
A Dynamic Optimization Framework for a
Java Just-in-Time Compiler

Toshio $uganuma, Toshiaki Yasue, Motohiro Kawahito, Hideaki Kornatsu, Toshio Nakatani
IBM Tokyo Research Laboratory

1623-14 Shimotururna, Yamato-shi, Kanagawa 242-8502, Japan
Phone: +81-46-215-4658

Email: {suganuma, yasue, jl25131, komatsu, nakatani}@jp.ibm.com

ABSTRACT
The high performance implementation of Java Virtual Machines
(JVM) and Just-In-Time (JIT) compilers is directed toward adaptive
compilation optimizations on the basis of online runtime profile in-
formation. This paper describes the design and implementation of a
dynamic optimization framework in a production-level Java JIT
compiler. Our approach is to employ a mixed mode interpreter and
a three level optimizing compiler, supporting quick, full, and spe-
cial optimization, each of which has a different set of tradeoffs be-
tween compilation overhead and execution speed. A lightweight
sampling profiler operates continuously during the entire program's
execution. When necessary, detailed information on runtime behav-
ior is collected by dynamically generating instrumentation code
which can be installed to and uninstalled from the specified recom-
pilation target code. Value profiling with this instrumentation
mechanism allows fully automatic code specialization to be per-
formed on the basis of specific parameter values or global data at
the highest optimization level. The experimental results show that
our approach offers high performance and a low code expansion ra-
tio in both program startup and steady state measurements in com-
parison to the compile-only approach, and that the code specializa-
tion can also contribute modest pertbrmance improvements.

1. INTRODUCTION
There has been a significant challenge for the implementation of
high performance virtual machines for Java [18] primarily due to
the dynamic nature of the language, and many research projects
have been devoted to developing efficient dynamic compilers for
Java [10, 13, 17, 23, 24, 26, 30, 36, 37, 43]. Since the compilation
time overhead of a dynamic compiler, in contrast to that of a con-
ventional static compiler, is included in the program's execution
time, it needs to be very selective about which methods it decides to
compile and when and how it decides to compile them. More spe-
cifically, it should compile methods only if the extra time spent in
compilation can be amortized by the performance gain expected

Permission to make digital or har~t copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a llze.
OOPSLA (71 Tampa Florida USA
Copyright ACM 2001 1-58113-335 -9/01/10...$5.00

from the compiled code. Once program hot regions are detected, the
dynamic compiler must be very aggressive in identifying good op-
portunities for optimizations that can achieve higher total perform-
ance. This tradeoff between compilation overhead and its perform-
ance benefit is a crucial issue for dynamic compilers.

In the above context, the high performance implementation of Java
Virtual Machines (JVM) and Just-In-Time (JIT) compilers is mov-
ing toward exploitation of adaptive compilation optimizations on
the basis of runtime profile information. Although there is a long
history of research on mntime feedback-directed optimizations
(FDO), many of these techniques are not directly applicable for use
in JVMs because of the requirements for programmer intervention.
Jalapefio [3] is the first JVM implementing a fully automatic adap-
tive compilation framework with feedback-directed method
inlining, and it demonstrated a considerable performance improve-
ment benefit. The Intel research compiler, JUDO [13], also employs
dynamic optimization through a recompilation mechanism. Both of
these systems use the compile-only approach, and it can result in
relatively higher costs in compilation time and code size growth.

In this paper, we present a different approach for the dynamic opti-
mization framework implemented in our production-level JIT com-
piler. We use a combination of an interpreter and a dynamic com-
piler with three levels of optimization to provide balanced steps for
the tradeoffbetween compilation overhead and compiled code qual-
ity. A low-overbead, continuously operating sampling profiler iden-
tifies program hot regions for method reoptimization. To decide on
the recompilation policy, we use a value profiling technique, which
can be dynamically installed into and uninstalled from target code,
for collecting detailed runtime information. This technique does not
involve target code recompilation, and is reasonably lightweight
and effective for the use of collecting a fixed amount of sampled
data on program hot regions. In the highest level optimization for
program hot methods, we apply code specialization using impact
analysis. This is performed fully automatically on the basis of the
parameter values or global object data, which exhibit runtime in-
variant or semi-invariant behavior [11] through the dynamically in-
strumented value profiling. Our experimental results show that this
approach provides significant advantages in terms of performance
and memory footprint, compared to the compile-only approach,
both at program start-up and in steady state runs.

1.1 Contributions
This paper makes the following contributions:

180

@ System architecture: We present a system architecture for a
simple, but efficient and high-performance dynamic optimiza-
tion framework in a production-level Java JIT compiler with a
mixed mode interpreter. Extensive experimental data is pre-
sented for both performance and memory footprint to verify the
advantages of our approach.

@ Profiling techniques: We present a program profiling mecha-
nism combining two different techniques. One is a continuously
operating, lightweight sampling profiler for detecting program
hot methods, and the other is a dynamically installed and unin-
stalled instrumenting profiler that collects detailed information
for the methods gathered by the first profiler.

@ Code specialization: The design and implementation of code
specialization, an example of FDO, is described, using the dy-
namically instrumented profiling mechanism for value sampling.
This is a fully automated design with no programmer interven-
tion required. The effectiveness of this technique is evaluated
using industry standard benchmark programs.

The rest of this paper is organized as follows. The next section sum-
marizes related work, comparing our system to prior systems. Sec-
tion 3 describes the overall system architecture of our dynamic
compilation system, including the multiple levels of the execution
model divided between the mixed mode interpreter and recompila-
tion framework. Section 4 discusses recompilation issues, includ-
ing profiling techniques and instrumentation-based data sampling.
The detailed description of code specialization appears in Section 5.
Section 6 presents some experimental results using a variety of ap-
plications and industry standard benchmarking programs to show
the effectiveness of our dynamic compilation system. Finally we
conclude in Section 7.

2 . R E L A T E D W O R K
This section discusses prior dynamic optimization systems for Java
and other related work.

2.1 Dynamic Optimization Systems
There have been three major dynamic systems for automatic,
profile-driven adaptive compilers for Java. These can be roughly
broken into two categories; the Intel research compiler, the JUDO
system [13], and the Jalapefio JVM [3, 4], all follow a compile-only
approach, while HotSpot TM [30, 37] is provided with an interpreter
to allow a mixed execution environment with interpreted and com-
piled code, as in our system.

The Intel compiler employs dynamic optimization through recom-
pilation, by providing two different compilers: a fast code generator
[1] and an optimizing compiler. As a way of triggering reeompila-
tion, it inserts counter updating instructions for both method entry
point and loop backward branches in the first level compiled code.
It incurs a continuous bottom-line performance penalty. The target
code has to be recompiled if we want to remove these instructions
overhead. Since the recompiled code is not instrtunented, further re-
optimization is not possible in this system. In contrast, our system
uses a low-overhead profiling system for continuous sampling op-
eration throughout the entire program execution, and thus allows
for further reoptimizations, such as specialization.

Jalapefio is another research JVM implemented in Java itself. They
implemented a multilevel reeompilation framework using a baseline

and an optimizing compiler with three optimization levels, and they
presented good performance improvements in both startup and
steady state regimes compared to other non-adaptive configurations
or adaptive but single level reeompilation configurations. Profile-
directed method inlining is also implemented, and considerable per-
formance improvement is obtained thereby for some benchmarks.
Their overall system architecture is quite similar to ours, but the
major difference lies in its compile-only approach and in how the
profiling system works. The compilation-only approach can incur a
significant overhead for the system. Although their baseline com-
piler was designed separately from the optimizing compiler for
minimum compilation overhead, the system can result in a large
memory footprint. Our system features a mixed mode interpreter for
the execution of many infrequently called methods with no cost in
compile time or code size growth. This allows the recompilation
system to be more flexible and aggressive in its reoptimization pol-
icy decision. Their profiling system continuously gathers full run-
time profile information on all methods, including information for
organizer threads to construct data structures such as dynamic call
graphs. Our system employs two separate profiling techniques to re-
duce the overall profiling overhead. That is, a lightweight sampling
profiler focuses on detecting hot methods, and then an instnunent-
ing profiler collects more detailed information only on hot methods.

