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ABSTRACT 
Recently, there has been a growing interest in exploiting profile 
information in adaptive systems such as just-in-time compilers, 
dynamic optimizers and, binary translators. In this paper, we 
show that sophisticated software profiling schemes that provide 
highly accurate information in an offline setting are ill-suited for 
these dynamic code generation systems.  We experimentally 
demonstrate that hot path predictions must be made early in order 
to control the rising cost of missed opportunity that result from 
the prediction delay. We also show that existing sophisticated 
path profiling schemes, if used in an online setting, offer no 
prediction advantages over simpler schemes that exhibit much 
lower runtime overheads.  
Based on these observation we developed a new low-overhead 
software profiling scheme for hot path prediction. Using an 
abstract metric we compare our scheme to path profile based 
prediction and show that our scheme achieves comparable 
prediction quality. In our second set of experiments we include 
runtime overhead and evaluate the performance of our scheme in 
a realistic application: Dynamo, a dynamic optimization system. 
The results show that our prediction scheme clearly outperforms 
path profile based prediction and thus confirm that less profiling 
as exhibited in our scheme will actually lead to more effective hot 
path prediction.   
 

1. INTRODUCTION 
Program profiles are collected to identify where in the code a 
program spends its time. This information may be fed to a profile-
based optimization system [8], may be used in performance 
tuning or to aid in program understanding. Traditionally, program 
profiling is performed offline, that is, program profiles are 
collected in a separate preparatory run of the program and the 
information is then consumed afterwards, for example, during a 
re-compilation of the program. 
Recently, there has been a growing interest in exploiting profile 

information in dynamic compilation systems such as just-in-time 
compilers [7], dynamic optimizers [3,4] and binary translators 
[17,11]. Profile information is used to focus the costly runtime 
operations on only the hot portions of the program. Unlike the 
traditional approach of profiling, these new dynamic systems 
require profile information to be collected and consumed online, 
that is, within the same run.  
Online profiling is a fundamentally different challenge. An 
obvious difference is the much increased need for efficiency. 
Clearly, efficiency is a desirable feature in any offline profiling 
system. However, in a dynamic compilation system, low-
overhead profiling is a core requirement for the system to be of 
any use. Another more subtle difference is that offline profiles are 
summaries of program behavior while online profiles are 
predictions. Online profiling is typically not concerned with 
establishing precise relative frequency variations between the 
profiled units. Instead, online profiling is a prediction problem, 
such as the prediction of hot paths (or hot branches, hot edges, 
hot call sites, etc.). We focus in this paper on hot path prediction 
but most of the discussed material applies equally well to the 
prediction of other hot program units such as branches, basic 
block or call sites.  
Various hardware schemes have long established that effective 
predictions can be made based on small collected profile 
histories. Numerous techniques have been developed that rely on 
effective hardware branch prediction to improve instruction 
bandwidth [9,12,15] including techniques that perform a limited 
form of path profiling to trace branch correlation [19,14]. 
However, these hardware prediction schemes are usually not 
architecturally visible and thus not available to user software. 
Even if hardware prediction schemes are accessible by user 
software [13], they may not be of much use in systems like a just-
in-time compiler. A just-in-time compiler needs profile 
information about the virtual branches of the input source 
program. However, the branches that are exposed to the hardware 
for profiling are the executing branches of the just-in-time 
compiler code, not of the input source program Thus, there may 
be mismatch between the information collected by the hardware 
and the information needed by the dynamic compilation system.  
A more general solution to the path prediction problem can be 
provided by a software scheme. A software prediction scheme 
can collect frequency information through instrumentation [5], or 
emulation [10]. In cases where a mapping between the executing 
addresses and the profiling units of interest can be established, 
frequency information may also be collected by sampling [21] or 
via hardware counters [1].  
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A straightforward approach to implement an online prediction 
scheme in software is to adapt an existing offline path profiling 
scheme [5] by only profiling each path up to a certain prediction 
threshold. When the execution frequency of a path exceeds the 
prediction threshold, the path is predicted as hot.  
Existing path profiling schemes provide accurate path frequency 
information in an offline setting. But their offline quality does not 
necessarily make them a superior technique for online path 
prediction. Clearly, when considering lower prediction threshold 
values the prediction accuracy will drop and the prediction will be 
increasingly speculative. But in spite of this increased degree of 
speculation, there are several factors that demand a low prediction 
threshold. First, the runtime overhead of collecting profile 
information makes very high threshold values prohibitively 
expensive. But more importantly, there is the more hidden cost of 
missed opportunity that results from the prediction delay.  The 
longer the program execution is profiled, the later will predictions 
be made and, consequently, the lower will be the reuse (i.e., 
potential benefit) of the predictions. We show in our experiments 
that prediction delay is a significant factor in evaluating the 
quality of a prediction scheme. If predictions are delayed for too 
long, the overall benefits of the prediction can easily vanish.  
Thus, in practice the prediction delay and profiling duration have 
to be kept short. However, with limited profiling, sophisticated 
path profiling schemes can no longer offer any prediction 
advantages over simpler schemes that exhibit much lower runtime 
overheads. Thus, while intuition may call for longer and more 
elaborate profiling, we will show in fact show that the opposite it 
true: less profiling actually leads to more effective predictions.   
In this paper we present a new low-overhead profiling scheme for 
hot path prediction that exploits the above observations.  Our 
scheme significantly reduces the runtime and space overhead of 
path profile based prediction while maintaining the same 
prediction quality. The key idea is to focus the profiling effort on 
only the potential starting points of hot paths. Once a path starting 
point has become hot a prediction is made by speculatively 
selecting the Next Executing Tail (NET) as the hot path. The NET 
scheme was developed and implemented as part of the Dynamo 
dynamic optimization system [6,7]. Dynamo accelerates native 
program binaries at runtime and heavily relies on effective hot 
path prediction.  
We followed two approaches to evaluate the NET path prediction 
scheme. We first developed abstract metrics to assess the quality 
of a prediction scheme independently of its implementation 
overhead. The abstract benefit of a prediction is measured by the 
hit rate or reuse of the predicted paths. The abstract cost of a 
prediction is the amount of noise, i.e., the number of cold paths, 
inadvertently included in the prediction.  Based on these metrics 
our first evaluation is independent of both (1) the specific way the 
path predictions are exploited in a compilation system (concrete 
benefits) and (2) the specifics of the implementation of the 
profiling scheme  (concrete cost). 
Using the abstract metrics we show that NET prediction achieves 
the same prediction quality as path profile based prediction at 
practically relevant threshold values.  Importantly, NET 

