
Software Profiling for Hot Path Prediction:
Less is More

Evelyn Duesterwald
duester@hpl.hp.com

Vasanth Bala
vas@hpl.hp.com

Hewlett-Packard Labs
1 Main Street

Cambridge, MA 02142

ABSTRACT
Recently, there has been a growing interest in exploiting profile
information in adaptive systems such as just-in-time compilers,
dynamic optimizers and, binary translators. In this paper, we
show that sophisticated software profiling schemes that provide
highly accurate information in an offline setting are ill-suited for
these dynamic code generation systems. We experimentally
demonstrate that hot path predictions must be made early in order
to control the rising cost of missed opportunity that result from
the prediction delay. We also show that existing sophisticated
path profiling schemes, if used in an online setting, offer no
prediction advantages over simpler schemes that exhibit much
lower runtime overheads.
Based on these observation we developed a new low-overhead
software profiling scheme for hot path prediction. Using an
abstract metric we compare our scheme to path profile based
prediction and show that our scheme achieves comparable
prediction quality. In our second set of experiments we include
runtime overhead and evaluate the performance of our scheme in
a realistic application: Dynamo, a dynamic optimization system.
The results show that our prediction scheme clearly outperforms
path profile based prediction and thus confirm that less profiling
as exhibited in our scheme will actually lead to more effective hot
path prediction.

1. INTRODUCTION
Program profiles are collected to identify where in the code a
program spends its time. This information may be fed to a profile-
based optimization system [8], may be used in performance
tuning or to aid in program understanding. Traditionally, program
profiling is performed offline, that is, program profiles are
collected in a separate preparatory run of the program and the
information is then consumed afterwards, for example, during a
re-compilation of the program.
Recently, there has been a growing interest in exploiting profile

information in dynamic compilation systems such as just-in-time
compilers [7], dynamic optimizers [3,4] and binary translators
[17,11]. Profile information is used to focus the costly runtime
operations on only the hot portions of the program. Unlike the
traditional approach of profiling, these new dynamic systems
require profile information to be collected and consumed online,
that is, within the same run.
Online profiling is a fundamentally different challenge. An
obvious difference is the much increased need for efficiency.
Clearly, efficiency is a desirable feature in any offline profiling
system. However, in a dynamic compilation system, low-
overhead profiling is a core requirement for the system to be of
any use. Another more subtle difference is that offline profiles are
summaries of program behavior while online profiles are
predictions. Online profiling is typically not concerned with
establishing precise relative frequency variations between the
profiled units. Instead, online profiling is a prediction problem,
such as the prediction of hot paths (or hot branches, hot edges,
hot call sites, etc.). We focus in this paper on hot path prediction
but most of the discussed material applies equally well to the
prediction of other hot program units such as branches, basic
block or call sites.
Various hardware schemes have long established that effective
predictions can be made based on small collected profile
histories. Numerous techniques have been developed that rely on
effective hardware branch prediction to improve instruction
bandwidth [9,12,15] including techniques that perform a limited
form of path profiling to trace branch correlation [19,14].
However, these hardware prediction schemes are usually not
architecturally visible and thus not available to user software.
Even if hardware prediction schemes are accessible by user
software [13], they may not be of much use in systems like a just-
in-time compiler. A just-in-time compiler needs profile
information about the virtual branches of the input source
program. However, the branches that are exposed to the hardware
for profiling are the executing branches of the just-in-time
compiler code, not of the input source program Thus, there may
be mismatch between the information collected by the hardware
and the information needed by the dynamic compilation system.
A more general solution to the path prediction problem can be
provided by a software scheme. A software prediction scheme
can collect frequency information through instrumentation [5], or
emulation [10]. In cases where a mapping between the executing
addresses and the profiling units of interest can be established,
frequency information may also be collected by sampling [21] or
via hardware counters [1].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to

sion and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1

Copyright © A.C.M. 2000 1-58113-317-0/00/0011...$5.00

for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than

republish, to post on servers, or to redistribute to lists, requires prior specific permis-

(212) 869-0481, or permissions@acm.org.
ASPLOS 2000 Cambridge, MA Nov. 12-15 , 2000