HotSpot is a JVM product implementing an adaptive optimization
system. It runs a program immediately using an interpreter, as in our
system, and detects the critical "hot spots" in the program as it runs.
It monitors program hot-spot continuously as the program runs so
that the system can adapt its performance to changes in tile program
behavior. However, detailed information about the program moni-
toting techniques and the system structure for recompilation is not
available in the literature.

The notion of mixed execution of interpreted and compiled code
was considered as a continuous compiler or smart JIT approach in
[31], and the study of three-mode execution using an interpreter, a
fast non-optimizing compiler, and a fully optimizing compiler was
reported in [2]. In both of these papers, it was proven that there is a
performance advantage by using an interpreter in the system for bal-
ancing the compilation cost and resulting code quality, but the
problem of the generated code size was not discussed.

The Self-93 system [20, 21] pioneered the on-line profile-directed
adaptive recompilation systems. The goal of this system is to avoid
the long compile pauses and to improve the responsiveness for in-
teractive applications. It is based on a compile-only approach, and
for the method recompilation, an invocation counter is provided
and updated in the method prologue in the unoptimized code. The
counters decay over time for reflecting the invocation frequencies to
avoid eventually reaching the invocation limit for many unimpor-
tant methods. The reeompilation also takes advantage of the type
feedback information for receiver class distributions using the pro-
filing in the previous version code.

Dynamo [8] uses a unique approach, focusing on native-to-native
runtime optimization. It is a fully transparent dynamic compilation
system, with no user intervention required, which takes an already
compiled native instruction stream as input and reoptimizes it at
runtime. The use of the interpreter here is to identify the hot paths
for reoptimization rather than to reduce the total compilation cost as

181

in our system. Another profile-driven dynamic recompilation sys-
tem is described in [9] for Scheme. They use edge-count profile in-
formation for basic block reordering in the recompiled code for im-
proved branch prediction and cache locality.

2.2 Instrumentation
Ephemeral insmxnentation [34, 39] is, in principle, quite close to
our dynamically installed and uninstalled instrumentation technique
for value profiling. Their method is to dynamically replace the tar-
get addresses of conditional branches in the executing code with the
pointer to a general subroutine that updates a frequency counter of
the corresponding edge. The collected data is then used off-line for
a static compiler. Our profiling system, on the other hand, is not
limited to the branch target, but applicable to any point of the pro-
gram by generating the corresponding code for value sampling.
Also the instrumentation system is integrated into the fully auto-
mated dynamic compilation system.

A framework for reducing the instrumentation overhead in an on-
line system [5] is prototyped in Jalapefio. This technique introduces
a second version of the code, called checking code, to reduce the
frequency of executing the instrumented code. This will allow a va-
riety of profiling techniques to be integrated in the framework. The
main concern is the space overhead caused by duplicating the
whole method for extra versions for both checking and instru-
mented code, although some space saving techniques are described.
Our system dynamically attaches only a small fragment of the code
for value sampling at the method entry points, and thus it is more
space efficient.

2.3 Code Specialization
There has been much work in the area of dynamic code generation
and specialization, most of which require either source language ex-
tensions, such as tee system [32], or programmer annotations such
as Tempo [28], the dynamic compiler developed at the University
of Washington [6], and its successor system, DyC [19]. In these
systems, a static compiler performs the majority of optimization
work and prepares for a dynamic compilation process by generating
templates, and a dynamic compiler instantiates the templates at
runtime.

As a restricted form of specialization, called customization [12], the
Self system creates a separate version of a given method for each
possible receiver class, relying on the fact that many messages
within a method are sent to self object. The selective specialization
technique [15] then corrected the problem of both overspecializa-
tion by specializing only heavily-used methods for their most bene-
ficial argument classes, and underspecialization by specializing
methods on arguments other than the receiver. This system resem-
bles ours in that it combines static analysis (corresponding to our
impact analysis) and profile information to identify the most profit-
able specialization. However, their work was focused on converting
dynamic calls to static calls to avoid the large performance over-
head caused by dynamic method dispatch. Our specialization allows
not only method call optimizations, but also general optimizations,
such as type test elimination, strength reduction, and array bound
check elimination, on the basis of specific values dynamically
collected.

The inlining trials [16] in the Self system is an attempt to predict

the benefit of inlining based on type group analysis. Inlining
method calls with special parameter values can be considered an ex-
treme case of specialization to a particular call site. Our impact
analysis is more general in the sense that it can handle not only
method parameters but also global variables such as object instance
fields.

An analysis to identify so called glacial variables [7] is proposed to
find good candidates for specialization. However, their analysis is
static, and the execution frequency is estimated only by loop nesting
level, without using the dynamic profile infolrnation as in our
system.

3. SYSTEM ARCHITECTURE
The goal of our dynamic optimization system is to achieve the best
possible performance with a set of currently available optimization
capabilities for varying phases of application programs, including
program startup, steady state, and phase shifts. It also needs to be
robust for continuous operation for long-mrming applications. The
overall architecture of our system is as depicted in Figure 1. We de-
scribe each of the major components of the system in the following
sections.

3.1 Mixed Mode Interpreter
Most of the methods executed in Java applications are neither fre-
quently called nor loop intensive as shown in the results in Section
6.2, and the approach of compiling all methods is considered ineffi-
cient in terms of both compilation time and code space. The mixed
mode interpreter (MMI), written in assembler code, allows the effi-
cient mixed execution of interpreted and compiled code by sharing
the execution stack and exception handling mechanism between
them. It is roughly three times faster than an interpreter written in C.

Initially, all methods are interpreted by the MMI. A counter for
method invocation frequencies and loop iterations is provided for
each method and initialized with a threshold value. Whenever the
method is invoked or loops within the method are iterated, the
counter is decremented. When the count reaches zero, it is known
that the method has been invoked frequently or is computation in-
tensive, and JIT compilation is triggered for the method. Thus the
JIT compilation can be invoked either from the top entry point of
the method or from a backward branch within a loop. In the latter
case, the control is directly transferred to the JIT compiled code
from the currently interpreted code, by dynamically changing the
frame structure for JIT use and jumping to specially generated com-
pensation code. The JIT compilation for such methods can be done
without sacrificing any optimization features.

If the method includes a loop, it is considered to be very perform-
ance sensitive and special handing is provided to initiate compila-
tion sooner. When the interpreter detects a loop's backward branch,
it snoops the loop iteration count on the basis of a simple bytecode
pattern matching sequence, and then adjusts the amount by which
the counter is decremented depending on the loop iteration count.
In the case where the iteration count is large enough, the JI.T compi-
lation is immediately invoked without waiting until the counter
value reaches zero.

The collection of nmtime trace information is another benefit of the
MMI for use in JIT compilation, For any conditional branches

182

] Compile Request
Reconapilation I ~ ~ Compilation

tlot Method Li:~ Profile PI~ a ~ r o f i l e Data _ Compile Plan

. Oen ati° J , ; ' / / Z

Figure 1. System architecture of our dynamic optimization system.

encountered, the interpreter keeps the information of whether it is
taken or not to provide the JIT compiler with a guide for the branch
direction at basic block boundaries t. The trace information is then
used by the JIT compiler for ordering the basic blocks in a straight-
line manner according to the actual program behavior, and for guid-
ing branch directions in partial redundancy optimizations [26].

3.2 Dynamic Compiler
The dynamic optimizing compiler has the following optimization
levels.

• Quick (1st level) optimization employs only a limited set of the
optimizations available. Basically, optimizations causing higher
costs in compilation time or greater code size expansion are dis-
abled. For example, only those methods whose bytecode size
does not exceed the size of a typical method invocation se-
quence will be inlined. This saves the compilation overhead not
only of the method inlining process, but for the later optimiza-
tion phases which traverse the entire resulting code block. The
guarded or unguarded devirtualization of method calls is applied
based on the class hierarchy analysis [23, 24]. The maximum
number of iterations in the dataflow-based optimizations is also
reduced. These optimizations involve iterations over several
components, such as copy propagation, array bound check
elimination, null pointer check elimination, common subexpres-
sion elimination, and dead code elimination.