prediction uses 60% less counter space and significantly reduces 
the runtime profiling overhead.  
We also provide a second concrete evaluation of the NET 
prediction scheme by demonstrating its performance in a realistic 
application using the Dynamo dynamic optimization system 
[.3,4]. We implemented both NET and path profile based 
prediction in Dynamo. Our experiments demonstrate that NET 
prediction is considerably more effective in practice. Due to the 
high profiling overhead, running Dynamo with path profile based 
prediction was ineffective and could not reproduce the speedups 
we achieved when using the NET scheme.  
This paper demonstrates that it is possible to use a software 
scheme to deliver effective hot path predictions with very low 
profiling overhead. Our experiments also indicate that it is 
imperative to recognize program hot spots early. The missed 
opportunity cost that otherwise results may render the prediction 
useless. An important implication of these results is that dynamic 
optimization systems may in fact not benefit much from 
sophisticated hardware mechanisms that allow for prolonged 
monitoring of the program execution. An efficient and easy to 
implement software solution like our NET scheme appears to be 
sufficient for the needs of these dynamic systems.  
The next section provides the background in path profiling. 
Section 3 defines the problem of hot path prediction and Section 
4 presents the details of our NET prediction scheme. Our 
experimental evaluation based on abstract metrics is presented in 
Section 5, and Section 6 presents the experiments with Dynamo. 
Section 7 discusses issues with phase changes. Related work is 
discussed in Section 8 and the paper concludes in Section 9. 

2. Computing Path Profiles 
Path profiling views the execution trace of a program as a 
sequence of finite program paths. By considering  paths of limited 
size the number of possible program paths is bounded but it may 
be exponential in the size of the program. A path profile 
determines a frequency distribution over the set of program paths 
and assigns each path p a frequency freq(p) that describes how 
many times p was executed. The execution flow represented by a 
path profile is given as:  

Flow =  { freq(p) |  p a path}. 
Several path profiling algorithms and corresponding definitions 
of program paths have been developed. Ball and Larus [5] 
defined intraprocedural acyclic forward paths, where a forward 
path ends at a backward branch or procedure return. Their path 
profiling algorithm requires a preparatory static analysis of the 
program to establish a minimal path encoding. Using a spanning 
tree algorithm a minimal low-cost set of edges is selected for 
instrumentation. The instrumented edges produce the necessary 
information at runtime to establish the unique path number of 
each executing path.  The algorithm only considers 
intraprocedural paths.  
Bit tracing is another approach to computing path profiles. A path 
is identified by the following path signature: 

