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ABSTRACT 
The high performance implementation of Java Virtual Machines 
(JVM) and Just-In-Time (JIT) compilers is directed toward adaptive 
compilation optimizations on the basis of online runtime profile in- 
formation. This paper describes the design and implementation of a 
dynamic optimization framework in a production-level Java JIT 
compiler. Our approach is to employ a mixed mode interpreter and 
a three level optimizing compiler, supporting quick, full, and spe- 
cial optimization, each of which has a different set of tradeoffs be- 
tween compilation overhead and execution speed. A lightweight 
sampling profiler operates continuously during the entire program's 
execution. When necessary, detailed information on runtime behav- 
ior is collected by dynamically generating instrumentation code 
which can be installed to and uninstalled from the specified recom- 
pilation target code. Value profiling with this instrumentation 
mechanism allows fully automatic code specialization to be per- 
formed on the basis of specific parameter values or global data at 
the highest optimization level. The experimental results show that 
our approach offers high performance and a low code expansion ra- 
tio in both program startup and steady state measurements in com- 
parison to the compile-only approach, and that the code specializa- 
tion can also contribute modest pertbrmance improvements. 

1. INTRODUCTION 
There has been a significant challenge for the implementation of 
high performance virtual machines for Java [18] primarily due to 
the dynamic nature of the language, and many research projects 
have been devoted to developing efficient dynamic compilers for 
Java [10, 13, 17, 23, 24, 26, 30, 36, 37, 43]. Since the compilation 
time overhead of a dynamic compiler, in contrast to that of a con- 
ventional static compiler, is included in the program's execution 
time, it needs to be very selective about which methods it decides to 
compile and when and how it decides to compile them. More spe- 
cifically, it should compile methods only if the extra time spent in 
compilation can be amortized by the performance gain expected 
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from the compiled code. Once program hot regions are detected, the 
dynamic compiler must be very aggressive in identifying good op- 
portunities for optimizations that can achieve higher total perform- 
ance. This tradeoff between compilation overhead and its perform- 
ance benefit is a crucial issue for dynamic compilers. 

In the above context, the high performance implementation of Java 
Virtual Machines (JVM) and Just-In-Time (JIT) compilers is mov- 
ing toward exploitation of adaptive compilation optimizations on 
the basis of runtime profile information. Although there is a long 
history of research on mntime feedback-directed optimizations 
(FDO), many of these techniques are not directly applicable for use 
in JVMs because of the requirements for programmer intervention. 
Jalapefio [3] is the first JVM implementing a fully automatic adap- 
tive compilation framework with feedback-directed method 
inlining, and it demonstrated a considerable performance improve- 
ment benefit. The Intel research compiler, JUDO [13], also employs 
dynamic optimization through a recompilation mechanism. Both of 
these systems use the compile-only approach, and it can result in 
relatively higher costs in compilation time and code size growth. 

In this paper, we present a different approach for the dynamic opti- 
mization framework implemented in our production-level JIT com- 
piler. We use a combination of an interpreter and a dynamic com- 
piler with three levels of optimization to provide balanced steps for 
the tradeoffbetween compilation overhead and compiled code qual- 
ity. A low-overbead, continuously operating sampling profiler iden- 
tifies program hot regions for method reoptimization. To decide on 
the recompilation policy, we use a value profiling technique, which 
can be dynamically installed into and uninstalled from target code, 
for collecting detailed runtime information. This technique does not 
involve target code recompilation, and is reasonably lightweight 
and effective for the use of collecting a fixed amount of sampled 
data on program hot regions. In the highest level optimization for 
program hot methods, we apply code specialization using impact 
analysis. This is performed fully automatically on the basis of the 
parameter values or global object data, which exhibit runtime in- 
variant or semi-invariant behavior [11 ] through the dynamically in- 
strumented value profiling. Our experimental results show that this 
approach provides significant advantages in terms of performance 
and memory footprint, compared to the compile-only approach, 
both at program start-up and in steady state runs. 

1.1 Contributions 
This paper makes the following contributions: 
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@ System architecture: We present a system architecture for a 
simple, but efficient and high-performance dynamic optimiza- 
tion framework in a production-level Java JIT compiler with a 
mixed mode interpreter. Extensive experimental data is pre- 
sented for both performance and memory footprint to verify the 
advantages of our approach. 

@ Profiling techniques: We present a program profiling mecha- 
nism combining two different techniques. One is a continuously 
operating, lightweight sampling profiler for detecting program 
hot methods, and the other is a dynamically installed and unin- 
stalled instrumenting profiler that collects detailed information 
for the methods gathered by the first profiler. 

@ Code specialization: The design and implementation of code 
specialization, an example of FDO, is described, using the dy- 
namically instrumented profiling mechanism for value sampling. 
This is a fully automated design with no programmer interven- 
tion required. The effectiveness of this technique is evaluated 
using industry standard benchmark programs. 

The rest of this paper is organized as follows. The next section sum- 
marizes related work, comparing our system to prior systems. Sec- 
tion 3 describes the overall system architecture of our dynamic 
compilation system, including the multiple levels of the execution 
model divided between the mixed mode interpreter and recompila- 
tion framework. Section 4 discusses recompilation issues, includ- 
ing profiling techniques and instrumentation-based data sampling. 
The detailed description of code specialization appears in Section 5. 
Section 6 presents some experimental results using a variety of ap- 
plications and industry standard benchmarking programs to show 
the effectiveness of  our dynamic compilation system. Finally we 
conclude in Section 7. 

2 .  R E L A T E D  W O R K  
This section discusses prior dynamic optimization systems for Java 
and other related work. 

2.1 Dynamic Optimization Systems 
There have been three major dynamic systems for automatic, 
profile-driven adaptive compilers for Java. These can be roughly 
broken into two categories; the Intel research compiler, the JUDO 
system [13], and the Jalapefio JVM [3, 4], all follow a compile-only 
approach, while HotSpot TM [30, 37] is provided with an interpreter 
to allow a mixed execution environment with interpreted and com- 
piled code, as in our system. 

The Intel compiler employs dynamic optimization through recom- 
pilation, by providing two different compilers: a fast code generator 
[1] and an optimizing compiler. As a way of triggering reeompila- 
tion, it inserts counter updating instructions for both method entry 
point and loop backward branches in the first level compiled code. 
It incurs a continuous bottom-line performance penalty. The target 
code has to be recompiled if we want to remove these instructions 
overhead. Since the recompiled code is not instrtunented, further re- 
optimization is not possible in this system. In contrast, our system 
uses a low-overhead profiling system for continuous sampling op- 
eration throughout the entire program execution, and thus allows 
for further reoptimizations, such as specialization. 

Jalapefio is another research JVM implemented in Java itself. They 
implemented a multilevel reeompilation framework using a baseline 

and an optimizing compiler with three optimization levels, and they 
presented good performance improvements in both startup and 
steady state regimes compared to other non-adaptive configurations 
or adaptive but single level reeompilation configurations. Profile- 
directed method inlining is also implemented, and considerable per- 
formance improvement is obtained thereby for some benchmarks. 
Their overall system architecture is quite similar to ours, but the 
major difference lies in its compile-only approach and in how the 
profiling system works. The compilation-only approach can incur a 
significant overhead for the system. Although their baseline com- 
piler was designed separately from the optimizing compiler for 
minimum compilation overhead, the system can result in a large 
memory footprint. Our system features a mixed mode interpreter for 
the execution of many infrequently called methods with no cost in 
compile time or code size growth. This allows the recompilation 
system to be more flexible and aggressive in its reoptimization pol- 
icy decision. Their profiling system continuously gathers full run- 
time profile information on all methods, including information for 
organizer threads to construct data structures such as dynamic call 
graphs. Our system employs two separate profiling techniques to re- 
duce the overall profiling overhead. That is, a lightweight sampling 
profiler focuses on detecting hot methods, and then an instnunent- 
ing profiler collects more detailed information only on hot methods. 

HotSpot is a JVM product implementing an adaptive optimization 
system. It runs a program immediately using an interpreter, as in our 
system, and detects the critical "hot spots" in the program as it runs. 
It monitors program hot-spot continuously as the program runs so 
that the system can adapt its performance to changes in tile program 
behavior. However, detailed information about the program moni- 
toting techniques and the system structure for recompilation is not 
available in the literature. 

