
Mining Operational
Preconditions

Andrzej Wasylkowski • Andreas Zeller
Saarland University

bug.aj
@interface A {}

aspect Test {
 declare @field : @A int var* : @A;
 declare @field : int var* : @A;

 interface Subject {}

 public int Subject.vara;
 public int Subject.varb;
}

class X implements Test.Subject {}

java.util.NoSuchElementException
 at java.util.AbstractList$Itr
 .next(AbstractList.java:427)
 at org.aspectj.weaver.bcel.BcelClassWeaver
 .weaveAtFieldRepeatedly
 (BcelClassWeaver.java:1016)

ajc Stack Trace

java.util.NoSuchElementException
 at java.util.AbstractList$Itr
 .next(AbstractList.java:427)
 at org.aspectj.weaver.bcel.BcelClassWeaver
 .weaveAtFieldRepeatedly
 (BcelClassWeaver.java:1016)

ajc Stack Trace

weaveAtFieldRepeatedly

for (Iterator iter = itdFields.iterator();
 iter.hasNext();) {
 ...
 for (Iterator iter2 = worthRetrying.iterator();
 iter.hasNext();) {
 ...
 }
}

weaveAtFieldRepeatedly

for (Iterator iter = itdFields.iterator();
 iter.hasNext();) {
 ...
 for (Iterator iter2 = worthRetrying.iterator();
 iter.hasNext();) {
 ...
 }
}

should be iter2

weaveAtFieldRepeatedly

for (Iterator iter = itdFields.iterator();
 iter.hasNext();) {
 ...
 for (Iterator iter2 = worthRetrying.iterator();
 iter.hasNext();) {
 ...
 }
}

• Invalid iterator usage:
hasNext() should precede next()

should be iter2

Preconditions

Preconditions

Invoking next() with no next element
violates a precondition

Preconditions

Invoking next() with no next element
violates a precondition

Traditional preconditions are axiomatic –
describing the state of the system

Preconditions

Invoking next() with no next element
violates a precondition

Traditional preconditions are axiomatic –
describing the state of the system

How do we reach this state?

Preconditions

Preconditions

close(int fildes)

• Axiomatic: fildes is a valid file descriptor

Preconditions

close(int fildes)

• Axiomatic: fildes is a valid file descriptor

• Operational: fildes stems from a call to open()
with read() and write() calls in between

Preconditions

close(int fildes)

• Axiomatic: fildes is a valid file descriptor

• Operational: fildes stems from a call to open()
with read() and write() calls in between

• Can we check operational preconditions?

Preconditions

close(int fildes)

OP-Miner

OP-Miner

Program

OP-Miner

Program iter.hasNext () iter.next ()

Usage Models

OP-Miner

Program iter.hasNext () iter.next ()

Usage Models

hasNext ≺ next
hasNext ≺ hasNext
next ≺ hasNext
next ≺ next

Temporal Properties

OP-Miner

Program iter.hasNext () iter.next ()

Usage Models

hasNext ≺ next
hasNext ≺ hasNext
next ≺ hasNext
next ≺ next

Temporal Properties

hasNext ≺ next
hasNext ≺ hasNext

Patterns

OP-Miner

Program iter.hasNext () iter.next ()

Usage Models

hasNext ≺ next
hasNext ≺ hasNext
next ≺ hasNext
next ≺ next

Temporal Properties

hasNext ≺ next
hasNext ≺ hasNext

Patterns

hasNext ≺ next
hasNext ≺ hasNext

hasNext ≺ next
hasNext ≺ hasNext✓

✗

Anomalies

OP-Miner

Program iter.hasNext () iter.next ()

Usage Models

hasNext ≺ next
hasNext ≺ hasNext
next ≺ hasNext
next ≺ next

Temporal Properties

hasNext ≺ next
hasNext ≺ hasNext

Patterns

hasNext ≺ next
hasNext ≺ hasNext

hasNext ≺ next
hasNext ≺ hasNext✓

✗

Anomalies

Method Models

public Stack createStack () {
Random r = new Random ();
int n = r.nextInt ();
Stack s = new Stack ();
int i = 0;
while (i < n) {
s.push (rand (r));
i++;

}
s.push (-1);
return s;

}

Method Models

public Stack createStack () {
Random r = new Random ();
int n = r.nextInt ();
Stack s = new Stack ();
int i = 0;
while (i < n) {
s.push (rand (r));
i++;

}
s.push (-1);
return s;

}

Method Models

public Stack createStack () {
Random r = new Random ();
int n = r.nextInt ();
Stack s = new Stack ();
int i = 0;
while (i < n) {
s.push (rand (r));
i++;

}
s.push (-1);
return s;

}

 Random r = new Random ();

Method Models

public Stack createStack () {
Random r = new Random ();
int n = r.nextInt ();
Stack s = new Stack ();
int i = 0;
while (i < n) {
s.push (rand (r));
i++;