<start_address>.<history>,<indirect_branch_target_list> 
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consisting of a start address followed by a history of branch 
outcomes and a list of indirect branch targets. The history 
associates a 1-bit value with the outcome of every branch on the 
path indicating whether the branch was taken or not. For each 
indirect branch the target address is appended to the indirect 
branch target list. Figure 1 shows examples of program paths and 
corresponding path signatures. Path signatures are constructed as 
the program executes by shifting a 1 or 0 value into the current 
signature register.  Upon reaching the end of a path the current 
path signature is used as an index into a path table to update the 
execution count for the corresponding path.  
Bit tracing can produce less compact path representations than 
Ball and Larus’ algorithm. However, its advantage is that path 
signatures can be constructed on the fly and no preparatory static 
analysis phase is needed. 
Young and Smith [20] presented a different program path 
definition as k-bounded general paths. A k-bounded general path 
is an intraprocedural program path whose length  (i.e., number of 
branches) is bounded by k. Unlike a Ball and Larus path, general 
paths are not limited to forward paths and may include backward 
edges.  General paths are computed at runtime using a k-size 
FIFO queue to store the most recently executed k branches. 
Young and Smith use a lazy algorithm that allows for fast updates 
of program path counters each time a new branch is entered into 
the FIFO queue.  

3. Hot Path Prediction 
The goal of hot path prediction is to predict what will be one of 
the most frequently executing paths based on a limited amount of 
execution history. Since the hot execution flow in a program must 
involve cycles, hot path prediction is primarily concerned with the 
prediction of hot paths through loops. Paths that start at targets of 
backward branches, as in Ball and Larus’ definition, naturally 
capture loop iterations. Thus, we use Ball and Larus’ paths as a 
basis for our path definition but extend it to the interprocedural 
case:   

An interprocedural forward path starts at the target of a backward 
taken branch and extends up the next backward taken branch.  
The path may extend across procedure call or return statements 
unless the call or return is a backward branch.  If a path includes a 
(forward) procedure call it will terminate at the corresponding 
return branch, if not earlier. Note that this path definition captures 
recursive loops without unfolding the recursion.  Also, a path 
may include any number of indirect (forward) branches. 
Recall that freq(p) denotes the total execution frequency for path 
p. For a set P of paths we define the flow of P as: 

freq(P) =  { freq(p) |  p ∈ P }. 
A path p is a hot path if freq(p) is greater than some hot threshold 
h. The set of hot paths with respect to h is defined as: 

HotPathh = { p  |  freq(p) > h }. 
The hot flow represented by HotPathh is freq(HotPathh). 
The goal of hot path prediction is to determine a set of paths P 
that best predicts HotPathh. We determine how well a set of paths 
captures HotPathh by computing its hit rate. The hit rate is 
determined by crediting each path p in P that is also contained in 
HotPathh the appropriate portion of freq(p) that still remains after 
the prediction has been made. Thus, the hit rate takes into account 
the missed opportunity cost that results from the prediction delay. 
Hit rate is the online analog to the coverage metric that has been 
used in evaluating offline path profiles [6].  

Assume a path p is predicted after it has executed τ times. τ  is 
called the prediction delay and the flow captured by this 
prediction is:  freq(p) – τ. We define the flow captured by a set P 
of paths as: 

Hits(P) =  freq(P ∩ HotPathh )  –  | (P ∩ HotPathh ) | × τ . 
The hit rate for P now results as: 

HitRate(P)  = ( Hits(P) / freq(HotPathh) ) × 100. 
The missed opportunity cost that results from the prediction delay 
is given as:  

MOC(P)  = | (P ∩ HotPathh ) | × τ 
As our experiments in Section 5 show, longer profiling intervals 
(i.e., a longer prediction delay τ ) will generally not lead to better 
path predictions due to the sharp increase in missed opportunity 
cost.   
If hit rate was the only measure of prediction quality making 
optimal path predictions would be trivial: simply predict every 
path when it first executes. Thus, we need an additional criterion 
to penalize for the amount of misprediction.  Noise measures the 
percentage of cold flow that was inadvertently included in P: 

Noise(P) =  freq(P – HotPathh )  –  | (P –  HotPathh ) | × τ . 
The corresponding noise rates for P now results as: 

NoiseRate(P)  = ( Noise(P) / freq(HotPathh) ) × 100. 
The ideal path prediction scheme maximizes the hit rate while 
minimizing noise. Note that the two goals are conflicting. To 
minimize noise, predictions should be delayed so as to rule out as 
many cold paths as possible. Delaying predictions raises missed 
opportunity cost and thus reduces the hit rate.  
 