The notion of mixed execution of interpreted and compiled code 
was considered as a continuous compiler or smart JIT approach in 
[31], and the study of three-mode execution using an interpreter, a 
fast non-optimizing compiler, and a fully optimizing compiler was 
reported in [2]. In both of these papers, it was proven that there is a 
performance advantage by using an interpreter in the system for bal- 
ancing the compilation cost and resulting code quality, but the 
problem of the generated code size was not discussed. 

The Self-93 system [20, 21] pioneered the on-line profile-directed 
adaptive recompilation systems. The goal of this system is to avoid 
the long compile pauses and to improve the responsiveness for in- 
teractive applications. It is based on a compile-only approach, and 
for the method recompilation, an invocation counter is provided 
and updated in the method prologue in the unoptimized code. The 
counters decay over time for reflecting the invocation frequencies to 
avoid eventually reaching the invocation limit for many unimpor- 
tant methods. The reeompilation also takes advantage of the type 
feedback information for receiver class distributions using the pro- 
filing in the previous version code. 

Dynamo [8] uses a unique approach, focusing on native-to-native 
runtime optimization. It is a fully transparent dynamic compilation 
system, with no user intervention required, which takes an already 
compiled native instruction stream as input and reoptimizes it at 
runtime. The use of the interpreter here is to identify the hot paths 
for reoptimization rather than to reduce the total compilation cost as 
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in our system. Another profile-driven dynamic recompilation sys- 
tem is described in [9] for Scheme. They use edge-count profile in- 
formation for basic block reordering in the recompiled code for im- 
proved branch prediction and cache locality. 

2.2 Instrumentation 
Ephemeral insmxnentation [34, 39] is, in principle, quite close to 
our dynamically installed and uninstalled instrumentation technique 
for value profiling. Their method is to dynamically replace the tar- 
get addresses of conditional branches in the executing code with the 
pointer to a general subroutine that updates a frequency counter of 
the corresponding edge. The collected data is then used off-line for 
a static compiler. Our profiling system, on the other hand, is not 
limited to the branch target, but applicable to any point of the pro- 
gram by generating the corresponding code for value sampling. 
Also the instrumentation system is integrated into the fully auto- 
mated dynamic compilation system. 

A framework for reducing the instrumentation overhead in an on- 
line system [5] is prototyped in Jalapefio. This technique introduces 
a second version of the code, called checking code, to reduce the 
frequency of executing the instrumented code. This will allow a va- 
riety of profiling techniques to be integrated in the framework. The 
main concern is the space overhead caused by duplicating the 
whole method for extra versions for both checking and instru- 
mented code, although some space saving techniques are described. 
Our system dynamically attaches only a small fragment of the code 
for value sampling at the method entry points, and thus it is more 
space efficient. 

2.3 Code Specialization 
There has been much work in the area of dynamic code generation 
and specialization, most of which require either source language ex- 
tensions, such as tee system [32], or programmer annotations such 
as Tempo [28], the dynamic compiler developed at the University 
of Washington [6], and its successor system, DyC [19]. In these 
systems, a static compiler performs the majority of optimization 
work and prepares for a dynamic compilation process by generating 
templates, and a dynamic compiler instantiates the templates at 
runtime. 

As a restricted form of specialization, called customization [ 12], the 
Self system creates a separate version of a given method for each 
possible receiver class, relying on the fact that many messages 
within a method are sent to self object. The selective specialization 
technique [15] then corrected the problem of both overspecializa- 
tion by specializing only heavily-used methods for their most bene- 
ficial argument classes, and underspecialization by specializing 
methods on arguments other than the receiver. This system resem- 
bles ours in that it combines static analysis (corresponding to our 
impact analysis) and profile information to identify the most profit- 
able specialization. However, their work was focused on converting 
dynamic calls to static calls to avoid the large performance over- 
head caused by dynamic method dispatch. Our specialization allows 
not only method call optimizations, but also general optimizations, 
such as type test elimination, strength reduction, and array bound 
check elimination, on the basis of specific values dynamically 
collected. 

The inlining trials [16] in the Self system is an attempt to predict 

the benefit of inlining based on type group analysis. Inlining 
method calls with special parameter values can be considered an ex- 
treme case of specialization to a particular call site. Our impact 
analysis is more general in the sense that it can handle not only 
method parameters but also global variables such as object instance 
fields. 

An analysis to identify so called glacial variables [7] is proposed to 
find good candidates for specialization. However, their analysis is 
static, and the execution frequency is estimated only by loop nesting 
level, without using the dynamic profile infolrnation as in our 
system. 

3. SYSTEM ARCHITECTURE 
The goal of our dynamic optimization system is to achieve the best 
possible performance with a set of  currently available optimization 
capabilities for varying phases of application programs, including 
program startup, steady state, and phase shifts. It also needs to be 
robust for continuous operation for long-mrming applications. The 
overall architecture of our system is as depicted in Figure 1. We de- 
scribe each of the major components of the system in the following 
sections. 

3.1 Mixed Mode Interpreter 
Most of the methods executed in Java applications are neither fre- 
quently called nor loop intensive as shown in the results in Section 
6.2, and the approach of compiling all methods is considered ineffi- 
cient in terms of both compilation time and code space. The mixed 
mode interpreter (MMI), written in assembler code, allows the effi- 
cient mixed execution of  interpreted and compiled code by sharing 
the execution stack and exception handling mechanism between 
them. It is roughly three times faster than an interpreter written in C. 

Initially, all methods are interpreted by the MMI. A counter for 
method invocation frequencies and loop iterations is provided for 
each method and initialized with a threshold value. Whenever the 
method is invoked or loops within the method are iterated, the 
counter is decremented. When the count reaches zero, it is known 
that the method has been invoked frequently or is computation in- 
tensive, and JIT compilation is triggered for the method. Thus the 
JIT compilation can be invoked either from the top entry point of 
the method or from a backward branch within a loop. In the latter 
case, the control is directly transferred to the JIT compiled code 
from the currently interpreted code, by dynamically changing the 
frame structure for JIT use and jumping to specially generated com- 
pensation code. The JIT compilation for such methods can be done 
without sacrificing any optimization features. 

If the method includes a loop, it is considered to be very perform- 
ance sensitive and special handing is provided to initiate compila- 
tion sooner. When the interpreter detects a loop's backward branch, 
it snoops the loop iteration count on the basis of a simple bytecode 
pattern matching sequence, and then adjusts the amount by which 
the counter is decremented depending on the loop iteration count. 
In the case where the iteration count is large enough, the JI.T compi- 
lation is immediately invoked without waiting until the counter 
value reaches zero. 

The collection of nmtime trace information is another benefit of the 
MMI for use in JIT compilation, For any conditional branches 
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Figure 1. System architecture of our dynamic optimization system. 

encountered, the interpreter keeps the information of whether it is 
taken or not to provide the JIT compiler with a guide for the branch 
direction at basic block boundaries t. The trace information is then 
used by the JIT compiler for ordering the basic blocks in a straight- 
line manner according to the actual program behavior, and for guid- 
ing branch directions in partial redundancy optimizations [26]. 

3.2 Dynamic Compiler 
The dynamic optimizing compiler has the following optimization 
levels. 

• Quick (1st level) optimization employs only a limited set of  the 
optimizations available. Basically, optimizations causing higher 
costs in compilation time or greater code size expansion are dis- 
abled. For example, only those methods whose bytecode size 
does not exceed the size of a typical method invocation se- 
quence will be inlined. This saves the compilation overhead not 
only of the method inlining process, but for the later optimiza- 
tion phases which traverse the entire resulting code block. The 
guarded or unguarded devirtualization of method calls is applied 
based on the class hierarchy analysis [23, 24]. The maximum 
number of iterations in the dataflow-based optimizations is also 
reduced. These optimizations involve iterations over several 
components, such as copy propagation, array bound check 
elimination, null pointer check elimination, common subexpres- 
sion elimination, and dead code elimination. 

® Full (2nd level) optimization employs all optimizations avail- 
able. Additional and augmented optimizations at this level in- 
elude full-fledged method inlining, escape analysis (including 
stack object allocation, scalar replacement, and synchronization 
elimination), an additional pass for code generation and code 
scheduling, and DAG-based loop optimization. The iteration 
count for dataflow-based optimizations is also increased. 

® Special (3rd level) optimization applies code specialization, a 
feedback-directed optimization, in addition to the same set of 
optimizations as in the previous level. This is described in detail 

t Since keeping trace information every time can cause additional over- 
head, the branch instruction is converted to the corresponding quick in- 
struction after being executed a fixed number of times in order to mini- 
mize the performance penalty. 

in Section 5. 

