulate users

  Mislabeling probability varied from 0 to 0.2
  For each subject program and test set, Fd, Dd, and R

determined for
  Three clusterings of the test executions:

  10%, 20%, 30% of test set size
  Threshold T = 1, 2, …, 5

  Same figures determined for three alternative techniques:
  Cluster filtering with one-per-cluster (OPC) sampling
  Review-all-failures (RAF) strategy
  RAF+ extension of RAF

  Additional executions selected for review randomly, until total
is the same as for CBF

Subject Programs and Tests
  GCC compiler for C (version 2.45.2)

  Ran GCC 3.0.2 tests that execute compiled code
(3333 self-validating tests)

  136 failures due to 26 defects
  Javac compiler (build 1.3.1_02-b02)

  Jacks test suite (3140 self-validating tests)
  233 failures due to 67 defects

  JTidy pretty printer (version 3)
  4000 HTML and XML files crawled from Web
  Checked trigger conditions of known defects
  154 failures due to 8 defects

  Profiles: function call execution counts

Assumptions

 Each actual failure selected would be
recognized as such if reviewed

 The defect causing each such failure
would be diagnosed with certainty

Mean Failures Discovered (b)

GCC (T = 1)

Mean Failures Discovered (c)

Javac (T = 1)

Mean Failures Discovered (d)

JTidy (T = 1)

Mean Executions Reviewed (b)

GCC (T = 1)

New Family of Techniques:
RAF+k-Nearest-Neighbors (kNN)

 Compromise between low cost of RAF
and power of CBF

 Require stronger evidence of failure
than CBF
  All executions with user label FAILURE

reviewed
  If actual failure confirmed, k nearest

neighbors reviewed
  Isolated SUCCESSes not reviewed

RAF+kNN: Executions Reviewed

Rome RSS/Atom Parser

RAF+kNN: Failures Discovered

JTidy

RAF+kNN: Defects Discovered

Subject Method 10% 30% 50%

CBF 7.99±.1 7.92±.27 7.73±.46

RAF+3NN 7.91±.10 7.91±.29 7.73±.46

JTidy

RAF 7.91±.26 7.71±.46 7.55±.54

CBF 6±0 6±0 5.97±.17

RAF+1NN 6±0 6±0 5.93±.26

ROME

RAF 6±0 6±0 5.85±.36

CBF 16.96±.28 16.80±.60 16.46±.89

RAF+5NN 16.98±.20 16.62±.60 16.19±1.02

Xerces

RAF 16.96±.58 15.77±1.04 14.99±.89

Current & Future Work
  Further empirical study

  Additional subject programs
  Operational inputs
  Alternative mislabeling models
  Other forms of profiling

  Prioritization of executions for review
  Use of supervised and semi-supervised learners
  Multiple failures classes
  Exploiting structured user feedback
  Handling missing labels

Related Work
  Podgurski et al:

  Observation-based testing
  Cluster filtering and failure pursuit
  Failure classification

  Michail and Xie: Stabilizer tool for avoiding bugs
  Chen et al: Pinpoint tool for problem determination
  Liblit et al: bug isolation
  Liu and Han: R-proximity metric
  Mao and Lu: priority-ranked n-per cluster sampling
  Gruschke; Yemini et al; Bouloutas et al: event

correlation in distributed systems

General Approach to Solution

 Record I/O online
  Ideally with capture/replay tool

 Profile executions, online or offline
  Capture/replay permits offline profiling

 Mine recorded data
 Provide guidance to developers

concerning which executions to
review

Approach #1: Cluster Filtering
[FSE 93, TOSEM 99, ICSE 01, … TSE 07]
  Intended for beta testing
  Execution profiles

automatically clustered
  1+ are selected from each

cluster or small clusters
  Developers replay and review

sampled executions
  Empirical results:

  Reveals more failures &
defects than random
sampling

  Failures tend to be found in
small clusters

  Complements coverage
maximization

  Enables more accurate
reliability estimation

  Not cheap
  Does not exploit user labels

Approach #2: Failure Classification
[ICSE 2003, ISSRE 2004]
  Goal is to group related

failures
  Prioritize and assist debugging

  Does exploit user labels
  Assumes they are accurate
  Combines

  Supervised feature selection
  Clustering
  Visualization (MDS)

  Only failing executions
clustered & visualized

  Empirical results:
  Often groups failures with

same cause together
  Clusters can be refined using

dendrogram and heuristics
  Does not exploit user labels

Data Analysis
  GNU R statistical package
  k-means clustering algorithm

  Proportional binary dissimilarity metric

  CBF, RAF, RAF+ applied to 100 randomly generated
mislabelings of test set

  OPC used to select 100 stratified random samples
from each clustering

  Computed mean numbers of failures and defects
discovered and executions reviewed

Mean Failures Discovered (a)

GCC (30% clustering)

Mean Executions Reviewed (a)

GCC (30% clustering)

Mean Failures Discovered with OPC
Sampling

Analysis
  CBF with T = 1 revealed significantly more failures

than RAF and OPC for all clusterings
  Difference between CBF and RAF increased with

mislabeling probability
  CBF entailed reviewing substantially more executions

than RAF did
  Held even with T = 1
  Did not account for the additional failures discovered

with CBF
  CBF and RAF each revealed most defects

  OPC was less effective
  RAF would not perform as well without “perfect”

debugging