 

 
 
 
 Path: signature 

ABDG:   A.0101  
ABDGJ:  A.01001 
ABDHJ:  A.01111  
ACEIJ:    A.10111  
ACFIJ:    A.11111
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Figure 1: Multiple paths through a loop. 
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4. Online Prediction Schemes 
We can derive a prediction scheme from a given offline path 
profiling scheme in a straightforward way.  Simply apply the path 
profiling scheme up to a prediction delay τ. As soon as the 
execution frequency of a path exceeds τ, the path is predicted as 
hot.  We refer to such a prediction scheme as path profile based 
prediction. Path profile based prediction relates to path profiling 
as hardware branch prediction schemes relate to offline branch 
profiling.  
Obviously, the length of the prediction delay is critical for the 
prediction to be effective.  The shorter the prediction delay the 
more noise will be included in the prediction. However, 
prolonging the prediction delay will increase the missed 
opportunity cost and thus lower the benefits of the prediction. 
Missed opportunity cost is not the only expense to consider when 
prolonging the prediction delay. There is also the runtime 
overhead of profiling each path execution up to τ times. The 
runtime overhead consists of the amount of counter space needed 
and the cost of profiling operations.  
Path profile based prediction incurs a very high runtime overhead. 
The amount of counter space needed is equal to the number of 
dynamic paths, which can be exponential in the size of the 
program. Runtime profiling operations include a counter update 
after every path execution and further profiling operations to trace 
the execution of branches. In the case of bit tracing, every branch 
execution requires the shifting of a bit into the current history 
register. If Ball and Larus’ spanning tree algorithm [5] is used, 
the number of branches that require profiling operations can be 
minimized but still remains in the order of the total number of 
branches.  

4.1 NET Hot Path Prediction 
The runtime overhead of path profile based prediction combined 
with missed opportunity cost make long prediction delays 
impractical. However, the shorter the prediction delay the more 
speculative the prediction will be. The question arises as to 
whether we need the full support for path profiling in order to 
make what ultimately will be an inherently speculative prediction.  
 To answer this question we developed a new path prediction 
scheme: Next Executing Tail (NET) prediction1. The objective of 
NET prediction is to significantly reduce profiling overhead while 
still performing as well as path profile based prediction when 
considering prediction delays that are practically relevant. Lower 
priority was given to how well the scheme compares to path 
profile based prediction if infinitely long prediction delays are 
allowed, i.e., in an offline setting.   
In NET, a path is divided into a path head, i.e., the path starting 
point, and the path tail, which is the remainder of the path 
following the starting point.  For example, in path “ABDG” in 
Figure 1, block “A” is the path head and “BDG” is the path tail. 
NET reduces profiling cost by using speculation to predict path 
tails while maintaining full profiling support to predict hot path 
heads. The rationale behind this scheme is that a hot path head 
indicates that the program is currently executing in a hot region 
and the next executing path is likely to be part of that region.   
                                                                
1 The scheme was called Most Recently Executing Tail (MRET) prediction 

in an earlier publication [4].  

Execution counts are maintained only for executed path heads, 
that is, only for targets of backward taken branches. No further 
profiling is performed. For example, in Figure 1 only one 
profiling count is maintained for the entire loop at the single path 
head at the start of block A. Once the counter at block A has 
exceeded its threshold, the next executing path is predicted.  
Assume the loop has one or two dominant paths.  In such a case, 
NET is statistically likely to predict the correct hot path. On the 
other hand, if there are no dominant paths through the loop and 
execution is divided fairly evenly among all five paths, NET may 
select any path. However, there is not a better prediction to be 
made in such a case, even under a path profile based prediction 
scheme.  