202

A straightforward approach to implement an online prediction
scheme in software is to adapt an existing offline path profiling
scheme [5] by only profiling each path up to a certain prediction
threshold. When the execution frequency of a path exceeds the
prediction threshold, the path is predicted as hot.
Existing path profiling schemes provide accurate path frequency
information in an offline setting. But their offline quality does not
necessarily make them a superior technique for online path
prediction. Clearly, when considering lower prediction threshold
values the prediction accuracy will drop and the prediction will be
increasingly speculative. But in spite of this increased degree of
speculation, there are several factors that demand a low prediction
threshold. First, the runtime overhead of collecting profile
information makes very high threshold values prohibitively
expensive. But more importantly, there is the more hidden cost of
missed opportunity that results from the prediction delay. The
longer the program execution is profiled, the later will predictions
be made and, consequently, the lower will be the reuse (i.e.,
potential benefit) of the predictions. We show in our experiments
that prediction delay is a significant factor in evaluating the
quality of a prediction scheme. If predictions are delayed for too
long, the overall benefits of the prediction can easily vanish.
Thus, in practice the prediction delay and profiling duration have
to be kept short. However, with limited profiling, sophisticated
path profiling schemes can no longer offer any prediction
advantages over simpler schemes that exhibit much lower runtime
overheads. Thus, while intuition may call for longer and more
elaborate profiling, we will show in fact show that the opposite it
true: less profiling actually leads to more effective predictions.
In this paper we present a new low-overhead profiling scheme for
hot path prediction that exploits the above observations. Our
scheme significantly reduces the runtime and space overhead of
path profile based prediction while maintaining the same
prediction quality. The key idea is to focus the profiling effort on
only the potential starting points of hot paths. Once a path starting
point has become hot a prediction is made by speculatively
selecting the Next Executing Tail (NET) as the hot path. The NET
scheme was developed and implemented as part of the Dynamo
dynamic optimization system [6,7]. Dynamo accelerates native
program binaries at runtime and heavily relies on effective hot
path prediction.
We followed two approaches to evaluate the NET path prediction
scheme. We first developed abstract metrics to assess the quality
of a prediction scheme independently of its implementation
overhead. The abstract benefit of a prediction is measured by the
hit rate or reuse of the predicted paths. The abstract cost of a
prediction is the amount of noise, i.e., the number of cold paths,
inadvertently included in the prediction. Based on these metrics
our first evaluation is independent of both (1) the specific way the
path predictions are exploited in a compilation system (concrete
benefits) and (2) the specifics of the implementation of the
profiling scheme (concrete cost).
Using the abstract metrics we show that NET prediction achieves
the same prediction quality as path profile based prediction at
practically relevant threshold values. Importantly, NET

prediction uses 60% less counter space and significantly reduces
the runtime profiling overhead.
We also provide a second concrete evaluation of the NET
prediction scheme by demonstrating its performance in a realistic
application using the Dynamo dynamic optimization system
[.3,4]. We implemented both NET and path profile based
prediction in Dynamo. Our experiments demonstrate that NET
prediction is considerably more effective in practice. Due to the
high profiling overhead, running Dynamo with path profile based
prediction was ineffective and could not reproduce the speedups
we achieved when using the NET scheme.
This paper demonstrates that it is possible to use a software
scheme to deliver effective hot path predictions with very low
profiling overhead. Our experiments also indicate that it is
imperative to recognize program hot spots early. The missed
opportunity cost that otherwise results may render the prediction
useless. An important implication of these results is that dynamic
optimization systems may in fact not benefit much from
sophisticated hardware mechanisms that allow for prolonged
monitoring of the program execution. An efficient and easy to
implement software solution like our NET scheme appears to be
sufficient for the needs of these dynamic systems.
The next section provides the background in path profiling.
Section 3 defines the problem of hot path prediction and Section
4 presents the details of our NET prediction scheme. Our
experimental evaluation based on abstract metrics is presented in
Section 5, and Section 6 presents the experiments with Dynamo.
Section 7 discusses issues with phase changes. Related work is
discussed in Section 8 and the paper concludes in Section 9.