® Full (2nd level) optimization employs all optimizations avail-
able. Additional and augmented optimizations at this level in-
elude full-fledged method inlining, escape analysis (including
stack object allocation, scalar replacement, and synchronization
elimination), an additional pass for code generation and code
scheduling, and DAG-based loop optimization. The iteration
count for dataflow-based optimizations is also increased.

® Special (3rd level) optimization applies code specialization, a
feedback-directed optimization, in addition to the same set of
optimizations as in the previous level. This is described in detail

t Since keeping trace information every time can cause additional over-
head, the branch instruction is converted to the corresponding quick in-
struction after being executed a fixed number of times in order to mini-
mize the performance penalty.

in Section 5.

The intemal representation is common for all optimization levels.
The differences in compilation time, generated code size, and gen-
erated code's performance quality between the quick optimization
and full optimization versions can be found in the experimental re-
suits presented in Section 6.1 and 6.2.

The reason that we provide three optimization levels in our dy-
namic compiler is twofold. First, one level of compilation model
is, in our experience, simple and still effective until a eertain level
of optimization in the presence of MMI. However, as more so-
phisticated and time-consuming optimizations are added for pur-
suing higher performance, more of the negative side of the dy-
namic compilation (that is, the compilation overhead and code
size growth problems) starts to appear. Even i f more expensive
optimizations are implemented, the return is diminishing and the
net performance gain becomes marginal. This is considered to be
due primarily to the larger gap between the interpreter and the
compiler regarding the level of tradeoff between compilation cost
and the resulting performance. If we set a lower threshold for trig-
gering compilation, we may have better performing compiled code
earlier but more total compilation cost is incurred. If we set a
higher threshold value, we may miss some opportunities for gain-
ing performance for some methods due to delayed compilation.
There is also a problem with application start'up performance deg-
radation with one level of a highly optimizing compiler. It is
therefore desirable to provide multiple, reasonable steps in the
compilation level with well-balanced tradeoffs between the cost
and the expected perforrnanee, from which an adequate level of
optimization can be selected corresponding to the eurrent execu-
tion context.

Secondly, it is not clear whether it would be effective to have
more than three levels of optimization in the dynamic compilation
system, without knowing the exact relationship between each
component of the optimization on performance and compilation
cost. Having more levels of optimization would make more
choices available for reeompilation. However it would complicate
the selection process and more informative profiling data would
be necessary to make correct decisions, which might add more

183

overhead. Furthermore, the resulting code may or may not be of
better quality depending on the target methods. The gradual pro-
motion with finer steps of optimization can result in more code
expansion rather than any overall performance benefit. The re-
suits shown in Section 6.1, combined with the interpreter avail-
able in ottr system, suggest that the current classification of three
levels of optimization can provide an adequate tradeoff for reason-
able promotion for recompilation decisions.

3.3 Sampling-Based Profiler
The sampling-based profiler [40] gathers information about the
program threads' execution. This profiling collector keeps track of
methods where the application threads are using the most CPU
time by periodically snooping the program counters of all of the
threads, identifying which methods they are currently executing,
and incrementing a hotness counter associated with each method.

Since the MMI has its own counter-based profiling mechanism,
this sampling profiler only monitors compiled methods for reopti-
mization. The hot methods identified by the profiler are kept in a
linked list, sorted by the hotness counter, for use by the recom-
pilation controller in deciding on method recompilation. To mini-
mize the bottom-line overhead, the profiler doesn't operate by
constructing and maintaining a call context tree for every sam-
pling time interval, which would involve traversing the stack to a
certain depth. Instead, additional information such as caller-callee
relationships is collected by instrumentation code only for meth-
ods considered as candidates for recompilation as described in
Section 3.5. This two-stage profiling design results in low overhead
for the sampling profiler and hence allows continuous operation
during the entire program execution with virtually no performance
penalty.

3.4 Reeompilation Controller
The recompilation controller, which is the brain of the recompila-
tion system, takes as input from the sampling profiler the list of
hot methods and makes decisions regarding which methods
should be recompiled. The recompilation requests, as the results
of these decisions, are put into a queue for a separate compilation
thread to pick up and compile asynchronously.

The controller also directs the instrumenting profiler to install in-
strumentation code for further profile information such as method
return addresses for collecting call site distribution for those hot
methods. Some parameter values can also be collected depending
on the results of impact analysis done in the full optimization
compilation phase (described in Section 5). This additional profile
data is useful in guiding more effective optimizations, such as
method inlining and code specialization.

3.5 Instrumenting Profiler
The instrumenting profiler, according to an instrumentation plan
from the recompilation controller, dynamically generates code for
collecting specified data from a target method, and installs it into
the compiled code. The entry instruction of the target code, after it
is copied into the instrumenting code region, is dynamically
patched with an unconditional branch instruction in order to direct
control to the generated profiling code. The instrumentation code
records the caller's return address or values of parameter and

object fields in a table and then jumps back to the next instruction
after the entry point. The data table or a counter for storing infbr-
mation is allocated separately to be passed back to the controller.
After collecting a predetermined number of samples, the generated
code automatically uninstalls itself from the target code by restor-
ing the original instruction at the entry point.

The information that is collected and recorded by the instrumenta-
tion code can range from a simple counter (such as zero, non-zero,
or array type), which just counts the number of executions, to a
form of table with values or types of variables and their corre-
sponding frequencies. Unlike instrumentation code found in other
systems [13], this technique allows dynamic installation and unin-
stallation without involving target code recompilation. Since the
target method and sampling numbers are controllable, the over-
head of the instrumentation is relatively lightweight, unlike sys-
tems where the instrumentation code is generated as part of the
compiled code which always incurs overhead.

4. RECOMPILATION
The key to our system is to make correct and reasonable decisions
to selectively and adaptively choose methods for each level of opti-
mization. From the mixed mode interpreter to the 1st level compila-
tion, the transfer is made on the basis of the dynamic count on invo-
cation frequencies and loop iterations, with additional special treat-
ment for certain types of loops. The request for 2nd level and 3rd
level recompilation from lower level compiled code is through the
sampling profiler. The compilation and reeompilafion need to be
done from one level to the next, and there is currently no direct path
skipping intermediate levels from interpreter mode or compiled
code.

The reason we chose two different ways of method promotion
comes from the consideration of the advantages and disadvantages
of the two profiling mechanisms: sampling-based and counter-
based. For the interpreter, the cost of counter updates is not an
issue, given the inherently higher overhead of interpreted execution,
compared to additional code for counter maintenance. Instead, the
accuracy of the profiling information is rather important, because
the large gap in performance between interpreted and compiled
code means the performance penalty could be large if it misses the
optimum point to trigger the 1 st level compilation. This tradeoffbe-
tween efficiency and accuracy can be measured using counter-based
profiling. On the other hand, compiled code is very performance
sensitive, and inserting counter updating instructions in this com-
piled code could have quite a large impact on total performance.
Lightweight profiling is much better for continuous operation.
Since the target method is already in a compiled form, a certain loss
of accuracy in identifying program hot regions, which may cause a
delay in recompilation, is allowable. Sampling-based profiling is
superior for this purpose.

4.1 Reeompilation Request
Since the quick optimization compiler generates code with virtu-
ally no method inlining, the sampling profiler collects information
on the set of hot methods as individual methods. A simple-minded
recompilation request for those methods can result in unnecessary
recompilations, since some methods included in the list may be
inlined into another during, the full optimization compilation [21].

184

This can happen because the hot methods appearing in the list
come from sampling during the same stage in the program's exe-
cution, and therefore can be closely interrelated. Instead of simply
requesting recompilation for each of the methods, the controller
first constructs call graphs, structures representing the caller-
callee relationships, from the list of hot methods. This requires in-
formation about the call sites' distributions for each method. Then
only those methods which are roots in one of the graphs are
pushed into the compile request queue with appropriate inlining
directions for methods appearing in the subgraph below the root.

4.2 Multiple Version Code Management
After the recompilation is done for a method, it is registered by a
runtime system called the code manager, which controls and man-
ages all the compiled code modules by associating them with their
corresponding method structures and with a set of information
such as the compiled code optimization level and specialization
context. This means all the future invocations to this method
through indirect method lookup will be directed to the new ver-
sion of the code, instead of the existing compiled code. Static and
nonvirtual call sites are exceptions, where direct binding call in-
structions to old version code have been generated. A dynamic
code patching technique is used in order to change the target of
the direct call. This is done by putting a jump instruction at the
entry point of the old code to a runtime routine, which then up-
dates the call site instruction to direct the flow to the new code us-
ing the return address available on the stack, so that the direct in-
vocation of the new code will occur from the next call.