}
s.push (-1);
return s;

}

 Random r = new Random ();

 int n = r.nextInt ();

 Stack s = new Stack ();

 int i = 0;

 Random r = new Random ();

 int n = r.nextInt ();

 Stack s = new Stack ();

 int i = 0;

 i < n
 i++;

 s.push (rand (r));

Method Models

public Stack createStack () {
Random r = new Random ();
int n = r.nextInt ();
Stack s = new Stack ();
int i = 0;
while (i < n) {
s.push (rand (r));
i++;

}
s.push (-1);
return s;

}

 Random r = new Random ();

 int n = r.nextInt ();

 Stack s = new Stack ();

 int i = 0;

i < n i < n
 i++;

 s.push (-1); s.push (rand (r));

Method Models

public Stack createStack () {
Random r = new Random ();
int n = r.nextInt ();
Stack s = new Stack ();
int i = 0;
while (i < n) {
s.push (rand (r));
i++;

}
s.push (-1);
return s;

}

 Random r = new Random ();

 int n = r.nextInt ();

 Stack s = new Stack ();

 int i = 0;

i < n i < n
 i++;

 s.push (-1); s.push (rand (r));

Method Models

public Stack createStack () {
Random r = new Random ();
int n = r.nextInt ();
Stack s = new Stack ();
int i = 0;
while (i < n) {
s.push (rand (r));
i++;

}
s.push (-1);
return s;

}

 Random r = new Random ();

 int n = r.nextInt ();

 Stack s = new Stack ();

 int i = 0;

i < n i < n
 i++;

 s.push (-1); s.push (rand (r));

Usage Models

 Stack s = new Stack ();

 s.push (-1); s.push (rand (r));

Usage Models

Usage Models

 s.<init>()

 s.push (_)

 s.push (_)

 Random r = new Random ();

 int n = r.nextInt ();

 Stack s = new Stack ();

 int i = 0;

i < n i < n
 i++;

 s.push (-1); s.push (rand (r));

Usage Models

 Random r = new Random ();

 int n = r.nextInt ();

 s.push (rand (r));

Usage Models

Usage Models

 r.<init> ()

 r.nextInt ()

 Utils.rand (r)

JPanel.add()

 panel.<init> (...)

 panel.add (..., ...)

 panel.<init> ()

 panel.setLayout (...)

 panel.add (..., ...)

ASTNode.reapPropertyList()

 list.<init>

 ASTNode.createPropertyList (..., list)
 ASTNode.addProperty (..., list)

 ASTNode.reapPropertyList (list)

Resource.getFlags()

 resource.getResourceInfo (..., ...)

 resource.getFlags (...)

OP-Miner

Program iter.hasNext () iter.next ()

Usage Models

hasNext ≺ next
hasNext ≺ hasNext
next ≺ hasNext
next ≺ next

Temporal Properties

hasNext ≺ next
hasNext ≺ hasNext

Patterns

hasNext ≺ next
hasNext ≺ hasNext

hasNext ≺ next
hasNext ≺ hasNext✓

✗

Anomalies

OP-Miner

Program iter.hasNext () iter.next ()

Usage Models

hasNext ≺ next
hasNext ≺ hasNext
next ≺ hasNext
next ≺ next

Temporal Properties

hasNext ≺ next
hasNext ≺ hasNext

Patterns

hasNext ≺ next
hasNext ≺ hasNext

hasNext ≺ next
hasNext ≺ hasNext✓

✗

Anomalies

Methods vs. Properties
Temporal Properties

M
et

ho
ds

start ≺
stop

lock ≺
unlock

eof ≺
close

Methods vs. Properties

get()

Temporal Properties

M
et

ho
ds

start ≺
stop

lock ≺
unlock

eof ≺
close

Methods vs. Properties

open()

get()

Temporal Properties

M
et

ho
ds

start ≺
stop

lock ≺
unlock

eof ≺
close

Methods vs. Properties

open()

hello()

get()

Temporal Properties

M
et

ho
ds

start ≺
stop

lock ≺
unlock

eof ≺
close

Methods vs. Properties

open()

hello()

parse()

get()

Temporal Properties

M
et

ho
ds

start ≺
stop

lock ≺
unlock

eof ≺
close

Methods vs. Properties

open()

hello()

parse()

get()

Temporal Properties

M
et

ho
ds

start ≺
stop

lock ≺
unlock

eof ≺
close

Methods vs. Properties

open()

hello()

parse()

get()

Temporal Properties

M
et

ho
ds

start ≺
stop

lock ≺
unlock

eof ≺
close

Methods vs. Properties

open()

hello()

parse()

get()

Temporal Properties

M
et

ho
ds

start ≺
stop

lock ≺
unlock

eof ≺
close Pattern

Methods vs. Properties

open()

hello()

parse()

get()