2. Computing Path Profiles
Path profiling views the execution trace of a program as a
sequence of finite program paths. By considering paths of limited
size the number of possible program paths is bounded but it may
be exponential in the size of the program. A path profile
determines a frequency distribution over the set of program paths
and assigns each path p a frequency freq(p) that describes how
many times p was executed. The execution flow represented by a
path profile is given as:

Flow = { freq(p) | p a path}.
Several path profiling algorithms and corresponding definitions
of program paths have been developed. Ball and Larus [5]
defined intraprocedural acyclic forward paths, where a forward
path ends at a backward branch or procedure return. Their path
profiling algorithm requires a preparatory static analysis of the
program to establish a minimal path encoding. Using a spanning
tree algorithm a minimal low-cost set of edges is selected for
instrumentation. The instrumented edges produce the necessary
information at runtime to establish the unique path number of
each executing path. The algorithm only considers
intraprocedural paths.
Bit tracing is another approach to computing path profiles. A path
is identified by the following path signature:

<start_address>.<history>,<indirect_branch_target_list>

203

consisting of a start address followed by a history of branch
outcomes and a list of indirect branch targets. The history
associates a 1-bit value with the outcome of every branch on the
path indicating whether the branch was taken or not. For each
indirect branch the target address is appended to the indirect
branch target list. Figure 1 shows examples of program paths and
corresponding path signatures. Path signatures are constructed as
the program executes by shifting a 1 or 0 value into the current
signature register. Upon reaching the end of a path the current
path signature is used as an index into a path table to update the
execution count for the corresponding path.
Bit tracing can produce less compact path representations than
Ball and Larus’ algorithm. However, its advantage is that path
signatures can be constructed on the fly and no preparatory static
analysis phase is needed.
Young and Smith [20] presented a different program path
definition as k-bounded general paths. A k-bounded general path
is an intraprocedural program path whose length (i.e., number of
branches) is bounded by k. Unlike a Ball and Larus path, general
paths are not limited to forward paths and may include backward
edges. General paths are computed at runtime using a k-size
FIFO queue to store the most recently executed k branches.
Young and Smith use a lazy algorithm that allows for fast updates
of program path counters each time a new branch is entered into
the FIFO queue.

3. Hot Path Prediction
The goal of hot path prediction is to predict what will be one of
the most frequently executing paths based on a limited amount of
execution history. Since the hot execution flow in a program must
involve cycles, hot path prediction is primarily concerned with the
prediction of hot paths through loops. Paths that start at targets of
backward branches, as in Ball and Larus’ definition, naturally
capture loop iterations. Thus, we use Ball and Larus’ paths as a
basis for our path definition but extend it to the interprocedural
case:

An interprocedural forward path starts at the target of a backward
taken branch and extends up the next backward taken branch.
The path may extend across procedure call or return statements
unless the call or return is a backward branch. If a path includes a
(forward) procedure call it will terminate at the corresponding
return branch, if not earlier. Note that this path definition captures
recursive loops without unfolding the recursion. Also, a path
may include any number of indirect (forward) branches.
Recall that freq(p) denotes the total execution frequency for path
p. For a set P of paths we define the flow of P as:

freq(P) = { freq(p) | p ∈ P }.
A path p is a hot path if freq(p) is greater than some hot threshold
h. The set of hot paths with respect to h is defined as:

HotPathh = { p | freq(p) > h }.
The hot flow represented by HotPathh is freq(HotPathh).
The goal of hot path prediction is to determine a set of paths P
that best predicts HotPathh. We determine how well a set of paths
captures HotPathh by computing its hit rate. The hit rate is
determined by crediting each path p in P that is also contained in
HotPathh the appropriate portion of freq(p) that still remains after
the prediction has been made. Thus, the hit rate takes into account
the missed opportunity cost that results from the prediction delay.
Hit rate is the online analog to the coverage metric that has been
used in evaluating offline path profiles [6].

Assume a path p is predicted after it has executed τ times. τ is
called the prediction delay and the flow captured by this
prediction is: freq(p) – τ. We define the flow captured by a set P
of paths as:

Hits(P) = freq(P ∩ HotPathh) – | (P ∩ HotPathh) | × τ .
The hit rate for P now results as:

HitRate(P) = (Hits(P) / freq(HotPathh)) × 100.
The missed opportunity cost that results from the prediction delay
is given as:

MOC(P) = | (P ∩ HotPathh) | × τ
As our experiments in Section 5 show, longer profiling intervals
(i.e., a longer prediction delay τ) will generally not lead to better
path predictions due to the sharp increase in missed opportunity
cost.
If hit rate was the only measure of prediction quality making
optimal path predictions would be trivial: simply predict every
path when it first executes. Thus, we need an additional criterion
to penalize for the amount of misprediction. Noise measures the
percentage of cold flow that was inadvertently included in P:

Noise(P) = freq(P – HotPathh) – | (P – HotPathh) | × τ .
The corresponding noise rates for P now results as:

NoiseRate(P) = (Noise(P) / freq(HotPathh)) × 100.
The ideal path prediction scheme maximizes the hit rate while
minimizing noise. Note that the two goals are conflicting. To
minimize noise, predictions should be delayed so as to rule out as
many cold paths as possible. Delaying predictions raises missed
opportunity cost and thus reduces the hit rate.