For those threads currently executing old version code, the new
optimized code will be used from the next invocation. We cur-
rently do not have a mechanism for on-stack replacement [21], the
technique of dynamically rewriting stack frames from one optimi-
zation version to another. Also the problem of cleaning up the old
version code remains in our system. The major difficulty with old
code is how to guarantee that no execution is currently or will be
in the future performed using the old compiled code. The apparent
solution would be to eagerly patch all the direct bound call sites,
rather than to patch lazily as in our current implementation, and
then to traverse all the stack frames to ensure no activation record
exists for this old code. This traversal would be done at some ap-
propriate time (like garbage collection time).

5. CODE SPECIALIZATION
In this section, we describe the design and implementation of code
specialization, as an interesting feedback-directed optimization
technique. This optimization is applied for the methods already
compiled with the full optimization level. Figure 2 shows the flow
of control regarding how the decision on code specialization will
be made. Currently code specialization is applied for an entire
method, not for a smaller region in the method such as a loop.

5.1 Impact Analysis
Since overspecialization can cause significant overhead in terms
of both time and space, it is important to anticipate before its ap-
plication how much benefit it can bring to the system and for what
values. Impact analysis, a dataflow-based routine that detects op-
pomanities and estimates the benefit of code specialization, is
used to make a prediction as to how much better code we would

l
Full Opt Compiler-]
F Codo oneration

~ ' ~ Hot I Sampling ~ -

~ - - Installl/Uninstall

I P°cializati°nl Sa gDa " <

~.Nanning) m High Impact Variable--': - -

Specialization
Request

Figure 2. Flow of specialization decisions.

be able to generate if we knew a specific value or type for some
variables. The impact analysis is done during the 2nd level compi-
lation and the result of the analysis is stored into a persistent data-
base, so that the controller can make use of it for the next round of
reeompilation plans.

The specialization targets can be both method parameters and
non-volatile global variables 2, such as static fields and object in-
stance fields. The set of specialization targets for global variables
within a method can be computed from In (n) and Kill (n) for each
basic block n after solving the forward dataflow equations given
below:

In (entry_bb): All non-volatile global variables within the
method.

Kill (n): The set of global variables that can be changed by in-
structions in basic block n:

Out (n) = I n (n) - Kill (n)

In (n) = fq Out (m) (for n e entry basic block)
m ~ Pred(n)

This means that In (n) is the set of global variables referenced
within the method and guaranteed not be updated along any paths
reachable from the top of the method to the entry of the basic
block n. Each global variable reference within the basic block can
be checked as to whether it can be included in the specialization
target from the Kill set for each instruction. That is, the above
equation computes all the global variables that are safe forprivati-
zation at the entry point for each method. The set of specialization
targets for the global data, together with the argument list, is then
fed to the impact analysis. The pseudocode of the impact analysis
is shown in Figure 3.

Each specialization target can be expressed by a triple (L, S, V),
where L denotes the defined local variable from a parameter or a

z For a variable declared volatile, a thread must reconcile its working copy
of the field with the master copy every time it accesses the variable [18].

185

Specialization Target (L, S, V)
L: defined local variable from a parameter or a global vadable
S: statement where L is defined
V: parameter or global variable for specialization

for each element (L, S, I/) in Specialization Target List
{

Derived [V] = { (L, S) };
Weight [V, *] = O;
for each variable (L, S) in Derived [V]
{

for each operation Op which uses L and is reachable from S
{

if (Op can be simplified or eliminated by a specialization
type T)

}
}

}
}

Weight [V, T] += Impact of T on Op;
if (Op is converted to a constant assignment)
{

Derived [V] U = (LHS var of Op, location of Op)
}

Figure 3. Pseudocode for impact analysis.

global variable, S denotes the statement in the method in which
the variable L is defined, and V denotes the parameter or global
variable for specialization. The algorithm traverses the dataflow
through a defuse chain for each use of the variable L and its de-
rived variable, tracking any possible impact on each operation in
V. The impact of the specialization type T on operation Op ap-
pearing in the pseudoeode can be expressed by

lmpact(Op, T) = saved cost(Op, T)/SST(E, T) * f(loop nest level)

The baseline of the impact is the execution cost of the Specializa-
tion Safety Test (SST), which is the guard to be generated at the
entry of the specialized method. This can vary from a simple ecru-
pare and jump instruction to a set of multiple instructions depend-
ing on the variable V and type T. The impact is then the relative
cost that can be saved on operation Op with the specialization
type T against its SST eost. If the operation is located within a
loop, then the impact is sealed with a factor representing the loop
iterations to reflect the greater benefit that can be expected.

The cost saving can be quite different for each of the operations.
The elimination of checkcast or instancoof operations can have
a large effect, while it would be much smaller when getting a con-
stant operand in a binary operation. The final result of impact
analysis for the estimated specialization benefit is the Specializa-
tion Candidate SC;

SC = { V I Weight(V, T) > minimum threshold for any type T }

The factors currently considered in the impact analysis include the
following:

• A constant value of a primitive type, which can lead to addi-
tional opportunities for constant folding, strength reduction, the
replacement of floating point transcendental operations with a
computed value, and the elimination of the body of a

Candidate Sample Bias Weight Expected Benefit

SC= R= W= B,

SCb R~ Wh Bb

SC~ R, We] Bc

(a)

spe,
Vel't

SC,
^B c

W l m 0 t~ a " ') ~ b specialized version
(b) with SCa ̂ SCb ^ SC c

Figure 4. (a) Multiple specialization candidates available,
(b) Construction of decision tree on generating three
specialized versions.

conditional branch.
O An exact object type, which allows removal of some unneces-

sary type checking operations and leads to more opportunities
for class-hierarchy-based devirtualization 3.

Q The length of an array object, which allows us to eliminate ar-
ray bound checking code. This can also contribute to loop
transformations, such as loop unrolling and simplification, if
the loop termination condition becomes a constant.

® The type of an object such as null, non-null, normal object, or
array object, which can be used for removing some unneces-
sary null checks and for improving the code sequence for some
instructions (e.g. invokevirtualobject, checkcast).

• Equality of two parameter objects, allowing method bodies to
be significantly simplified.

® A thread local object, which allows us to remove unnecessary
synchronizations.

5 .2 S p e c i a l i z a t i o n D e c i s i o n
When a hot method has been identified in the 2nd level compiled
code, the controller checks the results from the impact analysis
stored in the code manager database. If a candidate in SC for the
method looks promising as a justification for performing speciali-
zation, then the controller dynamically installs the instrumentation
code into the target native code to decide whether it is indeed
worth specializing with the specified type. This is based on the
same mechanism described in Section 3.5. Currently a minimum
threshold is used to allow all candidates to be selected as an in-
strumentation installation target.

Upon the completion of the value sampling, the controller then
makes a final decision regarding whether it is profitable to spe-
cialize with respect to a specialization candidate in SC. The metric

3 With the preexistence optimization [17], some of this opportunity for
parameter variables may be disappeared.

186

Table t . List of benchmarks and applications used in the evaluation.

r,o

Program

SwingSet

Java2D

ICE Browser [42]

Description

GUI component, version 1.1

2Dgraphics library

Simple intemet browser, version 5.05

Measurement Condition

Run the demo program as an application to bring up the initial window.

Run the demo program as an application with options -runs=l -delay=0

Run the browser application to bring up the welcome window.

Hot Java [38] Hot Java browser, version 1.1.5

IchitaroArk [25] Japanese word processor Run the application to bring up the initial input window

Web applica!ion server, version 3.5.3

Multi-threaded image rendering

Web,Sphere [22]

227 mtrt

_202 jess Java expert system shell

_201compress LZW compression and decompression

209 db Database function execution

Decompression of MP3 audio file [222 mpegaudio

228 jack Java parser generator

_213 javac Java source to bytecode compiler in JDK1.0.2

SPECjbb2000-1.0 [Transaction processing benchmark

Attach administration console after starting administration server

Run SPECjvm98 benchmark harness from appletviewer with the following
settings (the order of these tests is specified in SpecApplet.html).