Temporal Properties

M
et

ho
ds

start ≺
stop

lock ≺
unlock

eof ≺
close

Support

Pattern

Discovering Anomalies

open()

hello()

parse()

get()

Temporal Properties

M
et

ho
ds

start ≺
stop

lock ≺
unlock

eof ≺
close

Discovering Anomalies

open()

hello()

parse()

get()

Temporal Properties

M
et

ho
ds

start ≺
stop

lock ≺
unlock

eof ≺
close

✘

Discovering Anomalies

open()

hello()

parse()

get()

Temporal Properties

M
et

ho
ds

start ≺
stop

lock ≺
unlock

eof ≺
close

Discovering Anomalies

open()

hello()

parse()

get()

Temporal Properties

M
et

ho
ds

start ≺
stop

lock ≺
unlock

eof ≺
close

Discovering Anomalies

open()

hello()

parse()

get()

Temporal Properties

M
et

ho
ds

start ≺
stop

lock ≺
unlock

eof ≺
close

Discovering Anomalies

open()

hello()

parse()

get()

Temporal Properties

M
et

ho
ds

start ≺
stop

lock ≺
unlock

eof ≺
close

✘

Case Study: AspectJ

Case Study: AspectJ

• 2,954 classes

Case Study: AspectJ

• 2,954 classes

• 36,045 methods

Case Study: AspectJ

• 2,954 classes

• 36,045 methods

• 1,154 methods with OP support ≥ 20

Case Study: AspectJ

• 2,954 classes

• 36,045 methods

• 1,154 methods with OP support ≥ 20

• 300 violations found in 8 minutes

Case Study: AspectJ

• 2,954 classes

• 36,045 methods

• 1,154 methods with OP support ≥ 20

• 300 violations found in 8 minutes

• Examined every single one

A Defect

for (Iterator iter = itdFields.iterator();
 iter.hasNext();) {
 ...
 for (Iterator iter2 = worthRetrying.iterator();
 iter.hasNext();) {
 ...
 }
}

A Defect

for (Iterator iter = itdFields.iterator();
 iter.hasNext();) {
 ...
 for (Iterator iter2 = worthRetrying.iterator();
 iter.hasNext();) {
 ...
 }
}

should be iter2

A Defect

for (Iterator iter = itdFields.iterator();
 iter.hasNext();) {
 ...
 for (Iterator iter2 = worthRetrying.iterator();
 iter.hasNext();) {
 ...
 }
}

should be iter2

Another Defect

public void visitNEWARRAY (NEWARRAY o) {
 byte t = o.getTypecode ();
 if (!((t == Constants.T_BOOLEAN) ||
 (t == Constants.T_CHAR) ||
 ...
 (t == Constants.T_LONG))) {
 constraintViolated (o, "(...) '+t+' (...)");
 }
}

Another Defect

public void visitNEWARRAY (NEWARRAY o) {
 byte t = o.getTypecode ();
 if (!((t == Constants.T_BOOLEAN) ||
 (t == Constants.T_CHAR) ||
 ...
 (t == Constants.T_LONG))) {
 constraintViolated (o, "(...) '+t+' (...)");
 }
} should be double quotes

Name internalNewName (String[] identifiers)
 ...
 for (int i = 1; i < count; i++) {
 SimpleName name = new SimpleName(this);
 name.internalSetIdentifier(identifiers[i]);
 ...
 }
 ...
}

A False Positive

Name internalNewName (String[] identifiers)
 ...
 for (int i = 1; i < count; i++) {
 SimpleName name = new SimpleName(this);
 name.internalSetIdentifier(identifiers[i]);
 ...
 }
 ...
}

A False Positive

should stay as is

A Code Smell
public String getRetentionPolicy ()
{
 ...
 for (Iterator it = ...; it.hasNext();)
 {
 ... = it.next();
 ...
 return retentionPolicy;
 }
 ...
}

A Code Smell
public String getRetentionPolicy ()
{
 ...
 for (Iterator it = ...; it.hasNext();)
 {
 ... = it.next();
 ...
 return retentionPolicy;
 }
 ...
}

should be fixed

AspectJ
Defects Code smells False positives

AspectJ
Defects Code smells False positives

AspectJ
Defects Code smells False positives

AspectJ
Defects Code smells False positives

More Results
Table 2: Summary of the results for the experiment subjects. (See Section 5.2 for a discussion.)

Violations

Program Total Investigated # Defects # Code smells # False positives Efficiency

A-R 0.8.2 25 25 2 13 10 60%
A T 6.0.16 55 55 0 9 46 16%
AUML 0.24 305 28 0 12 16 43%
AJ 1.5.3 300 300 16 42 242 19%
A 2.5.0.0 315 85 1 26 58 32%
C 1.2 57 57 4 15 38 33%
E 4.2 11 11 0 4 7 36%

1,068 562 23 121 417 26%

public String getPreferredEmail () {
Iterator it = getEmailIterator ();
IEmailModel = (IEmailModel) it.next ();
...