4.2 Implementing NET  
An important advantage of the NET prediction scheme is the ease 
of engineering it. Since profiling is limited to the potential trace 
heads, NET requires even less profiling than block or branch 
profiling schemes. If the execution frequency at a path head 
exceeds the prediction threshold dictated by the predication delay 
τ, the path head is considered hot and the next executing path can 
be collected using incremental instrumentation.  With incremental 
instrumentation the profiler collects the next path by subsequently 
collecting each non-branching sequence in that path. For instance, 
during each step, the profiler can place a breakpoint at the end of 
the next non-branching code sequence. Executing the code 
sequence will raise the breakpoint and the profiler handles the 
breakpoint by removing it and preparing the next step, i.e., 
placing the next breakpoint. This process continues until the end 
of the path has been encountered and the complete path has been 
collected. Alternatively, if profiling is implemented inside an 
emulator, such as in a binary translator, the NET path can directly 
be collected during emulation.    
To measure the overhead of NET prediction we consider the 
amount of counter space needed and the number of dynamic 
instrumentation points.  The NET prediction scheme requires 
maintaining execution counts at every target of backwards 
branches. The number of targets of backwards branches is only a 
fraction of the number of branches and bound by |B|, where B is 
the set of basic blocks in the program’s control flow graph. Path 
profiling in comparison requires one count per path which may be 
2|B|  in the worst case.  

5. Experimental Evaluation 
This section evaluates the performance of the NET prediction 
scheme using the metrics from Section 3. We experimentally 
compare the hit and noise rates for NET prediction with the 
corresponding rates for path profile based prediction. We first 
focus on assessing the quality of the predictions and ignore the 
implementation and overhead characteristics of each scheme.  
Clearly, for the overall effectiveness of a prediction scheme, 
implementation characteristics and runtime overhead are crucial. 
We consider the actual runtime overhead of NET prediction and 
path profile based prediction in the second set of experiments 
when evaluating the two schemes in a realistic application in 
Section 6. 
Table 1 shows our benchmark set that includes the SpecInt95 
benchmarks and one C++ benchmark called deltablue, which is 
an incremental constraint solver [16]. For each program the total 
number of paths and the total flow is shown in Table 1.  
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Our experiments were run with the objective of predicting the  
HotPath set based on a hot threshold of 0.1%. The execution 
frequency of each path in this set is at least 0.1% of the total flow. 
Table 1 shows the number of paths in the 0.1% HotPath sets and 
the percentage of the total flow captured by them (%Flow). The 
captured flow is determines as:  (freq( HotPath) / Flow )× 100. 
Table 1 shows that the amount of flow captured by the HotPath 
set can vary significantly.  In compress, the 0.1% Hot Flow set 
captures almost the entire execution flow (99.6%). In gcc, where 
the total number of paths is much higher and hot paths not as 
dominant, the 0.1% HotPath set captures less than 50% of the 
total flow. 

Table 1. Benchmark set 

0.1 % HotPath   
Benchmark 

 
#Paths 

Flow 
(M) #Paths %  Flow 

compress 230 3061 45 99.6 
Gcc 36,738 2191 137 47.5 
Go 29,629 1214 172 55.5 
Ijpeg 62,125 635 74 93.3 
Li 1,391 3985 111 93.8 
m88ksim 1,426 2014 107 92.5 
Perl 2,776 1514 146 88.5 
Vortex 5,825 3016 95 85.8 
deltablue 505 1799 28 93.9 

 

5.1 Hit Rate and Noise 
To collect the hit and noise rates we ran path profile based 
prediction and NET prediction with various prediction delays 
ranging from 10 to 1,000,000. For each run we divided the total 
flow into profiled flow and predicted flow.  Profiled flow is the 
amount of flow consumed by the prediction delay. Profiled flow 
contains cold flow and the portion of the hot flow that was 
missed during the prediction delay. The predicted flow contains 
the captured hot flow  (hit rate) and noise. Clearly, with a 
prediction delay of  0 we obtain 0% profiled flow (100% 
predicted flow) and with an infinitely long prediction delay we 
obtained 100% profiled flow (0% predicted flow). 
We measured the hit and noise rates that result given a certain 
allowance of profiled flow.  The corresponding hit rate/profiled 
flow data is shown in Figure 2 and the analogous noise 
rate/profiled flow data in Figure 3.   
Figure 2 compares the hit rate achieved by path profile based 
prediction (a-b) with the hit rate of NET prediction (c-d). The 
graphs (a) and (c) on the left depict the hit rate over the entire 
range of prediction delays.  To provide a more detailed view of a 
more practically relevant range, the graphs (b) and (d) on the right 
zoom into the upper left 10% corner shown shaded in the figures 
on the left.  
There is virtually no difference in the coverage data for path 
profile based and NET prediction. Comparing Figures 2 (b) and 
(d) shows that at 10% profiled flow both path profile based and 