- initial heap size 96m and max heap size 96m.
- run individual benchmarks in the experiments from Section 6.1 to 6.3, or
run complete benchmarks with a single JVM in the experiment for Section
6.4.

, - select input size=100, then run with autorun, and test mode
(not SPEC compliant mode).

- the number of executions in each autorun sequence is 10.

Run with warehouse 1 only, with initial and max heap size 256m.

we use for this decision can be expressed as follows:

f (Weight, Sample Ratio, Code Size, Hotness Count)

This function indicates that the impact analysis result, the ratio of
bias in the corresponding sample data, the size of the recompile
target code, and the method hotness count are all considered for
the final specialization decision. The code size affects the maxi-
mum number of versions that can be produced for specialization,
since the larger the code size for recompilation, the more costly it
would be to generate multiple versions. The method hotness count
is used for adjusting the number of versions allowed for some im-
portant methods. The construction of the specialization plan then
proceeds as follows.

Suppose there are three specialization candidates SC~ (e SC for i =
a, b, c) available for a method as in Figure 4 (a). The expected
benefit for each candidate using specialized code, based on the
probability of the specialized code hit ratio, is computed as Bi = Ri
* W~. The plan on how to organize the specialized code can then
be viewed as constructing a decision tree. That is, each internal
node of the tree represents the specialization safety test SST~
guarding each specialization. The right subtree is for the version
where the benefit Bi is applied, and the left subtree tracks the ver-
sion where it is not used. The number of leaf nodes is two raised
to the number of candidates. The specialization is then organized
by selecting leaf nodes, from right to left, for as many as the num-
ber of versions allowed as calculated from the code size and
method hotness count. All the nodes that are not selected for spe-
cialization are contracted to a single node that represents a general
version of the code (that is, the original 2nd level compiled code).

Two strategies can be considered for the tree construction: benefit
ordered and sample ratio ordered. In the benefit-ordered construc-
tion, a specialization candidate having a larger value of B~ moves
to a higher level internal node, reflecting a greater expected bene-
fit when the condition holds true. In the sample-ratio-ordered, a

value of R~ is regarded as a more important factor with expectation
of a higher rate of executing the specialized versions. In Figure 4
(b), assuming that SCI is in the order of a, b, c in either criteria,
the decision-tree is constructed with the number of specialized
versions limited to three.

The recompilation with code specialization can introduce addi-
tional opportunities for many other optimizations, such as con-
stant folding, null-check and array-bound-check elimination, type
check elimination or simplification, and virtual method inlining.
In the case of SST failure upon specialized code entry, the control
is directed to the general version of the code. This can generally
occur as the result of changes in the execution phase of the pro-
gram, so that the specialized methods can be called with a differ-
ent set of parameters. In this situation, the general version of the
code may be identified as hot again, and the next round of recom-
pilation can be triggered for this method, possibly with specializa-
tion using different values. Thus the new version of specialized
code can then become active, by replacing the previous code. The
maximum number of versions for specialized code for a method is
limited to N, a number which is based on the target code size, set
by the recompilation controller to avoid excessive code growth.

6. EXPERIMENTAL RESULTS
This section presents some experimental results showing the effec-
tiveness of our dynamic optimization system. We outline our ex-
perimental methodology first, describe the benchmarks and applica-
tions used for the evaluation, and then present and discuss our per-
formance results.

6.1 Benehmarking Methodology
All the performance results presented in this section were obtained
on an IBM IntelliStation (Pentium III 600 MHz uni-processor with
512 MB memory), nmning Windows 2000 SP 1, and using the
JVM of the IBM Developer Kit for Windows, Java Technology

187

no opt

quick opt

full opt

special opt

Table 2. Comparison of compilation time with three different optimization levels on SPECjvm98
benchmark programs. All results are in seconds.

first run

best run

compile
time

fast run

best run

compile
time

mtrt

22.14

21.25

0.89
(4.0%)

8.38

6,53

1.85
(22.1%)

jess

16.02

14.31

1.71
(11.0%)

10.5

7.83

compress

29.52

29.08

0.44
(1.5%)

17.82

17.39

2.67
(25.5%)

20.91

0.43
(2.4%)

db

36.81

36.52

0.29
(0.8%)

29.63

29.14

0.49
(1.7%)

mpegaudio

28.36

26.97

1.39
(4,9%)

14.01

11.89

2.12
(15.1%)

first run 11.34 16.81 30.22 14.17

15.84 28.83

1,39
(4.6%)

0.97
(5.7%)

16.88

best run 5.03

6.31
(55.6%)

compile
time

7.06

13.85
(66.2°/,)

21.88

9.91

4.26
(30.1%)

14.56

jack] , , !avac

17.22

I5.94

1.28
(7.4°/6)

10,47

8.31

2.16
(20.6%)

15.95

7,88

8.07
(50.6%)

16.56

22.58

19.81

2,77
(12.3%)

17.92

12.18

5.74
(32,0%)

37.25

12.22

25.03
(67.2%)

40.41 first rtm 13.21 30.81

best mn 4.89 6.51 15.83 28.51 9,47 7.46 12,08

9.10
(55.0%)

compile
time

8.32
(63.0%)

1.05
(6.2%)

15.37
(70.2%)

5.09
(35.0%)

2.30
(7.5%)

28.33
(70.1%)

Edition, Version 1.3.1 prototype build. The benchmarks we chose
for evaluating our dynamic optimization system are shown in Table
1 (the size of each benchmark is indicated in the MMI-only row in
Tables 3 and 4). We conducted two sets of measurements: startup
runs and steady state runs. For the startup performance evaluation,
we selected a variety of real-world applications, ranging from a sim-
ple Intemet browser to a complex Web application server. For
evaluating the steady state performance, we use SPECjvm98 and
SPECjbb2000 [35], two industry standard benchmark programs for
Java.

Table 2 shows the compilation times for the three different opti-
mization levels used in our system. The numbers for no-opt com-
pilation are additionally presented to evaluate our system against
the compile-only approach. These measurements were done by
nmning each level of optimization without MMI. We assume that
the difference between the first nm and the best run of
SPECjvm98 can be regarded as the compilation time. We ignored
the cache and file system effects, which we tried to minimize by
executing some warm-up runs before the measurements. The per-
centages shown in the compilation time fields are the ratios of
compilation time over the time of the first run.

The following configuration and parameters were used throughout
the experiments.

• The threshold in the mixed mode interpreter to initiate dynamic
compilation (quick optimization) was set to 2,000.

• The timer interval for the sampling profiler for detecting hot
methods was 10 milliseconds. With this interval, the overhead
introduced is below the noise and the accuracy is considered
adequate for identifying reeompilation candidates [40].

• The sampling profiler was operated continuously to build a list
of hot methods, while the controller examined and purged the
data every 100 sampling ticks for recompilation decisions.

® For instrumentation-based sampling for hot methods, a

maximum of 512 values were collected for each of the target pa-
rameters, global variables, or return addresses. The maximum
number of data variations recorded was 8.

@ The priority of the sampling profiler thread and the compilation
thread was set to above and equal to that of the application
threads, respectively.

• The number of code duplications allowed for specialization was
set to one, regardless of the target method code size. Jn the
measurement for Section 6.3, the decision-tree construction was
based on the benefit-ordered strategy.

@ Exception-directed optimization (EDO) [29] was enabled. The
recompilation request from EDO profiler was processed with
quick optimization with special treatment for method inlining
for the specified hot exception paths.