 Path: signature

ABDG: A.0101
ABDGJ: A.01001
ABDHJ: A.01111
ACEIJ: A.10111
ACFIJ: A.11111

A

D E

C

G H

B

F

I

J

1

1

 1

1

0

0

0

0

1

1

1

1

1

1

Figure 1: Multiple paths through a loop.

204

4. Online Prediction Schemes
We can derive a prediction scheme from a given offline path
profiling scheme in a straightforward way. Simply apply the path
profiling scheme up to a prediction delay τ. As soon as the
execution frequency of a path exceeds τ, the path is predicted as
hot. We refer to such a prediction scheme as path profile based
prediction. Path profile based prediction relates to path profiling
as hardware branch prediction schemes relate to offline branch
profiling.
Obviously, the length of the prediction delay is critical for the
prediction to be effective. The shorter the prediction delay the
more noise will be included in the prediction. However,
prolonging the prediction delay will increase the missed
opportunity cost and thus lower the benefits of the prediction.
Missed opportunity cost is not the only expense to consider when
prolonging the prediction delay. There is also the runtime
overhead of profiling each path execution up to τ times. The
runtime overhead consists of the amount of counter space needed
and the cost of profiling operations.
Path profile based prediction incurs a very high runtime overhead.
The amount of counter space needed is equal to the number of
dynamic paths, which can be exponential in the size of the
program. Runtime profiling operations include a counter update
after every path execution and further profiling operations to trace
the execution of branches. In the case of bit tracing, every branch
execution requires the shifting of a bit into the current history
register. If Ball and Larus’ spanning tree algorithm [5] is used,
the number of branches that require profiling operations can be
minimized but still remains in the order of the total number of
branches.

4.1 NET Hot Path Prediction
The runtime overhead of path profile based prediction combined
with missed opportunity cost make long prediction delays
impractical. However, the shorter the prediction delay the more
speculative the prediction will be. The question arises as to
whether we need the full support for path profiling in order to
make what ultimately will be an inherently speculative prediction.
 To answer this question we developed a new path prediction
scheme: Next Executing Tail (NET) prediction1. The objective of
NET prediction is to significantly reduce profiling overhead while
still performing as well as path profile based prediction when
considering prediction delays that are practically relevant. Lower
priority was given to how well the scheme compares to path
profile based prediction if infinitely long prediction delays are
allowed, i.e., in an offline setting.
In NET, a path is divided into a path head, i.e., the path starting
point, and the path tail, which is the remainder of the path
following the starting point. For example, in path “ABDG” in
Figure 1, block “A” is the path head and “BDG” is the path tail.
NET reduces profiling cost by using speculation to predict path
tails while maintaining full profiling support to predict hot path
heads. The rationale behind this scheme is that a hot path head
indicates that the program is currently executing in a hot region
and the next executing path is likely to be part of that region.

1 The scheme was called Most Recently Executing Tail (MRET) prediction

in an earlier publication [4].

Execution counts are maintained only for executed path heads,
that is, only for targets of backward taken branches. No further
profiling is performed. For example, in Figure 1 only one
profiling count is maintained for the entire loop at the single path
head at the start of block A. Once the counter at block A has
exceeded its threshold, the next executing path is predicted.
Assume the loop has one or two dominant paths. In such a case,
NET is statistically likely to predict the correct hot path. On the
other hand, if there are no dominant paths through the loop and
execution is divided fairly evenly among all five paths, NET may
select any path. However, there is not a better prediction to be
made in such a case, even under a path profile based prediction
scheme.