NET prediction reach a hit rate of about 97.5 on average. Figures 
2 (a) and (c) show that the hit rate decreases quickly with the 
amount of flow that is being profiled. Thus, prolonging the 
profiling interval will lead to increasingly less effective 
predictions due to the rising cost of missed opportunity.  This 
trend is particularly pronounced in programs with dominant hot 
paths like compress, which has the fastest descending hit rate. 
Here, delaying predictions is costly since opportunity losses rise 
sharply. Other programs like go and gcc exercise a large number 
of cold paths. In these cases delaying predictions is not as lossy 
since comparatively less hot flow will be missed and the hit rate 
therefore descends much slower.  
Figure 3 depicts the analogous data for noise.  The top two graphs 
show noise rates for path profile based prediction and the bottom 
two graphs show the noise rates for NET prediction. The noise 
rate decreases more rapidly than the hit rate. 
Comparing figures (a) and (c) on the left indicates that with 
longer prediction delays (i.e., 20%-70% profiled flow) NET 
prediction produces more noise than path profile based 
prediction. With path profile based prediction noise is reduced to 
less than 10% when profiling about 35% percent of the execution. 
In comparison, NET prediction needs to profile about 45% of the 
execution in order to reduce the noise rate to less than 10%. 
These results reflect that path profile based prediction gains 
accuracy advantages over the more speculative NET scheme 
when considering long prediction delays. However, Figure 3 
indicates that any accuracy advantages of path profile based 
prediction arise only for prediction delays that are irrelevant for 
practical purposes. Profiling 20% or more of the total execution 
assumes prediction delays of 50,000-100,000 and results in 
significant missed opportunity cost as illustrated by Figure 2.  
The graphs (b) and (d) on the right show the noise rate for the 
practically more relevant prediction delays. With shorter 
prediction delays NET prediction performs as well as path profile 
based prediction if not slightly better on average. When profiling 
10% of the execution, NET prediction yields about 56% noise, 
whereas path profile based prediction results in about 65% noise.  
 

Table 2. Number of paths and unique path heads 

 
Benchmark 

 
#Paths 

#Unique Path  
Heads 

compress 230 143 
gcc 36,738 8,873 
go 29,629 1,813 
ijpeg 62,125 669 
li 1,391 710 
m88ksim 1,426 651 
perl 2,776 1,053 
vortex 5,825 3,414 
deltablue 505 268 
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Figure 2: Hit rates for path profile based prediction (a-b) and NET prediction (c-d).  The X-axis shows the percentage of the total flow 
that is profiled. The Y-axis shows the hit rate as the percentage of the 0.1 % Hot Path Set.  The graphs (b) and (d) on the right zoom into 
the upper left 10% square shown shaded in graphs (a) and (c), respectively. 

(c)                                                                                                              (d) 

     (a)                                                                                                             (b) 
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Figure 3: Noise rates for path profile based prediction (a-b) and NET prediction (c-d).  The X-axis shows the percentage of the total 
flow that is profiled. The Y-axis shows the noise rates as the percentage of the 0.1 % Hot Path Set.  The graphs (b) and (d) on the right 
zoom into the upper left rectangle shown shaded in graphs (a) and (c), respectively. 
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5.2 Space Consumption 
We also compared NET and path profile based prediction with 
respect to their space utilization. Specifically, we measured the 
amount of counter space needed by the two schemes.  Recall that 
NET prediction requires only a single counter for each target of a 
backward taken branch whereas path profile based prediction 
requires a counter for each dynamic path. Table 2 shows the 
number of backwards taken branch targets (i.e., the number of 
unique path heads) along with the number of dynamic paths. 
Figure 4 depicts the corresponding reduction in the amount of 
counter space of NET prediction over path profile based 
prediction. The average bar shows that NET uses only about 60% 
of the counter space used in path profile based prediction. 