6.2 Evaluation of Reeompilation System
There are different requirements for the best performance between
the two phases of application execution, program startup and
steady state. During the startup time, many classes are loaded and
initialized, but typically these methods are not heavily executed.
When the program enters a steady state, a working set of hot
methods will appear. In our experiment, we evaluated the startup
performance by running each of the listed applications individu-
ally and measuring the timing from the issuing of the command
until the time the initial window appeared on the screen. For
Java2D with the options indicated in the table, each tab on the
window is automatically selected and the execution proceeds until
the whole component selection is done. That is, we measured the
timing from the issuing of the command until the program termi-
nates. For WebSphere, we first started the server process, and then
measured the time to bring up the administration console window
which runs on the same machine. For the steady state measure-
ment, we took the best time from 10 repetitive automns for each
test in SPECjvm98. For SPECjbb2000, we chose the

188

.>

~] MMI-only [] noopt-full(reeompile) [] MMI-full

SwingSet Java2D ICE Browser HotJaval 15 lchi taroArk WebSphere Geometric Mean

Figure 5. Startup performance comparison. Each bar indicates the total execution speed
relative to no opt compiler without MMI. Therefore higher bar shows better performance.

Table 3. Comparison of number of compiled methods and generated code size (Kbytes) in program startup.
The MMI-only row indicates the number of executed methods and bytecode size. Native methods are not counted.

MMI-only

no-opt

~[quick-opt

full-opt

quick opt

full-opt

SwingSet Java2D

Method S ize Method Size

7,273 440.5 7,327 531.5

7,273 3,218.5 7,327 3,884.3

6,444 3,096.7 6,511 3,473.6

3,701 4,518.6 3,985 5,003,8

439 233.8 523 281.1

416 347.6 463 416.2

ICE Browser HotJava IchitaroArk

Method Size Method S ize Method Size

3,410 275.7 4,110 297.5 7,282 473.7

3,410 1,791.7 4,110 2,110.5 7,282 3,581.1

2,905 1,556.2 3,599 1,945.8 6,193 3,307.3

t,848 2,438.6 2,191 3,019.1 3,910 4,826.3

75 78.1 91 65.6 205 124.7

69 131.5 85[128.9 194 217.7

WebSphero

Method Size

9,029 615.7

9,029 4,511.3

7,951 4,190.2

4,898 6,165.4

321 1653

301 350.9

configuration of one warehouse with 60 seconds of rampup time,
longer than the standard SPEC rule, to give the system enough
warm-up time.

We compared the following sets of compilation schemes.
I. MMI only
2. no optimization compilation with no MMI (noopt-only)
3. quick optimization compilation with no MMI (quick-only)
4. full optimization compilation with no MMI (full-only)
5. no optimization compilation with no MMI and recompilation

using full optimization compilation (noopt-full)
6. quick optimization compilation with MMI (MMI-quick)
7. full optimization compilation with MMI (MMI-full)
8. all levels of compilation with MMI for adaptive re, compilation

(MMI-all)

The fifth case is provided as a comparison of our system to the
corresponding recompilation system with the compile-only ap-
proach as in other systems [3, 13]. In this case, the MMI was not
executed and all methods were first compiled by the compiler with
no optimization applied (level 0), and then some hot methods
identified by the sampling profiler were reoptimized with the full
optimization compilation. Our no-opt compilation may have

different characteristics in terms of both compilation overhead and
code quality from the baseline compiler [3] or the fast code gen-
erator [1, 13], especially because our no-opt compilation system is
not a separate compiler, while theirs are designed and imple-
mented differently from the optimizing compilers. Nevertheless,
we think the comparison with this configuration can be an indica-
tion as to how well our system can compete against a compile-
only system.

Figures 5 shows the comparisons of program startup performance.
The base line in this graph is the second ease above, no optimiza-
tion compilation with no MMI (noopt-only). The chart indicates
that the performance of our dynamic optimization system, MMI-
all, is almost comparable to that of the lightweight configuration
of the MMI-quiek. On the other hand, no-MMI configurations
show poor performance in all the programs, probably due to the
high cost of compiling all executed methods. The recompilation
system with the compile-only approaeh, noopt-full, shows better
performance than the other no-MMI configurations, but it still
cannot compete against other top performing configurations; The
fact that the performance of MMI-only is nearly two times faster
in average than that of noopt-only (base line of the graph)

189

>

3 ---

2 - -

1 - -

mtrt jess compress db mpegaudio jack javac SPECjbb

Figure 6. Steady state performance comparison. Each bar indicates the total execution speed
relative to no opt compiler without MMI. Therefore higher bar shows better performance.

Geo. Mean

Table 4. Comparison of number of compiled methods and generated code size (Kbytes) in steady state.
The MMI-only row indicates the number of executed methods and bytecode size. Native methods are not counted.

bb

,,o93

H • 153 .7

267.5

447.4

indicates that our MMI is reasonably fast and is comparable to no-
opt compiled code.

Table 3 shows both the number of compiled methods and the code
size in these program startup runs. In this table, the numbers for
reeompilation system, both noopt-full and MMI-all, are not pre-
sented, since no recompilation activity occurred in the program
startup phase and therefore the numbers are mostly similar to
those of their corresponding baseline configurations, noopt-only
and MMl-quick, respectively. The differences in the number of
compiled methods among no MMI cases are primarily caused by
the varying degrees of applying method inlining at each optimiza-
tion level. The table shows the significant differences in the num-
ber of compiled methods between no-MMI and with-MMI

configurations. With MMI, only 2-7% of the executed methods
are compiled, even considering the effects of method inlining. As
for the generated code size, it is an order of magnitude larger with
no-MMI configurations than with MMI configurations. The code
expansion factor from the bytecode size can be up to 10x without
MMI, while it is less than lx for with-MMI configurations.

Figure 6 is the corresponding performance chart for the steady
state program runs, and Table 4 shows the numbers for compiled
methods and code size at that time. In Table 4, the two configura-
tions that involve recompilation are shown with the numbers for
each level of compilation separately. Also MMI-all configuration
is indicated with the number of methods targeted by the instru-
menting profiler and its code and table space for specialization

190

7

6

©
4 ... ~ ~ t B N=tmlimited ~ - - - -

3

2

1 _

0

mtrt jess compress db mpegaudio jack javac SPECjbb Geo. Mean

Figure 7. Performance improvement by code specialization for three different N (max. number of specialized versions
for a method). Each bar indicates the percentage of improvement over the system with code speeialization disabled.

Table 5. Statistics of code specialization on SPECjvm98 and SPECjbb2000.

of specialized versions (methods)

it % of code size increase Z
% of hit ratio for speeializeal versions

of specialized versions (methods)

% of code size increase

% of hit ratio for specialized versions

of specialized versions (methods)

% of code size increase

% of hit ratio for specialized versions

mtrt j e ss compress db

6 (6) 8 (8) 2 (2) 3 (3)

18.9 7.7 6.9 13.8

100 80.5 60.2 100

10 (6) 12 (8) 3 (2) 5 (3)

21.3 12.7 9.7 18.6

100 92.7 99.9 I00

20(6) 18(8) 4(2) 7(3)

40.4 19.3 14.2 27.8

100 98.6 100 100

mpegaudio jack javac SPECjbb

15 (15) 9 (9) 13 (13) 13 (13)

23.6 [8.6 11.7 9.4

99.7 95.7 51.8 90.3

29 (15) 13 (9) 16 (12) 18 (13)

33.4 12.6 23.3 10.3

99.7 96.8 79.2 93.5

63(15) 17(9) 22(12) 22(13)

79.4 16.7 26.2 13.4

99.9 97.5 89.8 97.8

value profiling. From Figure 6, three configurations, full-only,
MMI-fuU and MMI-alI, are top performers in this category. The
recompilation system with compile-only approach, noopt-full,
also works quite well for many of the tests here by applying full
optimization on performance-critical methods. Currently the same
parameters for reeompilation decision are used in this configura-
tion as those in MMI-all, and thus we think the performance can
be further improved to the level of other full optimization configu-
rations by adjusting the parameters more appropriately.

The following observations can be made from Table 4 for our
MMI-enabled dynamic recompilation system. First the number of
methods compiled with quick optimization is, except for jack and
javac, at most 30% of the total number of methods, among which
the number of recompiled methods is roughly 10 to 15%. There-
fore we can achieve the high performance attained by the full-only
configuration by focusing on merely 3 to 4% of all methods. As
described in [2], j avac has a fiat profile, involving many methods
that are executed, and thus poses a challenge for the recompilation
system. This characteristic caused a relatively higher number of
quick optimizations in our system, 70% of the total methods exe-
cuted. However, the number of fully optimized methods is around
4%, similar to the other test cases, showing that our recompilation
decision process works quite well. As for Jack, the higher count
of methods with quick optimization is caused by the additional re-
compilation request from EDO, after detecting some hot exception
paths as inlining candidates, and this results in the better

performance as shown in Figure 6.