The intemal representation is common for all optimization levels. 
The differences in compilation time, generated code size, and gen- 
erated code's performance quality between the quick optimization 
and full optimization versions can be found in the experimental re- 
suits presented in Section 6.1 and 6.2. 

The reason that we provide three optimization levels in our dy- 
namic compiler is twofold. First, one level of compilation model 
is, in our experience, simple and still effective until a eertain level 
of optimization in the presence of MMI. However, as more so- 
phisticated and time-consuming optimizations are added for pur- 
suing higher performance, more of the negative side of the dy- 
namic compilation (that is, the compilation overhead and code 
size growth problems) starts to appear. Even i f  more expensive 
optimizations are implemented, the return is diminishing and the 
net performance gain becomes marginal. This is considered to be 
due primarily to the larger gap between the interpreter and the 
compiler regarding the level of tradeoff between compilation cost 
and the resulting performance. If we set a lower threshold for trig- 
gering compilation, we may have better performing compiled code 
earlier but more total compilation cost is incurred. If we set a 
higher threshold value, we may miss some opportunities for gain- 
ing performance for some methods due to delayed compilation. 
There is also a problem with application start'up performance deg- 
radation with one level of a highly optimizing compiler. It is 
therefore desirable to provide multiple, reasonable steps in the 
compilation level with well-balanced tradeoffs between the cost 
and the expected perforrnanee, from which an adequate level of  
optimization can be selected corresponding to the eurrent execu- 
tion context. 

Secondly, it is not clear whether it would be effective to have 
more than three levels of optimization in the dynamic compilation 
system, without knowing the exact relationship between each 
component of the optimization on performance and compilation 
cost. Having more levels of optimization would make more 
choices available for reeompilation. However it would complicate 
the selection process and more informative profiling data would 
be necessary to make correct decisions, which might add more 
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overhead. Furthermore, the resulting code may or may not be of 
better quality depending on the target methods. The gradual pro- 
motion with finer steps of optimization can result in more code 
expansion rather than any overall performance benefit. The re- 
suits shown in Section 6.1, combined with the interpreter avail- 
able in ottr system, suggest that the current classification of three 
levels of optimization can provide an adequate tradeoff for reason- 
able promotion for recompilation decisions. 

3.3 Sampling-Based Profiler 
The sampling-based profiler [40] gathers information about the 
program threads' execution. This profiling collector keeps track of 
methods where the application threads are using the most CPU 
time by periodically snooping the program counters of all of the 
threads, identifying which methods they are currently executing, 
and incrementing a hotness counter associated with each method. 

Since the MMI has its own counter-based profiling mechanism, 
this sampling profiler only monitors compiled methods for reopti- 
mization. The hot methods identified by the profiler are kept in a 
linked list, sorted by the hotness counter, for use by the recom- 
pilation controller in deciding on method recompilation. To mini- 
mize the bottom-line overhead, the profiler doesn't operate by 
constructing and maintaining a call context tree for every sam- 
pling time interval, which would involve traversing the stack to a 
certain depth. Instead, additional information such as caller-callee 
relationships is collected by instrumentation code only for meth- 
ods considered as candidates for recompilation as described in 
Section 3.5. This two-stage profiling design results in low overhead 
for the sampling profiler and hence allows continuous operation 
during the entire program execution with virtually no performance 
penalty. 

3.4 Reeompilation Controller 
The recompilation controller, which is the brain of the recompila- 
tion system, takes as input from the sampling profiler the list of 
hot methods and makes decisions regarding which methods 
should be recompiled. The recompilation requests, as the results 
of these decisions, are put into a queue for a separate compilation 
thread to pick up and compile asynchronously. 

The controller also directs the instrumenting profiler to install in- 
strumentation code for further profile information such as method 
return addresses for collecting call site distribution for those hot 
methods. Some parameter values can also be collected depending 
on the results of impact analysis done in the full optimization 
compilation phase (described in Section 5). This additional profile 
data is useful in guiding more effective optimizations, such as 
method inlining and code specialization. 

3.5 Instrumenting Profiler 
The instrumenting profiler, according to an instrumentation plan 
from the recompilation controller, dynamically generates code for 
collecting specified data from a target method, and installs it into 
the compiled code. The entry instruction of the target code, after it 
is copied into the instrumenting code region, is dynamically 
patched with an unconditional branch instruction in order to direct 
control to the generated profiling code. The instrumentation code 
records the caller's return address or values of parameter and 

object fields in a table and then jumps back to the next instruction 
after the entry point. The data table or a counter for storing infbr- 
mation is allocated separately to be passed back to the controller. 
After collecting a predetermined number of samples, the generated 
code automatically uninstalls itself from the target code by restor- 
ing the original instruction at the entry point. 

The information that is collected and recorded by the instrumenta- 
tion code can range from a simple counter (such as zero, non-zero, 
or array type), which just counts the number of executions, to a 
form of table with values or types of variables and their corre- 
sponding frequencies. Unlike instrumentation code found in other 
systems [13], this technique allows dynamic installation and unin- 
stallation without involving target code recompilation. Since the 
target method and sampling numbers are controllable, the over- 
head of the instrumentation is relatively lightweight, unlike sys- 
tems where the instrumentation code is generated as part of the 
compiled code which always incurs overhead. 

4. RECOMPILATION 
The key to our system is to make correct and reasonable decisions 
to selectively and adaptively choose methods for each level of opti- 
mization. From the mixed mode interpreter to the 1st level compila- 
tion, the transfer is made on the basis of the dynamic count on invo- 
cation frequencies and loop iterations, with additional special treat- 
ment for certain types of loops. The request for 2nd level and 3rd 
level recompilation from lower level compiled code is through the 
sampling profiler. The compilation and reeompilafion need to be 
done from one level to the next, and there is currently no direct path 
skipping intermediate levels from interpreter mode or compiled 
code. 

The reason we chose two different ways of method promotion 
comes from the consideration of the advantages and disadvantages 
of the two profiling mechanisms: sampling-based and counter- 
based. For the interpreter, the cost of counter updates is not an 
issue, given the inherently higher overhead of interpreted execution, 
compared to additional code for counter maintenance. Instead, the 
accuracy of the profiling information is rather important, because 
the large gap in performance between interpreted and compiled 
code means the performance penalty could be large if it misses the 
optimum point to trigger the 1 st level compilation. This tradeoffbe- 
tween efficiency and accuracy can be measured using counter-based 
profiling. On the other hand, compiled code is very performance 
sensitive, and inserting counter updating instructions in this com- 
piled code could have quite a large impact on total performance. 
Lightweight profiling is much better for continuous operation. 
Since the target method is already in a compiled form, a certain loss 
of accuracy in identifying program hot regions, which may cause a 
delay in recompilation, is allowable. Sampling-based profiling is 
superior for this purpose. 

4.1 Reeompilation Request 
Since the quick optimization compiler generates code with virtu- 
ally no method inlining, the sampling profiler collects information 
on the set of hot methods as individual methods. A simple-minded 
recompilation request for those methods can result in unnecessary 
recompilations, since some methods included in the list may be 
inlined into another during, the full optimization compilation [21 ]. 
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This can happen because the hot methods appearing in the list 
come from sampling during the same stage in the program's exe- 
cution, and therefore can be closely interrelated. Instead of simply 
requesting recompilation for each of the methods, the controller 
first constructs call graphs, structures representing the caller- 
callee relationships, from the list of hot methods. This requires in- 
formation about the call sites' distributions for each method. Then 
only those methods which are roots in one of the graphs are 
pushed into the compile request queue with appropriate inlining 
directions for methods appearing in the subgraph below the root. 

4.2 Multiple Version Code Management 
After the recompilation is done for a method, it is registered by a 
runtime system called the code manager, which controls and man- 
ages all the compiled code modules by associating them with their 
corresponding method structures and with a set of information 
such as the compiled code optimization level and specialization 
context. This means all the future invocations to this method 
through indirect method lookup will be directed to the new ver- 
sion of the code, instead of the existing compiled code. Static and 
nonvirtual call sites are exceptions, where direct binding call in- 
structions to old version code have been generated. A dynamic 
code patching technique is used in order to change the target of 
the direct call. This is done by putting a jump instruction at the 
entry point of  the old code to a runtime routine, which then up- 
dates the call site instruction to direct the flow to the new code us- 
ing the return address available on the stack, so that the direct in- 
vocation of the new code will occur from the next call. 