}

Figure 17: Another defect in C. Missing call to hasNext
causes this method to throw an exception in certain circum-
stances and thus cause a failure.

protected void loadPluginList () {
...
List bits = new ArrayList ();
while (...) {

...
if (...) {

bits.add (...);
break;

}
else {

bits.add (...);
...

}
}
String version = (String) bits.get (0);
String cvs_version = (String) bits.get (1);
String name = (String) bits.get (2);
...

}

Figure 18: A defect in A. The code does not check the
size of the bits list before accessing its elements. This method
was fixed in version 2.5.0.2.

5.3 Limitations and Threats to Validity
The most important limitation of our approach is that it needs sub-
stantial code bases to learn from. While this limitation can be par-
tially circumvented (e.g. if one wants to use some library and wants
OP-M to check if one is not making any mistakes, one can use
someone else’s program to learn from), it is an unavoidable price
for the ability to tap into developers’ knowledge and experience
that is contained in those code bases. Also, OP-M is only use-
ful for single-threaded programs, but it can handle the whole J
language, including the exception handling.

We have identified the following potential threats to validity:

• We have investigated seven programs with different applica-
tion domains, sizes and maturity and our results seem fairly
consistent across those programs. However, it is possible
that they do not generalize to arbitrary projects; proprietary,
closed-source programs may have very different properties.

• The tools we have used (JADET and C) could be de-
fective. We think this is very improbable, especially for C-
, whose implementation is publicly available [28]. As for
JADET as well as the OP-M code, we have used and
thoroughly validated it, so we believe that any defects left af-
fect only a small number of OUMs and violations and thus
do not spoil the results overall.

• The results of the categorization process performed on vio-
lations might depend on the expertise of the human apply-
ing the approach. However, if anything, this would make
our results better than reported—because we have marked
violations as defects only if we were completely sure that
they are indeed defects (e.g. by crashing the program, mak-
ing sure the contract was violated, seeing the code changed
in the way suggested by OP-M, etc.). An experienced
developer may spot potential problems where we see false
positives.

6. RELATED WORK
To the best of our knowledge, the present work is the first to take
an operational view at preconditions—learning and checking what
needs to be done to call a function. However, there are several other
approaches that learn from existing code or that detect defects.

6.1 Learning from Code
Ernst et al. [15] have written the seminal work on inferring invari-
ants dynamically using DAIKON. Later Hangal and Lam [22] cre-
ated DIDUCE that detects and checks invariants. Csallner et al. [9]
created DS, which uses dynamic analysis together with symbolic
execution to discover relevant invariants. Flanagan and Leino [17]
created H which infers ESC/J [18] annotations from the
program. These approaches can only produce axiomatic precon-
ditions. Ramanathan et al. [35] produce axiomatic preconditions,
unordered usage information (“this value was also used as a param-
eter of the following functions: . . . ”), origin information and con-
straints on method calls of the form “a call to g is always preceded
by a call to f”. However, these constraints are “must” as opposed to
ours “may” and are created separately from the static information
mentioned earlier. The upshot of this is that the interplay between
methods that can be represented is more limited than what OPs can
represent. They used their approach to find defects, too, but un-
fortunately did not report on the rate of false positives. Ray-Yaung
Chang et al. [7] presented an approach for revealing neglected con-
ditions in programs: they can learn so-called conditional rules and
then look for their violations.

Future Work

Future Work

• Procedural languages
leveraging appropriate static analysis frameworks

Future Work

• Procedural languages
leveraging appropriate static analysis frameworks

• Interprocedural analysis
but does this make sense for learning usage?

Future Work

• Procedural languages
leveraging appropriate static analysis frameworks

• Interprocedural analysis
but does this make sense for learning usage?

• Ranking violations
in particular in presence of low support

Future Work

• Procedural languages
leveraging appropriate static analysis frameworks

• Interprocedural analysis
but does this make sense for learning usage?

• Ranking violations
in particular in presence of low support

• Early programmer support
in terms of recommendations and documentation

OP-Miner

OP-Miner

OP-Miner learns operational preconditions
i.e., how to typically construct arguments

OP-Miner

OP-Miner learns operational preconditions
i.e., how to typically construct arguments

Learns from normal argument usage
for specific projects or across projects

OP-Miner

OP-Miner learns operational preconditions
i.e., how to typically construct arguments

Learns from normal argument usage
for specific projects or across projects

Fully automatic

OP-Miner

OP-Miner learns operational preconditions
i.e., how to typically construct arguments

Learns from normal argument usage
for specific projects or across projects

Fully automatic

Found dozens of verified defects