Second, the increase in the size of the compiled code is small in
comparison to that of the MMI-quick configuration, and the total
size o f all levels of compilations and the instrumenting profiler
combined is well below that of the MMI-full configuration. The
largest size for the reeompiled code (for 2nd and 3rd) is for
SPECjbb2000, but it is still much less than that of the bytecode.
Again the compile-only approach shows a problem with the large
size of the compiled code. The expansion factor from the bytecode
size with no MMI configurations is from 7x to 10x, while it is
around 3.5x on average, including the space overhead by the in-
strumenting profiler, with our MMI enabled recompilation system.

Overall our dynamic optimization system adapts very well to the
requirements of both program startup and steady state perform-
mace, and also has strong advantages in terms of the system mem-
ory footprint.

6.3 Code Specialization
Figure 7 shows the percentage performance improvement from the
code specialization over the system with 3rd level optimization
disabled. The measurement was done with the same conditions as
in the steady state performance runs in the previous subsection.
Three cases are shown for the specialization parameter N, that is
the maximum number o f specialized versions per method was set
to one, two and unlimited. Table 5 shows the number of special-
ized versions produced, the percentage increases in code size, and

191

2d

o

86/410 132/13/0 I17/14/5 1201210 45619/0

mtrt jess compress db mpeg jack javac

Figure 8. Change of compilation activity and the program execution time as program shifts its
execution phase. Bar chart (left Y axis) shows the number of compiled methods for quick, full, and
special optimizations, and line graph (right Y axis) shows execution time ratio from 1st to 10th runs

- 0.5

quick-opt
full-opt
special-opt

Q

>

O

r,O

the ratio showing the frequency of specialized code entry test,
SST, succeeded, for all of the three cases.

A modest performance improvement, from 3 to 6%, can be ob-
served for four benchmarks, while others do not show any signifi-
cant difference. For those benchmarks which are sensitive to this
specialization, approximately half of the 2nd level compiled code
was specialized, and a 7 to 30% code size growth was observed
for the cases of small number of specialization parameter N. The
increased code size for mpegaudio, db, and javac seems to be
excessively high relative to the resulting perfbrmance gain. One of
the reasons for this problem is that the target of specialization in
our current implementation is the whole method, rather than a
smaller region in the method. When specialization is applied for a
part of the method, a technique called method outlining (in con-
trast to method inlining) needs to be explored to allow multiple
versions of specialized code to be generated for that part of the
method.

The hit ratio of specialized versions code is quite high overall,
considering the fact that only a limited amount of data sampling is
performed in our instrumentation-based value profiling. This is
because the variation of data for parameters or global variables is
relatively small within a single benchmark. Jess is the only ex-
ception, that shows significant performance gain by producing
multiple specialized versions from a single method.

Three benchmarks do not show any performance improvement
from code specialization. Two of them, compress and db, have
spiky profiles and only a few methods are heavily executed. But
our impact analysis could not find any good candidates for spe-
cialization among the hot methods. On the other hand, javae has
many equally important methods, and specializing only a few of
them does not seem to provide any additional speedup.

6.4 Compilation Activity
In Figure 8, we show how the system reacts to changes in the pro-
gram behavior with our dynamic optimization system. This was
measured by running all the tests included in the SPECjvm98 with
autorun mode, ten times each with a single JVM. The horizontal

axis of the graph is equally partitioned by each run of the tests.
The bar chart indicates the number of compiled methods with
each level of optimization, and the line graph indicates the
changes of the execution time from the first to the tenth run nor-
malized by the time differences 4. That is 1 corresponds to the first
run and 0 corresponds to the tenth ran. In the case of compress
and db, the best timing appeared in the earlier runs, however, the
irregularities in the graph after the best runs can be considered
noise, since no compilation activity occurred.

The graph shows that the system tracks and adapts to the changes
in the application program behavior quite well. At the beginning
of each test, a new set of classes is loaded and the system uses the
quick optimization compilation for a fair number of methods. As
the program executes several runs in the same test, the system
identifies a working set of hot methods, and promotes some of
them to full or special optimization compilation. The execution
time, on the other hand, is consistently improved after the first run
for many of the tests by successful method promotions from the
interpreted code to the 1st level, and then to the 2nd and 3rd level
compiled code. In two of the tests, jack and javac, the cost of re-
compilation seems to appear in the execution time. This is partly
because we performed the measurement on a uni-processor ma-
chine and cannot hide the background compilation cost com-
pletely. No significant overhead can be observed in other tests,
since the execution time usually decreases steadily. When one test
program terminates and another test begins, the system reacts
quickly to drive compilation for a new set of methods.

7. CONCLUSION
We have described the design and implementation of our dynamic
optimization framework, that consists of a mixed mode interpreter,
a dynamic compiler having three levels of optimization, a sampling
profiler, a recompilation controller, and an instrumenting profiler.
Performance results show that the system can effectively work for
initiating each level of compilation, and can achieve high

4 This looks similar to the corresponding figure in [3], but note that the
horizontal axis here is the number of runs, while it represents time parti-
tioned into fixed-size intervals in [3].

192

pertbrmance and a low code expansion ratio in both program
startup and steady state measurements in comparison to the
compile-only approach. Owing to its zero compilation cost, the
MMI allowed us to achieve an efficient recompilation system by
setting appropriate tradeoff levels for each level of optimizations.
We also described the design and implementation of automatic code
specialization, which is used for the highest level of optimization
compilation. This exploits the impact analysis and the dynamically-
generated instrumentation mechanism for runtime parameter and
global variable value sampling. The experiment shows that the tech-
nique can make a modest performance, improvement for some
benchmark programs.

In the future, we plan to further refine the system to improve the to-
tal performance by employing feedback-directed optimizations in-
cluding more effective specialization, context sensitive method in-
lining using mntime profile data, and some optimizations based on
runtime exception profiling.

8. ACKNOWLEDGMENTS
We would like to thank all the members of the Network Computing
Platform group in IBM Tokyo Research Laboratory for helpful dis-
cussions and comments on an earlier draft of this paper. We are also
grateful to John Whaley for prototyping the sampling profiler sys-
tem. Finally the anonymous reviewers provided many valuable sug-
gestions and comments on the presentation of the paper.

9. REFERENCES
[1] A.R. Adl-Tabatabai, M. Ciemiak, C.Y. Lueh, V.M. Parikh, and

J.M. Stichnoth. Fast, Effective Code Generation in a Just-in-
Time Java Compiler. In Proceedings of the ACM SIGPLAN '98
Conference on Programming Language Design and Imple-
mentation, pp. 280-290, Jun. 1998.

[2] O. Agesen and D. Detlefs. Mixed-mode Byteeode Execution.
Technical Report SMLI TR-2000-87, Sun Microsystems,
2000.

[3] M. Arnold, S. Fink, D. Grove, M. Hind, and P.F. Sweeney.
Adaptive Optimizations in the Jalapefio JVM. In Proceedings
of the ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages & Applications, OOPSLA '00,
Oct. 2000.

[4] M. Arnold, S. Fink, D. Grove, M. Hind, and P.F. Sweeney.
Adaptive Optimizations in the Jalapefio JVM: The Controller's
Analytical Model. In Proceedings of the ACM SIGPLAN
Workshop on Feedback-Directed and Dynamic Optimization,
FDDO-3, Dec. 2000.

[5] M. Arnold, B.G. Ryder. A Framework for Reducing the Cost of
Instrumented Code. In Proceedings of the A CM SIGPLAN '01
Conference on Program Language Design and Implementa-
tion, pp. 168-179, Jun. 2001.

[6] J. Auslander, M. Philipose, C. Chambers, S.J. Eggers, and B.N.
Bershad. Fast, Effective Dynamic Compilation. In Proceedings
of the ACM SIGPLAN '96 Conference on Programming Lan-
guage Design andlmplementation, pp. 149-158, May 1996.