4.2 Implementing NET
An important advantage of the NET prediction scheme is the ease
of engineering it. Since profiling is limited to the potential trace
heads, NET requires even less profiling than block or branch
profiling schemes. If the execution frequency at a path head
exceeds the prediction threshold dictated by the predication delay
τ, the path head is considered hot and the next executing path can
be collected using incremental instrumentation. With incremental
instrumentation the profiler collects the next path by subsequently
collecting each non-branching sequence in that path. For instance,
during each step, the profiler can place a breakpoint at the end of
the next non-branching code sequence. Executing the code
sequence will raise the breakpoint and the profiler handles the
breakpoint by removing it and preparing the next step, i.e.,
placing the next breakpoint. This process continues until the end
of the path has been encountered and the complete path has been
collected. Alternatively, if profiling is implemented inside an
emulator, such as in a binary translator, the NET path can directly
be collected during emulation.
To measure the overhead of NET prediction we consider the
amount of counter space needed and the number of dynamic
instrumentation points. The NET prediction scheme requires
maintaining execution counts at every target of backwards
branches. The number of targets of backwards branches is only a
fraction of the number of branches and bound by |B|, where B is
the set of basic blocks in the program’s control flow graph. Path
profiling in comparison requires one count per path which may be
2|B| in the worst case.

5. Experimental Evaluation
This section evaluates the performance of the NET prediction
scheme using the metrics from Section 3. We experimentally
compare the hit and noise rates for NET prediction with the
corresponding rates for path profile based prediction. We first
focus on assessing the quality of the predictions and ignore the
implementation and overhead characteristics of each scheme.
Clearly, for the overall effectiveness of a prediction scheme,
implementation characteristics and runtime overhead are crucial.
We consider the actual runtime overhead of NET prediction and
path profile based prediction in the second set of experiments
when evaluating the two schemes in a realistic application in
Section 6.
Table 1 shows our benchmark set that includes the SpecInt95
benchmarks and one C++ benchmark called deltablue, which is
an incremental constraint solver [16]. For each program the total
number of paths and the total flow is shown in Table 1.

205

Our experiments were run with the objective of predicting the
HotPath set based on a hot threshold of 0.1%. The execution
frequency of each path in this set is at least 0.1% of the total flow.
Table 1 shows the number of paths in the 0.1% HotPath sets and
the percentage of the total flow captured by them (%Flow). The
captured flow is determines as: (freq(HotPath) / Flow)× 100.
Table 1 shows that the amount of flow captured by the HotPath
set can vary significantly. In compress, the 0.1% Hot Flow set
captures almost the entire execution flow (99.6%). In gcc, where
the total number of paths is much higher and hot paths not as
dominant, the 0.1% HotPath set captures less than 50% of the
total flow.

Table 1. Benchmark set

0.1 % HotPath
Benchmark

#Paths

Flow
(M) #Paths % Flow

compress 230 3061 45 99.6
Gcc 36,738 2191 137 47.5
Go 29,629 1214 172 55.5
Ijpeg 62,125 635 74 93.3
Li 1,391 3985 111 93.8
m88ksim 1,426 2014 107 92.5
Perl 2,776 1514 146 88.5
Vortex 5,825 3016 95 85.8
deltablue 505 1799 28 93.9

5.1 Hit Rate and Noise
To collect the hit and noise rates we ran path profile based
prediction and NET prediction with various prediction delays
ranging from 10 to 1,000,000. For each run we divided the total
flow into profiled flow and predicted flow. Profiled flow is the
amount of flow consumed by the prediction delay. Profiled flow
contains cold flow and the portion of the hot flow that was
missed during the prediction delay. The predicted flow contains
the captured hot flow (hit rate) and noise. Clearly, with a
prediction delay of 0 we obtain 0% profiled flow (100%
predicted flow) and with an infinitely long prediction delay we
obtained 100% profiled flow (0% predicted flow).
We measured the hit and noise rates that result given a certain
allowance of profiled flow. The corresponding hit rate/profiled
flow data is shown in Figure 2 and the analogous noise
rate/profiled flow data in Figure 3.
Figure 2 compares the hit rate achieved by path profile based
prediction (a-b) with the hit rate of NET prediction (c-d). The
graphs (a) and (c) on the left depict the hit rate over the entire
range of prediction delays. To provide a more detailed view of a
more practically relevant range, the graphs (b) and (d) on the right
zoom into the upper left 10% corner shown shaded in the figures
on the left.
There is virtually no difference in the coverage data for path
profile based and NET prediction. Comparing Figures 2 (b) and
(d) shows that at 10% profiled flow both path profile based and