For those threads currently executing old version code, the new 
optimized code will be used from the next invocation. We cur- 
rently do not have a mechanism for on-stack replacement [21 ], the 
technique of dynamically rewriting stack frames from one optimi- 
zation version to another. Also the problem of cleaning up the old 
version code remains in our system. The major difficulty with old 
code is how to guarantee that no execution is currently or will be 
in the future performed using the old compiled code. The apparent 
solution would be to eagerly patch all the direct bound call sites, 
rather than to patch lazily as in our current implementation, and 
then to traverse all the stack frames to ensure no activation record 
exists for this old code. This traversal would be done at some ap- 
propriate time (like garbage collection time). 

5. CODE SPECIALIZATION 
In this section, we describe the design and implementation of code 
specialization, as an interesting feedback-directed optimization 
technique. This optimization is applied for the methods already 
compiled with the full optimization level. Figure 2 shows the flow 
of control regarding how the decision on code specialization will 
be made. Currently code specialization is applied for an entire 
method, not for a smaller region in the method such as a loop. 

5.1 Impact Analysis 
Since overspecialization can cause significant overhead in terms 
of both time and space, it is important to anticipate before its ap- 
plication how much benefit it can bring to the system and for what 
values. Impact analysis, a dataflow-based routine that detects op- 
pomanities and estimates the benefit of code specialization, is 
used to make a prediction as to how much better code we would 
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Figure 2. Flow of specialization decisions. 

be able to generate if we knew a specific value or type for some 
variables. The impact analysis is done during the 2nd level compi- 
lation and the result of the analysis is stored into a persistent data- 
base, so that the controller can make use of it for the next round of 
reeompilation plans. 

The specialization targets can be both method parameters and 
non-volatile global variables 2, such as static fields and object in- 
stance fields. The set of specialization targets for global variables 
within a method can be computed from In (n) and Kill (n) for each 
basic block n after solving the forward dataflow equations given 
below: 

In (entry_bb): All non-volatile global variables within the 
method. 

Kill (n): The set of global variables that can be changed by in- 
structions in basic block n: 

Out (n )  = I n  (n)  - Kill (n) 

In (n) = fq Out (m) (for n e entry basic block) 
m ~ Pred(n)  

This means that In (n) is the set of global variables referenced 
within the method and guaranteed not be updated along any paths 
reachable from the top of the method to the entry of the basic 
block n. Each global variable reference within the basic block can 
be checked as to whether it can be included in the specialization 
target from the Kill set for each instruction. That is, the above 
equation computes all the global variables that are safe forprivati- 
zation at the entry point for each method. The set of specialization 
targets for the global data, together with the argument list, is then 
fed to the impact analysis. The pseudocode of the impact analysis 
is shown in Figure 3. 

Each specialization target can be expressed by a triple (L, S, V), 
where L denotes the defined local variable from a parameter or a 

z For a variable declared volatile, a thread must reconcile its working copy 
of the field with the master copy every time it accesses the variable [18]. 
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Specialization Target (L, S, V) 
L: defined local variable from a parameter or a global vadable 
S: statement where L is defined 
V: parameter or global variable for specialization 

for each element (L, S, I/) in Specialization Target List 
{ 

Derived [ V]  = { (L, S) }; 
Weight [ V, * ] = O; 
for each variable (L, S) in Derived [ V] 
{ 

for each operation Op which uses L and is reachable from S 
{ 

if (Op can be simplified or eliminated by a specialization 
type T ) 

} 
} 

} 
} 

Weight [ V, T ] += Impact of T on Op; 
if ( Op is converted to a constant assignment ) 
{ 

Derived [ V]  U = (LHS var of Op, location of Op) 
} 

Figure 3. Pseudocode for impact analysis. 

global variable, S denotes the statement in the method in which 
the variable L is defined, and V denotes the parameter or global 
variable for specialization. The algorithm traverses the dataflow 
through a defuse chain for each use of the variable L and its de- 
rived variable, tracking any possible impact on each operation in 
V. The impact of the specialization type T on operation Op ap- 
pearing in the pseudoeode can be expressed by 

lmpact(Op, T) = saved cost(Op, T)/SST(E, T) * f(loop nest level) 

The baseline of the impact is the execution cost of the Specializa- 
tion Safety Test (SST), which is the guard to be generated at the 
entry of the specialized method. This can vary from a simple ecru- 
pare and jump instruction to a set of multiple instructions depend- 
ing on the variable V and type T. The impact is then the relative 
cost that can be saved on operation Op with the specialization 
type T against its SST eost. If the operation is located within a 
loop, then the impact is sealed with a factor representing the loop 
iterations to reflect the greater benefit that can be expected. 

The cost saving can be quite different for each of the operations. 
The elimination of checkcast or instancoof operations can have 
a large effect, while it would be much smaller when getting a con- 
stant operand in a binary operation. The final result of impact 
analysis for the estimated specialization benefit is the Specializa- 
tion Candidate SC; 

SC = { V I Weight(V, T) > minimum threshold for any type T } 

The factors currently considered in the impact analysis include the 
following: 

• A constant value of a primitive type, which can lead to addi- 
tional opportunities for constant folding, strength reduction, the 
replacement of floating point transcendental operations with a 
computed value, and the elimination of the body of a 

Candidate Sample Bias Weight Expected Benefit 

SC= R= W= B, 

SCb R~ Wh Bb 

SC~ R, We ] Bc 

(a) 

spe, 
Vel't 

SC, 
^B c 

W l m  0 t~ a " ' ) ~  b specialized version 
(b) with SCa ̂  SCb ^ SC c 

Figure 4. (a) Multiple specialization candidates available, 
(b) Construction of decision tree on generating three 
specialized versions. 

conditional branch. 
O An exact object type, which allows removal of some unneces- 

sary type checking operations and leads to more opportunities 
for class-hierarchy-based devirtualization 3. 

Q The length of an array object, which allows us to eliminate ar- 
ray bound checking code. This can also contribute to loop 
transformations, such as loop unrolling and simplification, if 
the loop termination condition becomes a constant. 

® The type of an object such as null, non-null, normal object, or 
array object, which can be used for removing some unneces- 
sary null checks and for improving the code sequence for some 
instructions (e.g. invokevirtualobject, checkcast). 

• Equality of two parameter objects, allowing method bodies to 
be significantly simplified. 

® A thread local object, which allows us to remove unnecessary 
synchronizations. 

5 .2  S p e c i a l i z a t i o n  D e c i s i o n  
When a hot method has been identified in the 2nd level compiled 
code, the controller checks the results from the impact analysis 
stored in the code manager database. If a candidate in SC for the 
method looks promising as a justification for performing speciali- 
zation, then the controller dynamically installs the instrumentation 
code into the target native code to decide whether it is indeed 
worth specializing with the specified type. This is based on the 
same mechanism described in Section 3.5. Currently a minimum 
threshold is used to allow all candidates to be selected as an in- 
strumentation installation target. 

Upon the completion of the value sampling, the controller then 
makes a final decision regarding whether it is profitable to spe- 
cialize with respect to a specialization candidate in SC. The metric 

3 With the preexistence optimization [17], some of this opportunity for 
parameter variables may be disappeared. 
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Table t .  List of benchmarks and applications used in the evaluation. 

r,o 

Program 

SwingSet 

Java2D 

ICE Browser [42] 

Description 

GUI component, version 1.1 

2Dgraphics library 

Simple intemet browser, version 5.05 

Measurement Condition 

Run the demo program as an application to bring up the initial window. 

Run the demo program as an application with options -runs=l -delay=0 

Run the browser application to bring up the welcome window. 

Hot Java [38] Hot Java browser, version 1.1.5 

IchitaroArk [25] Japanese word processor Run the application to bring up the initial input window 

Web applica!ion server, version 3.5.3 

Multi-threaded image rendering 

Web,Sphere [22] 

227 mtrt 

_202 jess Java expert system shell 

_201compress LZW compression and decompression 

209 db Database function execution 

Decompression of MP3 audio file [ 222 mpegaudio 

228 jack Java parser generator 

_213 javac Java source to bytecode compiler in JDK1.0.2 

SPECjbb2000-1.0 [ Transaction processing benchmark 

Attach administration console after starting administration server 

Run SPECjvm98 benchmark harness from appletviewer with the following 
settings (the order of these tests is specified in SpecApplet.html). 