[7] T. Autrey and M. Wolfe. Initial Results for Glacial Variable
Analysis. In Proceedings of the 9th International Workshop on
Languages and Compilers for Parallel Computing, Aug. 1996.

[8] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Trans-
parent Dynamic Optimization System. In Proceedings of the

ACM SIGPLAN '00 Conference on Programming Language
Design andlmplementation, pp. 1-12, Jun. 2000.

[9] R.G. Burger and R.K. Dybvig. An infrastructure for Profile-
Driven Dynamic Recompilation, In ICCL '98, the IEEE Com-
puter Society International Conference on Computer Lan-
guages, May 1998.

[10] M.G. Burke, J.D. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar,
M. Serrano, V.C. Sreedhar, H. Srinivasan, and J. Whaley. The
Jalapefio Dynamic Optimizing Compiler for Java, In Proceed-
ings' of the ACM SIGPLAN Java Grande Conference, pp. 129-
141, Jun. 1999

[11] B. Calder, P. Feller, and A. Eustace. Value Profiling. In 30th
International Conference on Microarchitecture, pp. 259-269,
Dec. 1997.

[12] C. Chambers and D. Ungar. Customization: Optimizing Com-
piler Technology for SELF, a Dynamically-Typed Object-
Oriented Programming Languages. In Proceedings of the A CM
SIGPLAN '89 Conference on Programming Language Design
andlmplementation, pp. 146-160, Jul. 1989.

[13] M. Ciemiak, G.Y. Lueh, and J.M. Stiehnoth. Practicing JUDO:
Java Under Dynamic Optim/zations. In Proceedings of the
ACM SIGPLAN '00 Conference on Programming Language
Design andlmplementation, pp. 13-26, Jun. 2000.

[14] C. Consel and F. Noel. A General Approach for Run-Time
Specialization and its Application to C. In Conference Record
of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 145-156, Jan. 1996

[15] J. Dean, C. Chambers, and D. Grove. Selective Specialization
for Object-Oriented Languages. In Proceedings of the ACM
SIGPLAN '95 Conference on Programming Language Design
andlmplementation, pp. 93-102, Jun. 1995.

[16] J. Dean and C. Chambers. Towards Better Inlining Decisions
Using Inlining Trials. In Proceedings of the ACM SIGPLAN
'94 Conference on LISP and Functional Programming, pp.
273-282, Jun. 1994.

[17] D. Detlefs and O. Agesen. Inlining of Virtual Methods. In the
13th European Conference on Object-Oriented Programming,
1999.

[18] J. Gosling, B. Joy, and G. Steele. The Java Language Specifi-
cation. Addison-Wesley, 1996.

[19] B. Grant, M. Philipose, M. Mock, C. Chambers,and S.J. Eg-
gers. An Evaluation of Staged Run-Time Optimizations in
DyC. In Proceedings of the A CM SIGPLAN '99 Conference on
Programming Language Design and Implementation, pp. 293-
304, May 1999.

[20] U. Hrlzle. Adaptive Optimization for SELF: Reconciling High
Performance with Exploratory Programming. Ph.D. Thesis,
Stanford University, CS-TR-94-1520, Aug. 1994.

[21] U, Hrlzle and D. Ungar. Reconciling responsiveness with per-
formanee in pure object-oriented languages. ACM Transac-
tions on Programming Languages and @stems,
18(4):355-400, Jul. 1996.

[22] IBM Corporation Inc. "WebSphere Software Platform", docu-
mentation available at http://www.ibn~eom/websphere 2000.

[23] K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuehi, Y. Ogasa-
wara, T. Suganuma, T. Onodera, H. Komatsu, and T. Nakatani.
Design, Implementation, and Evaluation of Optimizations in a
Just-In-Time Compiler. In Proceedings of ACM SIGPLAN

193

Java Grande Conference, pp. 119-128, Jun. 1999.
[24] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Naka-

tani. A Study of Devirtualization Techniques for a Java Just-In-
Time Compiler. In Proceedings of the ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages &
Applications, OOPSLA '00, pp. 294-310, Oct. 2000.

[25] Just System Corp. "IchitaroArk for Java", available at
http://www.justsystem.corn/arldindex.html~ 1998.

[26] M. Kawahito, H. Komatsu, and T. Nakatani. Effective Null
Pointer Check Elimination Utilizing Hardware Trap. In Pro-
ceedings of the 9th International Conference on Architectural
Support on Programming Languages and Operating Systems,
Nov. 2000.

[27] A. Krall. Efficient JavaVM Just-in-Time Compilation. In Pro-
ceedings of International Conference on Parallel Architecture
and Compilation Technique, Oct. 1998.

[28] R. Marlet, C. Consel, and P. Boinot. Efficient Incremental
Run-Time Specialization for Free. In Proceedings of the ACM
SIGPLAN '99 Conference on Programming Language Design
and Implementation, pp. 281-292, Jun. 1999.

[29] T. Ogasawara, H. Komatsu, and T. Nakatani. A Study of Ex-
ception Handling and its Dynamic Optimization for Java. In
Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages & Applications,
OOPSLA '01, Oct. 2001.

[30] M. Paleezny, C. Viek, and C. Click. The Java HotSpot Server
Compiler. In Proceedings of the Java Virtual Machine Re-
search and Technology Symposium (JVM '01), pp. 1-12, Apr.
2001.

[31] M.P. Plezbert and R.K. Cytron. Does "Just in Time" = "Better
Late than Never"?. In Conference Record of the 24th ACM
SIGPLAN-SIGA CT Symposium on Principles of Programming
Languages, pp. 120-131, Jan. 1997.

[32] M. Poletto, D. Engler, and M.F. Kaashoek. tee: A System for
Fast, Flexible, and High-Level Dynamic Code Generation. In
Proceedings of the ACM SIGPLAN'97 Conference on Pro-
gramming Language Design and Implementation, pp.

109-121, Jun. 1997.
[33] V.C. Sreedhar, M. Burke, and J.D. Choi. A Framework for In.

terprocedural Optimization in the Presence of Dynamic Class
Loading. In Proceedings of the ACM SIGPLAN '00 Confer-
ence of Program Language Design and Implementation, pp.
196-207, Jun. 2000.

[34] M.D. Smith. Overcoming the Challenges to Feedback-Directed
Optimization. In Proceedings of the ACM SIGPLAN Workshop
on Dynamic and Adaptive Compilation and Optimization (Dy-
namo '00), pp. 1-11, Jan. 2000.

[35] Standard Performance Evaluation Corporation. SPECjvm98
Benchmarks, available at http://www.spec.org/osg/jvrn98 and
SPECjbb-2000 available at http://www.spec.org/osg/jbb2000.

[36] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Ka-
wahito, K. Ishizaki, H. Komatsd, and T. Nakatani. Overview of
the IBM Java Just-in-Time Compiler, 1BM Systems Journal,
39(1), 2000.

[37] Sun Microsysterus. The Java Hotspot Performance Engine Ar-
chitecture. White paper available at
http://java.sun.com/products/hotspot/index.html, May. 2001.

[38] Sun Microsystems. Hot Java TM Browser available at
http://java.sun.eorn/products/hotj ava/index.html 1997.

[39] O. Traub, S. Schechter, and M.D. Smith. Ephemeral Instru-
mentation for Lightweight Program Profiling. Technical
Report, Harvard University, 1999.

[40] J. Whaley. A Portable Sampling-Based Profiler for Java Vir-
tual Machines. In Proceedings of the ACM SIGPLAN Java
Grande Conference, Jun. 2000.

[41] J. Whaley. Dynamic Optimization through the Use of Auto-
matie Runtime Specialization. Master's thesis, Massachusetts
Institute of Technology, May 1999.

[42] Wind River Systems Inc. "IceStorm Browser 5", available at
http://www.iceso ft.no/ieebrowser5/index.htm12000.

[43] B.S. Yang, S.M. Moon, S. Park, J. Lee, S. Lee, J. Park, Y.C.
Chung, S. Kim, K. Ebeioglu, and E. Altman. LaTTe: A Java
VM Just-in-Time Compiler with Fast and Efficient Register
Allocation. In Proceedings of International Conference on
Parallel Architecture and Compilation Technique, Oct. 1999.

194