NET prediction reach a hit rate of about 97.5 on average. Figures
2 (a) and (c) show that the hit rate decreases quickly with the
amount of flow that is being profiled. Thus, prolonging the
profiling interval will lead to increasingly less effective
predictions due to the rising cost of missed opportunity. This
trend is particularly pronounced in programs with dominant hot
paths like compress, which has the fastest descending hit rate.
Here, delaying predictions is costly since opportunity losses rise
sharply. Other programs like go and gcc exercise a large number
of cold paths. In these cases delaying predictions is not as lossy
since comparatively less hot flow will be missed and the hit rate
therefore descends much slower.
Figure 3 depicts the analogous data for noise. The top two graphs
show noise rates for path profile based prediction and the bottom
two graphs show the noise rates for NET prediction. The noise
rate decreases more rapidly than the hit rate.
Comparing figures (a) and (c) on the left indicates that with
longer prediction delays (i.e., 20%-70% profiled flow) NET
prediction produces more noise than path profile based
prediction. With path profile based prediction noise is reduced to
less than 10% when profiling about 35% percent of the execution.
In comparison, NET prediction needs to profile about 45% of the
execution in order to reduce the noise rate to less than 10%.
These results reflect that path profile based prediction gains
accuracy advantages over the more speculative NET scheme
when considering long prediction delays. However, Figure 3
indicates that any accuracy advantages of path profile based
prediction arise only for prediction delays that are irrelevant for
practical purposes. Profiling 20% or more of the total execution
assumes prediction delays of 50,000-100,000 and results in
significant missed opportunity cost as illustrated by Figure 2.
The graphs (b) and (d) on the right show the noise rate for the
practically more relevant prediction delays. With shorter
prediction delays NET prediction performs as well as path profile
based prediction if not slightly better on average. When profiling
10% of the execution, NET prediction yields about 56% noise,
whereas path profile based prediction results in about 65% noise.

Table 2. Number of paths and unique path heads

Benchmark

#Paths

#Unique Path
Heads

compress 230 143
gcc 36,738 8,873
go 29,629 1,813
ijpeg 62,125 669
li 1,391 710
m88ksim 1,426 651
perl 2,776 1,053
vortex 5,825 3,414
deltablue 505 268

206

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

Profiled Flow

0.
1%

 H
ot

 F
lo

w
 H

it
R

at
e

compress m88ksim
perl li
ijpeg go
gcc vortex
deltablue Average

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

Profiled Flow

0.
1%

 H
ot

 F
lo

w
 H

itr
at

e

compress m88ksim
perl li
ijpeg go
gcc vortex
deltablue Average

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Prof iled Flow

0.
1%

 H
ot

 F
lo

w
 H

it
R

at
e

compress m88ksim
perl li
ijpeg go
gcc vortex
deltablue Average

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Profiled Flow

0.
1%

 H
ot

 F
lo

w
 H

it
R

at
e

compress m88ksim
perl li
ijpeg go
gcc vortex
deltablue Average

Path Profile Based Prediction Path Profile Based Prediction

NET Prediction NET Prediction

Figure 2: Hit rates for path profile based prediction (a-b) and NET prediction (c-d). The X-axis shows the percentage of the total flow
that is profiled. The Y-axis shows the hit rate as the percentage of the 0.1 % Hot Path Set. The graphs (b) and (d) on the right zoom into
the upper left 10% square shown shaded in graphs (a) and (c), respectively.

(c) (d)

 (a) (b)

207

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

Profiled Flow

N
oi

se

compress m88ksim

perl li

ijpeg go

gcc vortex

deltablue Average

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

Profiled Flow

N
oi

se

compress m88ksim
perl li
ijpeg go
gcc vortex
deltablue Average

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Profiled Flow

N
oi

se

compress m88ksim
perl li
ijpeg go
gcc vortex
deltablue Average

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
Profiled Flow

N
oi

se

compress m88ksim
perl li
ijpeg go
gcc vortex
deltablue Average

Path Profile Based Prediction Path Profile Based Prediction

(a) (b)

Figure 3: Noise rates for path profile based prediction (a-b) and NET prediction (c-d). The X-axis shows the percentage of the total
flow that is profiled. The Y-axis shows the noise rates as the percentage of the 0.1 % Hot Path Set. The graphs (b) and (d) on the right
zoom into the upper left rectangle shown shaded in graphs (a) and (c), respectively.