6. Application: Path Prediction in Dynamo 
The NET scheme was developed as part of the Dynamo project at 
HP Laboratories [3,4]. Dynamo is a dynamic optimization system 
that is capable of accelerating the performance of a native 
program binary at runtime. Dynamo operates by identifying and 
extracting the dynamically hot paths in the executing program 
binary.  Dynamo achieves a performance boost by optimizing and 
laying out the programs’ hot paths in a software code cache.  
Initially, Dynamo observes the program behavior through 
emulation. During emulation profiling information is collected to 
identify hot paths for optimization.  Copies of the hot paths are 
processed using lightweight optimization techniques and emitted 
into the code cache. Subsequent execution of these paths causes 
the cached optimized versions of the paths to be executed. Over 
time, the optimized version of the program's working set 
materializes inside the software code cache resulting in a 
performance boost. With Dynamo the performance of many 
SPECint95 binaries compiled with static optimization can further 
be accelerated [4]. Dynamo is written entirely in user level 
software and runs on a PA-RISC machine under the HPUX 
operating system.  
Dynamo relies heavily on effective hot path prediction. A 
performance boost results only if the predicted paths are indeed 
hot so that their optimized version will be re-used sufficiently 
often to amortize the overhead of optimization. Driven by the 
need for the highest possible prediction accuracy we initially 
implemented a path profile based prediction scheme in Dynamo. 
However, path profile based prediction turned out to be ill-suited 
for Dynamo’s purposes due to the significant runtime and space 
overhead. With path profile based prediction Dynamo could only 
achieve speedups in rare cases. A redesign of the path prediction 
logic resulted in the development of the NET scheme.   
Figure 5 depicts Dynamo’s performance with path profile based 
prediction and with NET prediction. Note that Dynamo cannot 
produce speedups in programs with excessively high numbers of 

 

 
 
 
 

 

 
 
 
 

Figure 4: The amount of counter space used in NET prediction 
normalized to the counter space used in path profile based 
prediction. 

Figure 5: Dynamo speedup over native execution with path profile based and NET hot path prediction schemes. Each scheme is run 
with prediction delays of 10, 50 and 100. 
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dynamic paths and no dominant reuse, such as go and gcc. When 
run with these programs Dynamo gives up and bails out to native 
execution [3]. Figure 5 considers the programs from our 
benchmark set that are processed by Dynamo without bail-out.  
We ran each prediction scheme with prediction delays of 10, 50 
and 100. A prediction delay of 50 was for both schemes the most 
beneficial choice in balancing the amount of noise that results at 
lower thresholds and the rising profiling overhead and missed 
opportunity cost of longer prediction delays.  Speedups 
progressively declined with prediction delays longer than 100. 
With a prediction delay of 50, less than 1% of the total execution 
flow is profiled. 
Figure 5 demonstrates the performance advantages of NET 
prediction over path profile based prediction. Path profile based 
prediction could only produce speedups in perl and deltablue, 
whereas NET prediction lead to speedups in all these programs, 
averaging over 15%. The NET prediction scheme does not only 
offer performance advantages. Its simple design and ease of 
engineering make it an ideal candidate for a runtime system such 
as Dynamo. 

6.1 Sensitivity to Phase Changes 
So far we made the implicit assumption that hot paths are 
predicted for the entire run of a program. The metrics of hit rate 
and noise were developed with respect to accumulated profile 
information. Accumulated profile data is not time-sensitive and 
cannot provide information about phase changes that may occur 
during the run of the program. A path may be a hot path in a 
particular phase of the execution but may not have a high 
accumulated execution frequency. 
Phase changes are implicitly recognized by path prediction 
schemes in the form of new paths’ frequency counts exceeding 
their prediction delay.  We can adjust a prediction scheme to 
more or less sensitivity to phase changes by changing the 
prediction delay. The longer the prediction delay the less sensitive 
the prediction scheme is to phase changes since short lived phases 
cannot be recognized. However, higher sensitivity to phase 
changes also introduces an increased noise problem: noise that 
results from paths that were formerly hot but have turned cold in 
the current phase. This kind of phase-induced noise cannot 
simply be controlled by prolonging the prediction delay.  The 
prediction delay must be kept short to recognize phase transition 
in the first place. Thus, additional mechanisms for controlling 
phase-induced noise are needed, such as garbage collection or 
other path retiring schemes [13].   
Dynamo addresses phase-induced noise by using a heuristic 
flushing scheme. Dynamo monitors the path prediction activity in 
order to identify sudden and sharp increases in the prediction rate. 
Such increases provide a good indication that a new phase is 
about to be entered. After detecting a phase transition, Dynamo 
triggers a cache flush and thereby removes all phase-induced 
noise from the cache. By scheduling cache flushes approximately 
at the time of a phase change we can keep the amount of useful 
paths that are inadvertently removed by the flush to a minimum.   
We plan to extend our path metrics to model path removal from 
the prediction set. With a path removal model we obtain an 
abstract measure to evaluate how well a prediction scheme reacts 
to phase changes and how well it handles phase-induced noise.   