- initial heap size 96m and max heap size 96m. 
- run individual benchmarks in the experiments from Section 6.1 to 6.3, or 
run complete benchmarks with a single JVM in the experiment for Section 
6.4. 

, - select input size=100, then run with autorun, and test mode 
(not SPEC compliant mode). 

- the number of executions in each autorun sequence is 10. 

Run with warehouse 1 only, with initial and max heap size 256m. 

we use for this decision can be expressed as follows: 

f (Weight, Sample Ratio, Code Size, Hotness Count) 

This function indicates that the impact analysis result, the ratio of  
bias in the corresponding sample data, the size of the recompile 
target code, and the method hotness count are all considered for 
the final specialization decision. The code size affects the maxi- 
mum number of versions that can be produced for specialization, 
since the larger the code size for recompilation, the more costly it 
would be to generate multiple versions. The method hotness count 
is used for adjusting the number of  versions allowed for some im- 
portant methods. The construction of the specialization plan then 
proceeds as follows. 

Suppose there are three specialization candidates SC~ (e SC for i = 
a, b, c) available for a method as in Figure 4 (a). The expected 
benefit for each candidate using specialized code, based on the 
probability of  the specialized code hit ratio, is computed as Bi = Ri 
* W~. The plan on how to organize the specialized code can then 
be viewed as constructing a decision tree. That is, each internal 
node of  the tree represents the specialization safety test SST~ 
guarding each specialization. The right subtree is for the version 
where the benefit Bi is applied, and the left subtree tracks the ver- 
sion where it is not used. The number of  leaf nodes is two raised 
to the number of  candidates. The specialization is then organized 
by selecting leaf nodes, from right to left, for as many as the num- 
ber of  versions allowed as calculated from the code size and 
method hotness count. All the nodes that are not selected for spe- 
cialization are contracted to a single node that represents a general 
version of the code (that is, the original 2nd level compiled code). 

Two strategies can be considered for the tree construction: benefit 
ordered and sample ratio ordered. In the benefit-ordered construc- 
tion, a specialization candidate having a larger value of B~ moves 
to a higher level internal node, reflecting a greater expected bene- 
fit when the condition holds true. In the sample-ratio-ordered, a 

value of R~ is regarded as a more important factor with expectation 
of a higher rate of executing the specialized versions. In Figure 4 
(b), assuming that SCI is in the order of a, b, c in either criteria, 
the decision-tree is constructed with the number of specialized 
versions limited to three. 

The recompilation with code specialization can introduce addi- 
tional opportunities for many other optimizations, such as con- 
stant folding, null-check and array-bound-check elimination, type 
check elimination or simplification, and virtual method inlining. 
In the case of SST failure upon specialized code entry, the control 
is directed to the general version of  the code. This can generally 
occur as the result of  changes in the execution phase of  the pro- 
gram, so that the specialized methods can be called with a differ- 
ent set of  parameters. In this situation, the general version of  the 
code may be identified as hot again, and the next round of recom- 
pilation can be triggered for this method, possibly with specializa- 
tion using different values. Thus the new version of specialized 
code can then become active, by replacing the previous code. The 
maximum number of versions for specialized code for a method is 
limited to N, a number which is based on the target code size, set 
by the recompilation controller to avoid excessive code growth. 

6. EXPERIMENTAL RESULTS 
This section presents some experimental results showing the effec- 
tiveness of our dynamic optimization system. We outline our ex- 
perimental methodology first, describe the benchmarks and applica- 
tions used for the evaluation, and then present and discuss our per- 
formance results. 

6.1 Benehmarking Methodology 
All the performance results presented in this section were obtained 
on an IBM IntelliStation (Pentium III 600 MHz uni-processor with 
512 MB memory), nmning Windows 2000 SP 1, and using the 
JVM of the IBM Developer Kit for Windows, Java Technology 
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no opt 

quick opt 

full opt 

special opt 

Table 2. Comparison of compilation time with three different optimization levels on SPECjvm98 
benchmark programs. All results are in seconds. 

first run 

best run 

compile 
time 

fast run 

best run 

compile 
time 

mtrt 

22.14 

21.25 

0.89 
(4.0%) 

8.38 

6,53 

1.85 
(22.1%) 

jess 

16.02 

14.31 

1.71 
(11.0%) 

10.5 

7.83 

compress 

29.52 

29.08 

0.44 
(1.5%) 

17.82 

17.39 

2.67 
(25.5%) 

20.91 

0.43 
(2.4%) 

db 

36.81 

36.52 

0.29 
(0.8%) 

29.63 

29.14 

0.49 
(1.7%) 

mpegaudio 

28.36 

26.97 

1.39 
(4,9%) 

14.01 

11.89 

2.12 
(15.1%) 

first run 11.34 16.81 30.22 14.17 

15.84 28.83 

1,39 
(4.6%) 

0.97 
(5.7%) 

16.88 

best run 5.03 

6.31 
(55.6%) 

compile 
time 

7.06 

13.85 
(66.2°/,) 

21.88 

9.91 

4.26 
(30.1%) 

14.56 

jack ] , ,  !avac 

17.22 

I5.94 

1.28 
(7.4°/6) 

10,47 

8.31 

2.16 
(20.6%) 

15.95 

7,88 

8.07 
(50.6%) 

16.56 

22.58 

19.81 

2,77 
(12.3%) 

17.92 

12.18 

5.74 
(32,0%) 

37.25 

12.22 

25.03 
(67.2%) 

40.41 first rtm 13.21 30.81 

best mn 4.89 6.51 15.83 28.51 9,47 7.46 12,08 

9.10 
(55.0%) 

compile 
time 

8.32 
(63.0%) 

1.05 
(6.2%) 

15.37 
(70.2%) 

5.09 
(35.0%) 

2.30 
(7.5%) 

28.33 
(70.1%) 

Edition, Version 1.3.1 prototype build. The benchmarks we chose 
for evaluating our dynamic optimization system are shown in Table 
1 (the size of each benchmark is indicated in the MMI-only row in 
Tables 3 and 4). We conducted two sets of measurements: startup 
runs and steady state runs. For the startup performance evaluation, 
we selected a variety of real-world applications, ranging from a sim- 
ple Intemet browser to a complex Web application server. For 
evaluating the steady state performance, we use SPECjvm98 and 
SPECjbb2000 [35], two industry standard benchmark programs for 
Java. 

Table 2 shows the compilation times for the three different opti- 
mization levels used in our system. The numbers for no-opt com- 
pilation are additionally presented to evaluate our system against 
the compile-only approach. These measurements were done by 
nmning each level of optimization without MMI. We assume that 
the difference between the first nm and the best run of 
SPECjvm98 can be regarded as the compilation time. We ignored 
the cache and file system effects, which we tried to minimize by 
executing some warm-up runs before the measurements. The per- 
centages shown in the compilation time fields are the ratios of 
compilation time over the time of the first run. 

The following configuration and parameters were used throughout 
the experiments. 

• The threshold in the mixed mode interpreter to initiate dynamic 
compilation (quick optimization) was set to 2,000. 

• The timer interval for the sampling profiler for detecting hot 
methods was 10 milliseconds. With this interval, the overhead 
introduced is below the noise and the accuracy is considered 
adequate for identifying reeompilation candidates [40]. 

• The sampling profiler was operated continuously to build a list 
of hot methods, while the controller examined and purged the 
data every 100 sampling ticks for recompilation decisions. 

® For instrumentation-based sampling for hot methods, a 

maximum of 512 values were collected for each of the target pa- 
rameters, global variables, or return addresses. The maximum 
number of data variations recorded was 8. 

@ The priority of  the sampling profiler thread and the compilation 
thread was set to above and equal to that of  the application 
threads, respectively. 

• The number of  code duplications allowed for specialization was 
set to one, regardless of  the target method code size. Jn the 
measurement for Section 6.3, the decision-tree construction was 
based on the benefit-ordered strategy. 

@ Exception-directed optimization (EDO) [29] was enabled. The 
recompilation request from EDO profiler was processed with 
quick optimization with special treatment for method inlining 
for the specified hot exception paths. 

6.2 Evaluation of Reeompilation System 
There are different requirements for the best performance between 
the two phases of  application execution, program startup and 
steady state. During the startup time, many classes are loaded and 
initialized, but typically these methods are not heavily executed. 
When the program enters a steady state, a working set of  hot 
methods will appear. In our experiment, we evaluated the startup 
performance by running each of  the listed applications individu- 
ally and measuring the timing from the issuing of  the command 
until the time the initial window appeared on the screen. For 
Java2D with the options indicated in the table, each tab on the 
window is automatically selected and the execution proceeds until 
the whole component selection is done. That is, we measured the 
timing from the issuing of  the command until the program termi- 
nates. For WebSphere, we first started the server process, and then 
measured the time to bring up the administration console window 
which runs on the same machine. For the steady state measure- 
ment, we took the best time from 10 repetitive automns for each 
test in SPECjvm98. For SPECjbb2000, we chose the 
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Figure 5. Startup performance comparison. Each bar indicates the total execution speed 
relative to no opt compiler without MMI. Therefore higher bar shows better performance. 

Table 3. Comparison of number of compiled methods and generated code size (Kbytes) in program startup. 
The MMI-only row indicates the number of executed methods and bytecode size. Native methods are not counted. 

MMI-only 

no-opt 

~[ quick-opt 

full-opt 

quick opt 

full-opt 

SwingSet Java2D 

Method S ize  Method Size 

7,273 440.5 7,327 531.5 

7,273 3,218.5 7,327 3,884.3 

6,444 3,096.7 6,511 3,473.6 

3,701 4,518.6 3,985 5,003,8 

439 233.8 523 281.1 

416 347.6 463 416.2 

ICE Browser HotJava IchitaroArk 

Method Size Method S ize  Method Size 

3,410 275.7 4,110 297.5 7,282 473.7 

3,410 1,791.7 4,110 2,110.5 7,282 3,581.1 

2,905 1,556.2 3,599 1,945.8 6,193 3,307.3 

t,848 2,438.6 2,191 3,019.1 3,910 4,826.3 

75 78.1 91 65.6 205 124.7 

69 131.5 85[ 128.9 194 217.7 

WebSphero 

Method Size 

9,029 615.7 

9,029 4,511.3 

7,951 4,190.2 

4,898 6,165.4 

321 1653 

301 350.9 

configuration of  one warehouse with 60 seconds of rampup time, 
longer than the standard SPEC rule, to give the system enough 
warm-up time. 

We compared the following sets of compilation schemes. 
I. MMI only 
2. no optimization compilation with no MMI (noopt-only) 
3. quick optimization compilation with no MMI (quick-only) 
4. full optimization compilation with no MMI (full-only) 
5. no optimization compilation with no MMI and recompilation 

using full optimization compilation (noopt-full) 
6. quick optimization compilation with MMI (MMI-quick) 
7. full optimization compilation with MMI (MMI-full) 
8. all levels of compilation with MMI for adaptive re, compilation 

(MMI-all) 

The fifth case is provided as a comparison of our system to the 
corresponding recompilation system with the compile-only ap- 
proach as in other systems [3, 13]. In this case, the MMI was not 
executed and all methods were first compiled by the compiler with 
no optimization applied (level 0), and then some hot methods 
identified by the sampling profiler were reoptimized with the full 
optimization compilation. Our no-opt compilation may have 

different characteristics in terms of both compilation overhead and 
code quality from the baseline compiler [3] or the fast code gen- 
erator [1, 13], especially because our no-opt compilation system is 
not a separate compiler, while theirs are designed and imple- 
mented differently from the optimizing compilers. Nevertheless, 
we think the comparison with this configuration can be an indica- 
tion as to how well our system can compete against a compile- 
only system. 

Figures 5 shows the comparisons of program startup performance. 
The base line in this graph is the second ease above, no optimiza- 
tion compilation with no MMI (noopt-only). The chart indicates 
that the performance of our dynamic optimization system, MMI- 
all, is almost comparable to that of the lightweight configuration 
of the MMI-quiek. On the other hand, no-MMI configurations 
show poor performance in all the programs, probably due to the 
high cost of compiling all executed methods. The recompilation 
system with the compile-only approaeh, noopt-full, shows better 
performance than the other no-MMI configurations, but it still 
cannot compete against other top performing configurations; The 
fact that the performance of MMI-only is nearly two times faster 
in average than that of noopt-only (base line of the graph) 
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Figure 6. Steady state performance comparison. Each bar indicates the total execution speed 
relative to no opt compiler without MMI. Therefore higher bar shows better performance. 

Geo. Mean 

Table 4. Comparison of number of compiled methods and generated code size (Kbytes) in steady state. 
The MMI-only row indicates the number of executed methods and bytecode size. Native methods are not counted. 

bb 

,,o93 

H • 153 .7  

267.5 

447.4 

indicates that our MMI is reasonably fast and is comparable to no- 
opt compiled code. 

Table 3 shows both the number of compiled methods and the code 
size in these program startup runs. In this table, the numbers for 
reeompilation system, both noopt-full and MMI-all, are not pre- 
sented, since no recompilation activity occurred in the program 
startup phase and therefore the numbers are mostly similar to 
those of their corresponding baseline configurations, noopt-only 
and MMl-quick, respectively. The differences in the number of 
compiled methods among no MMI cases are primarily caused by 
the varying degrees of applying method inlining at each optimiza- 
tion level. The table shows the significant differences in the num- 
ber of compiled methods between no-MMI and with-MMI 

configurations. With MMI, only 2-7% of the executed methods 
are compiled, even considering the effects of method inlining. As 
for the generated code size, it is an order of magnitude larger with 
no-MMI configurations than with MMI configurations. The code 
expansion factor from the bytecode size can be up to 10x without 
MMI, while it is less than lx for with-MMI configurations. 

Figure 6 is the corresponding performance chart for the steady 
state program runs, and Table 4 shows the numbers for compiled 
methods and code size at that time. In Table 4, the two configura- 
tions that involve recompilation are shown with the numbers for 
each level of compilation separately. Also MMI-all configuration 
is indicated with the number of methods targeted by the instru- 
menting profiler and its code and table space for specialization 
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Figure 7. Performance improvement by code specialization for three different N (max. number of specialized versions 
for a method). Each bar indicates the percentage of improvement over the system with code speeialization disabled. 

Table 5. Statistics of code specialization on SPECjvm98 and SPECjbb2000. 

# of specialized versions (methods) 

it % of code size increase Z 
% of hit ratio for speeializeal versions 

# of specialized versions (methods) 

% of code size increase 

% of hit ratio for specialized versions 

# of specialized versions (methods) 

% of code size increase 

% of hit ratio for specialized versions 

mtrt j e ss  compress db 

6 (6) 8 (8) 2 (2) 3 (3) 

18.9 7.7 6.9 13.8 

100 80.5 60.2 100 

10 (6) 12 (8) 3 (2) 5 (3) 

21.3 12.7 9.7 18.6 

100 92.7 99.9 I00 

20(6) 18(8) 4(2) 7(3) 

40.4 19.3 14.2 27.8 

100 98.6 100 100 

mpegaudio jack javac SPECjbb 

15 (15) 9 (9) 13 (13) 13 (13) 

23.6 [ 8.6 11.7 9.4 

99.7 95.7 51.8 90.3 

29 (15) 13 (9) 16 (12) 18 (13) 

33.4 12.6 23.3 10.3 

99.7 96.8 79.2 93.5 

63(15) 17(9) 22(12) 22(13) 

79.4 16.7 26.2 13.4 

99.9 97.5 89.8 97.8 

value profiling. From Figure 6, three configurations, full-only, 
MMI-fuU and MMI-alI, are top performers in this category. The 
recompilation system with compile-only approach, noopt-full, 
also works quite well for many of the tests here by applying full 
optimization on performance-critical methods. Currently the same 
parameters for reeompilation decision are used in this configura- 
tion as those in MMI-all, and thus we think the performance can 
be further improved to the level of  other full optimization configu- 
rations by adjusting the parameters more appropriately. 

The following observations can be made from Table 4 for our 
MMI-enabled dynamic recompilation system. First the number of  
methods compiled with quick optimization is, except for jack and 
javac, at most 30% of the total number of methods, among which 
the number of  recompiled methods is roughly 10 to 15%. There- 
fore we can achieve the high performance attained by the full-only 
configuration by focusing on merely 3 to 4% of  all methods. As 
described in [2], j avac  has a fiat profile, involving many methods 
that are executed, and thus poses a challenge for the recompilation 
system. This characteristic caused a relatively higher number of  
quick optimizations in our system, 70% of the total methods exe- 
cuted. However, the number of  fully optimized methods is around 
4%, similar to the other test cases, showing that our recompilation 
decision process works quite well. As for Jack, the higher count 
of methods with quick optimization is caused by the additional re- 
compilation request from EDO, after detecting some hot exception 
paths as inlining candidates, and this results in the better 

performance as shown in Figure 6. 