7. Related Work  
Hot path prediction has been used in the Boa binary translation 
system [17]. In Boa, hot groups are formed by collating 
individual paths based on collected branch frequencies.  Profile 
information is collected during Boa’s interpretation phase. When 
a hot group entry has been found, a path is selected by following 
the most likely successors according to the collected branch 
profile information. Unlike our NET scheme, Boa’s prediction 
scheme requires every branch to be profiled. Furthermore, 
constructing paths from isolated branch frequencies ignores 
branch correlation, which may lead to paths that, as a whole, 
never execute.   
Several hardware schemes have been developed that perform a 
limited amount of path profiling by capturing branch correlation 
through branch histories [9,12]. The trace cache uses hardware to 
build traces from predicted branch sequences [15]. These 
schemes, developed to improve instruction fetch bandwidth are 
generally not accessible by user software and can therefore not be 
exploited in a dynamic compiler. An exception is the profiling 
hardware described in [13] that was specifically developed to 
support runtime optimization. The hardware monitors branch 
execution and identifies hot spots from collected branch profiles.  
A hot spot is defined as a collection of frequently executing 
blocks. The hardware also includes mechanisms to detect when 
execution strays from previously recorded hot spot information, 
which can be used for path retiring. It has not yet been tested how 
well the hardware supplied information can be absorbed by a 
dynamic optimizer. Since the hardware’s definition of a hot spot 
might differ form the one used in the dynamic optimization 
software, an additional software layer may be necessary to 
transform the hardware provided hot spot information into a form 
that can be utilized by the software. However, such a software 
layer may not always exist. For instance, when the hardware’s 
notion of a branch does not match software’s notion of a “virtual’ 
branch as for example in a just-in-time compiler, the hardware 
supplied information may not be of much use.  
Offline profiling techniques benefit from hardware support in the 
form of hardware counters [1] and in continuous profiling 
environments through PC sampling [2]. A software approach to 
reducing profiling cost has been pursued in ephemeral 
instrumentation. The idea is to enable intermittent profiling by 
providing mechanisms for rapid insertion and deletion of 
instrumentation code [18].  
Our evaluation of the NET prediction scheme has shown that 
producing good path predictions does not require a sophisticated 
path profiling scheme. A similar result regarding path profiling 
has also been obtained for the offline case. A study comparing 
edge and path profiles reports that collecting edge profiles 
provides sufficient information to compute a large percentage of 
the hot portion of the corresponding path profile [6].  

8. Conclusion 
This paper presented a new software profiling scheme for 
predicting hot program paths. Our NET scheme delivers 
prediction quality that is comparable to a path profile based 
scheme at only a fraction of the cost. Besides its performance 
advantages the simple design and ease of engineering make the 
NET prediction scheme an ideal candidate for use in dynamic 
compilations systems. We developed an abstract metric to 
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measure the quality of our prediction scheme independently of a 
particular implementation. In addition we also evaluated the NET 
prediction performance in a realistic dynamic optimization 
system. Both evaluations demonstrate the efficiency and 
effectiveness of the NET prediction scheme.  
Our evaluation of hit rate and noise in path prediction sets shows 
that it is imperative for hot path predictions to be made early and 
based on only small amounts of profiling history. Intuition may 
suggest that if profiling is free, longer profiling intervals will 
always lead to better hot path predictions. However, this 
projection does not account for missed opportunity cost. Missed 
opportunity cost rises continuously with longer prediction delays 
and thereby progressively lowers the effectiveness of the hot path 
prediction. These observations suggest that dynamic compilation 
systems may in fact not benefit much from sophisticated 
hardware for the purpose of online profiling; a low overhead 
software solution such as the NET scheme may well be sufficient 
for the needs of these systems. 
In the future, we plan to study the phase change problem further. 
Unlike accumulated offline profiling schemes, an online 
prediction scheme naturally reacts to phase changes.  However, it 
is not clear at what granularity sensitivity to phase changes is 
most beneficial. We are working in extending our hit rate and 
noise metrics to model predictions in the presence phased 
program behavior. 
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