Second, the increase in the size of  the compiled code is small in 
comparison to that of  the MMI-quick configuration, and the total 
size o f  all levels of  compilations and the instrumenting profiler 
combined is well below that of  the MMI-full configuration. The 
largest size for the reeompiled code (for 2nd and 3rd) is for 
SPECjbb2000, but it is still much less than that of  the bytecode. 
Again the compile-only approach shows a problem with the large 
size of  the compiled code. The expansion factor from the bytecode 
size with no MMI configurations is from 7x to 10x, while it is 
around 3.5x on average, including the space overhead by the in- 
strumenting profiler, with our MMI enabled recompilation system. 

Overall our dynamic optimization system adapts very well to the 
requirements of  both program startup and steady state perform- 
mace, and also has strong advantages in terms of  the system mem- 
ory footprint. 

6.3 Code Specialization 
Figure 7 shows the percentage performance improvement from the 
code specialization over the system with 3rd level optimization 
disabled. The measurement was done with the same conditions as 
in the steady state performance runs in the previous subsection. 
Three cases are shown for the specialization parameter N, that is 
the maximum number o f  specialized versions per method was set 
to one, two and unlimited. Table 5 shows the number of special- 
ized versions produced, the percentage increases in code size, and 
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the ratio showing the frequency of specialized code entry test, 
SST, succeeded, for all of the three cases. 

A modest performance improvement, from 3 to 6%, can be ob- 
served for four benchmarks, while others do not show any signifi- 
cant difference. For those benchmarks which are sensitive to this 
specialization, approximately half of the 2nd level compiled code 
was specialized, and a 7 to 30% code size growth was observed 
for the cases of small number of specialization parameter N. The 
increased code size for mpegaudio, db, and javac seems to be 
excessively high relative to the resulting perfbrmance gain. One of 
the reasons for this problem is that the target of specialization in 
our current implementation is the whole method, rather than a 
smaller region in the method. When specialization is applied for a 
part of the method, a technique called method outlining (in con- 
trast to method inlining) needs to be explored to allow multiple 
versions of specialized code to be generated for that part of the 
method. 

The hit ratio of specialized versions code is quite high overall, 
considering the fact that only a limited amount of data sampling is 
performed in our instrumentation-based value profiling. This is 
because the variation of data for parameters or global variables is 
relatively small within a single benchmark. Jess  is the only ex- 
ception, that shows significant performance gain by producing 
multiple specialized versions from a single method. 

Three benchmarks do not show any performance improvement 
from code specialization. Two of them, compress  and db, have 
spiky profiles and only a few methods are heavily executed. But 
our impact analysis could not find any good candidates for spe- 
cialization among the hot methods. On the other hand, javae has 
many equally important methods, and specializing only a few of 
them does not seem to provide any additional speedup. 

6.4 Compilation Activity 
In Figure 8, we show how the system reacts to changes in the pro- 
gram behavior with our dynamic optimization system. This was 
measured by running all the tests included in the SPECjvm98 with 
autorun mode, ten times each with a single JVM. The horizontal 

axis of the graph is equally partitioned by each run of the tests. 
The bar chart indicates the number of compiled methods with 
each level of optimization, and the line graph indicates the 
changes of the execution time from the first to the tenth run nor- 
malized by the time differences 4. That is 1 corresponds to the first 
run and 0 corresponds to the tenth ran. In the case of compress 
and db, the best timing appeared in the earlier runs, however, the 
irregularities in the graph after the best runs can be considered 
noise, since no compilation activity occurred. 

The graph shows that the system tracks and adapts to the changes 
in the application program behavior quite well. At the beginning 
of each test, a new set of classes is loaded and the system uses the 
quick optimization compilation for a fair number of methods. As 
the program executes several runs in the same test, the system 
identifies a working set of hot methods, and promotes some of 
them to full or special optimization compilation. The execution 
time, on the other hand, is consistently improved after the first run 
for many of the tests by successful method promotions from the 
interpreted code to the 1st level, and then to the 2nd and 3rd level 
compiled code. In two of the tests, jack and javac, the cost of re- 
compilation seems to appear in the execution time. This is partly 
because we performed the measurement on a uni-processor ma- 
chine and cannot hide the background compilation cost com- 
pletely. No significant overhead can be observed in other tests, 
since the execution time usually decreases steadily. When one test 
program terminates and another test begins, the system reacts 
quickly to drive compilation for a new set of methods. 

7. CONCLUSION 
We have described the design and implementation of our dynamic 
optimization framework, that consists of a mixed mode interpreter, 
a dynamic compiler having three levels of optimization, a sampling 
profiler, a recompilation controller, and an instrumenting profiler. 
Performance results show that the system can effectively work for 
initiating each level of compilation, and can achieve high 

4 This looks similar to the corresponding figure in [3], but note that the 
horizontal axis here is the number of runs, while it represents time parti- 
tioned into fixed-size intervals in [3]. 

192 



pertbrmance and a low code expansion ratio in both program 
startup and steady state measurements in comparison to the 
compile-only approach. Owing to its zero compilation cost, the 
MMI allowed us to achieve an efficient recompilation system by 
setting appropriate tradeoff levels for each level of optimizations. 
We also described the design and implementation of automatic code 
specialization, which is used for the highest level of optimization 
compilation. This exploits the impact analysis and the dynamically- 
generated instrumentation mechanism for runtime parameter and 
global variable value sampling. The experiment shows that the tech- 
nique can make a modest performance, improvement for some 
benchmark programs. 

In the future, we plan to further refine the system to improve the to- 
tal performance by employing feedback-directed optimizations in- 
cluding more effective specialization, context sensitive method in- 
lining using mntime profile data, and some optimizations based on 
runtime exception profiling. 

8. ACKNOWLEDGMENTS 
We would like to thank all the members of the Network Computing 
Platform group in IBM Tokyo Research Laboratory for helpful dis- 
cussions and comments on an earlier draft of this paper. We are also 
grateful to John Whaley for prototyping the sampling profiler sys- 
tem. Finally the anonymous reviewers provided many valuable sug- 
gestions and comments on the presentation of the paper. 

9. REFERENCES 
[1] A.R. Adl-Tabatabai, M. Ciemiak, C.Y. Lueh, V.M. Parikh, and 

J.M. Stichnoth. Fast, Effective Code Generation in a Just-in- 
Time Java Compiler. In Proceedings of the ACM SIGPLAN '98 
Conference on Programming Language Design and Imple- 
mentation, pp. 280-290, Jun. 1998. 

[2] O. Agesen and D. Detlefs. Mixed-mode Byteeode Execution. 
Technical Report SMLI TR-2000-87, Sun Microsystems, 
2000. 

[3] M. Arnold, S. Fink, D. Grove, M. Hind, and P.F. Sweeney. 
Adaptive Optimizations in the Jalapefio JVM. In Proceedings 
of the ACM SIGPLAN Conference on Object-Oriented Pro- 
gramming, Systems, Languages & Applications, OOPSLA '00, 
Oct. 2000. 

[4] M. Arnold, S. Fink, D. Grove, M. Hind, and P.F. Sweeney. 
Adaptive Optimizations in the Jalapefio JVM: The Controller's 
Analytical Model. In Proceedings of the ACM SIGPLAN 
Workshop on Feedback-Directed and Dynamic Optimization, 
FDDO-3, Dec. 2000. 

[5] M. Arnold, B.G. Ryder. A Framework for Reducing the Cost of 
Instrumented Code. In Proceedings of the A CM SIGPLAN '01 
Conference on Program Language Design and Implementa- 
tion, pp. 168-179, Jun. 2001. 

[6] J. Auslander, M. Philipose, C. Chambers, S.J. Eggers, and B.N. 
Bershad. Fast, Effective Dynamic Compilation. In Proceedings 
of the ACM SIGPLAN '96 Conference on Programming Lan- 
guage Design andlmplementation, pp. 149-158, May 1996. 

[7] T. Autrey and M. Wolfe. Initial Results for Glacial Variable 
Analysis. In Proceedings of the 9th International Workshop on 
Languages and Compilers for Parallel Computing, Aug. 1996. 

[8] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Trans- 
parent Dynamic Optimization System. In Proceedings of the 

ACM SIGPLAN '00 Conference on Programming Language 
Design andlmplementation, pp. 1-12, Jun. 2000. 

[9] R.G. Burger and R.K. Dybvig. An infrastructure for Profile- 
Driven Dynamic Recompilation, In ICCL '98, the IEEE Com- 
puter Society International Conference on Computer Lan- 
guages, May 1998. 

[10] M.G. Burke, J.D. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, 
M. Serrano, V.C. Sreedhar, H. Srinivasan, and J. Whaley. The 
Jalapefio Dynamic Optimizing Compiler for Java, In Proceed- 
ings' of the ACM SIGPLAN Java Grande Conference, pp. 129- 
141, Jun. 1999 

[11] B. Calder, P. Feller, and A. Eustace. Value Profiling. In 30th 
International Conference on Microarchitecture, pp. 259-269, 
Dec. 1997. 

[ 12] C. Chambers and D. Ungar. Customization: Optimizing Com- 
piler Technology for SELF, a Dynamically-Typed Object- 
Oriented Programming Languages. In Proceedings of the A CM 
SIGPLAN '89 Conference on Programming Language Design 
andlmplementation, pp. 146-160, Jul. 1989. 

[13] M. Ciemiak, G.Y. Lueh, and J.M. Stiehnoth. Practicing JUDO: 
Java Under Dynamic Optim/zations. In Proceedings of the 
ACM SIGPLAN '00 Conference on Programming Language 
Design andlmplementation, pp. 13-26, Jun. 2000. 

[14] C. Consel and F. Noel. A General Approach for Run-Time 
Specialization and its Application to C. In Conference Record 
of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles 
of Programming Languages, pp. 145-156, Jan. 1996 

[ 15] J. Dean, C. Chambers, and D. Grove. Selective Specialization 
for Object-Oriented Languages. In Proceedings of the ACM 
SIGPLAN '95 Conference on Programming Language Design 
andlmplementation, pp. 93-102, Jun. 1995. 

[ 16] J. Dean and C. Chambers. Towards Better Inlining Decisions 
Using Inlining Trials. In Proceedings of the ACM SIGPLAN 
'94 Conference on LISP and Functional Programming, pp. 
273-282, Jun. 1994. 

[17] D. Detlefs and O. Agesen. Inlining of Virtual Methods. In the 
13th European Conference on Object-Oriented Programming, 
1999. 

[18] J. Gosling, B. Joy, and G. Steele. The Java Language Specifi- 
cation. Addison-Wesley, 1996. 

[ 19] B. Grant, M. Philipose, M. Mock, C. Chambers,and S.J. Eg- 
gers. An Evaluation of Staged Run-Time Optimizations in 
DyC. In Proceedings of the A CM SIGPLAN '99 Conference on 
Programming Language Design and Implementation, pp. 293- 
304, May 1999. 

[20] U. Hrlzle. Adaptive Optimization for SELF: Reconciling High 
Performance with Exploratory Programming. Ph.D. Thesis, 
Stanford University, CS-TR-94-1520, Aug. 1994. 

[21] U, Hrlzle and D. Ungar. Reconciling responsiveness with per- 
formanee in pure object-oriented languages. ACM Transac- 
tions on Programming Languages and @stems, 
18(4):355-400, Jul. 1996. 

[22] IBM Corporation Inc. "WebSphere Software Platform", docu- 
mentation available at http://www.ibn~eom/websphere 2000. 

[23] K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuehi, Y. Ogasa- 
wara, T. Suganuma, T. Onodera, H. Komatsu, and T. Nakatani. 
Design, Implementation, and Evaluation of Optimizations in a 
Just-In-Time Compiler. In Proceedings of ACM SIGPLAN 

193 



Java Grande Conference, pp. 119-128, Jun. 1999. 
[24] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Naka- 

tani. A Study of Devirtualization Techniques for a Java Just-In- 
Time Compiler. In Proceedings of the ACM SIGPLAN Confer- 
ence on Object-Oriented Programming, Systems, Languages & 
Applications, OOPSLA '00, pp. 294-310, Oct. 2000. 

[25] Just System Corp. "IchitaroArk for Java", available at 
http://www.justsystem.corn/arldindex.html~ 1998. 

[26] M. Kawahito, H. Komatsu, and T. Nakatani. Effective Null 
Pointer Check Elimination Utilizing Hardware Trap. In Pro- 
ceedings of the 9th International Conference on Architectural 
Support on Programming Languages and Operating Systems, 
Nov. 2000. 

[27] A. Krall. Efficient JavaVM Just-in-Time Compilation. In Pro- 
ceedings of International Conference on Parallel Architecture 
and Compilation Technique, Oct. 1998. 

[28] R. Marlet, C. Consel, and P. Boinot. Efficient Incremental 
Run-Time Specialization for Free. In Proceedings of the ACM 
SIGPLAN '99 Conference on Programming Language Design 
and Implementation, pp. 281-292, Jun. 1999. 

[29] T. Ogasawara, H. Komatsu, and T. Nakatani. A Study of Ex- 
ception Handling and its Dynamic Optimization for Java. In 
Proceedings of the ACM SIGPLAN Conference on Object- 
Oriented Programming, Systems, Languages & Applications, 
OOPSLA '01, Oct. 2001. 

[30] M. Paleezny, C. Viek, and C. Click. The Java HotSpot Server 
Compiler. In Proceedings of the Java Virtual Machine Re- 
search and Technology Symposium (JVM '01), pp. 1-12, Apr. 
2001. 

[31] M.P. Plezbert and R.K. Cytron. Does "Just in Time" = "Better 
Late than Never"?. In Conference Record of the 24th ACM 
SIGPLAN-SIGA CT Symposium on Principles of Programming 
Languages, pp. 120-131, Jan. 1997. 

[32] M. Poletto, D. Engler, and M.F. Kaashoek. tee: A System for 
Fast, Flexible, and High-Level Dynamic Code Generation. In 
Proceedings of the ACM SIGPLAN'97 Conference on Pro- 
gramming Language Design and Implementation, pp. 

109-121, Jun. 1997. 
[33] V.C. Sreedhar, M. Burke, and J.D. Choi. A Framework for In. 

terprocedural Optimization in the Presence of Dynamic Class 
Loading. In Proceedings of the ACM SIGPLAN '00 Confer- 
ence of Program Language Design and Implementation, pp. 
196-207, Jun. 2000. 

[34] M.D. Smith. Overcoming the Challenges to Feedback-Directed 
Optimization. In Proceedings of the ACM SIGPLAN Workshop 
on Dynamic and Adaptive Compilation and Optimization (Dy- 
namo '00), pp. 1-11, Jan. 2000. 

[35] Standard Performance Evaluation Corporation. SPECjvm98 
Benchmarks, available at http://www.spec.org/osg/jvrn98 and 
SPECjbb-2000 available at http://www.spec.org/osg/jbb2000. 

[36] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Ka- 
wahito, K. Ishizaki, H. Komatsd, and T. Nakatani. Overview of 
the IBM Java Just-in-Time Compiler, 1BM Systems Journal, 
39(1), 2000. 

[37] Sun Microsysterus. The Java Hotspot Performance Engine Ar- 
chitecture. White paper available at 
http://java.sun.com/products/hotspot/index.html, May. 2001. 

[38] Sun Microsystems. Hot Java TM Browser available at 
http://java.sun.eorn/products/hotj ava/index.html 1997. 

[39] O. Traub, S. Schechter, and M.D. Smith. Ephemeral Instru- 
mentation for Lightweight Program Profiling. Technical 
Report, Harvard University, 1999. 

[40] J. Whaley. A Portable Sampling-Based Profiler for Java Vir- 
tual Machines. In Proceedings of the ACM SIGPLAN Java 
Grande Conference, Jun. 2000. 

[41] J. Whaley. Dynamic Optimization through the Use of Auto- 
matie Runtime Specialization. Master's thesis, Massachusetts 
Institute of Technology, May 1999. 

[42] Wind River Systems Inc. "IceStorm Browser 5", available at 
http://www.iceso ft.no/ieebrowser5/index.htm12000. 

[43] B.S. Yang, S.M. Moon, S. Park, J. Lee, S. Lee, J. Park, Y.C. 
Chung, S. Kim, K. Ebeioglu, and E. Altman. LaTTe: A Java 
VM Just-in-Time Compiler with Fast and Efficient Register 
Allocation. In Proceedings of International Conference on 
Parallel Architecture and Compilation Technique, Oct. 1999. 

194 