(c) (d)

NET Prediction NET Prediction

208

5.2 Space Consumption
We also compared NET and path profile based prediction with
respect to their space utilization. Specifically, we measured the
amount of counter space needed by the two schemes. Recall that
NET prediction requires only a single counter for each target of a
backward taken branch whereas path profile based prediction
requires a counter for each dynamic path. Table 2 shows the
number of backwards taken branch targets (i.e., the number of
unique path heads) along with the number of dynamic paths.
Figure 4 depicts the corresponding reduction in the amount of
counter space of NET prediction over path profile based
prediction. The average bar shows that NET uses only about 60%
of the counter space used in path profile based prediction.

6. Application: Path Prediction in Dynamo
The NET scheme was developed as part of the Dynamo project at
HP Laboratories [3,4]. Dynamo is a dynamic optimization system
that is capable of accelerating the performance of a native
program binary at runtime. Dynamo operates by identifying and
extracting the dynamically hot paths in the executing program
binary. Dynamo achieves a performance boost by optimizing and
laying out the programs’ hot paths in a software code cache.
Initially, Dynamo observes the program behavior through
emulation. During emulation profiling information is collected to
identify hot paths for optimization. Copies of the hot paths are
processed using lightweight optimization techniques and emitted
into the code cache. Subsequent execution of these paths causes
the cached optimized versions of the paths to be executed. Over
time, the optimized version of the program's working set
materializes inside the software code cache resulting in a
performance boost. With Dynamo the performance of many
SPECint95 binaries compiled with static optimization can further
be accelerated [4]. Dynamo is written entirely in user level
software and runs on a PA-RISC machine under the HPUX
operating system.
Dynamo relies heavily on effective hot path prediction. A
performance boost results only if the predicted paths are indeed
hot so that their optimized version will be re-used sufficiently
often to amortize the overhead of optimization. Driven by the
need for the highest possible prediction accuracy we initially
implemented a path profile based prediction scheme in Dynamo.
However, path profile based prediction turned out to be ill-suited
for Dynamo’s purposes due to the significant runtime and space
overhead. With path profile based prediction Dynamo could only
achieve speedups in rare cases. A redesign of the path prediction
logic resulted in the development of the NET scheme.
Figure 5 depicts Dynamo’s performance with path profile based
prediction and with NET prediction. Note that Dynamo cannot
produce speedups in programs with excessively high numbers of

Figure 4: The amount of counter space used in NET prediction
normalized to the counter space used in path profile based
prediction.

Figure 5: Dynamo speedup over native execution with path profile based and NET hot path prediction schemes. Each scheme is run
with prediction delays of 10, 50 and 100.

-25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25%

Average

deltablue

li

perl

m88ksim

compress
NET10
NET50
NET100
PathProfile10
PathProfile50
PathProfile100

0 0.2 0.4 0.6 0.8 1

Average

deltablue

vortex

gcc

go

ijpeg

li

perl

m88ksim

compress

209

dynamic paths and no dominant reuse, such as go and gcc. When
run with these programs Dynamo gives up and bails out to native
execution [3]. Figure 5 considers the programs from our
benchmark set that are processed by Dynamo without bail-out.
We ran each prediction scheme with prediction delays of 10, 50
and 100. A prediction delay of 50 was for both schemes the most
beneficial choice in balancing the amount of noise that results at
lower thresholds and the rising profiling overhead and missed
opportunity cost of longer prediction delays. Speedups
progressively declined with prediction delays longer than 100.
With a prediction delay of 50, less than 1% of the total execution
flow is profiled.
Figure 5 demonstrates the performance advantages of NET
prediction over path profile based prediction. Path profile based
prediction could only produce speedups in perl and deltablue,
whereas NET prediction lead to speedups in all these programs,
averaging over 15%. The NET prediction scheme does not only
offer performance advantages. Its simple design and ease of
engineering make it an ideal candidate for a runtime system such
as Dynamo.

6.1 Sensitivity to Phase Changes
So far we made the implicit assumption that hot paths are
predicted for the entire run of a program. The metrics of hit rate
and noise were developed with respect to accumulated profile
information. Accumulated profile data is not time-sensitive and
cannot provide information about phase changes that may occur
during the run of the program. A path may be a hot path in a
particular phase of the execution but may not have a high
accumulated execution frequency.
Phase changes are implicitly recognized by path prediction
schemes in the form of new paths’ frequency counts exceeding
their prediction delay. We can adjust a prediction scheme to
more or less sensitivity to phase changes by changing the
prediction delay. The longer the prediction delay the less sensitive
the prediction scheme is to phase changes since short lived phases
cannot be recognized. However, higher sensitivity to phase
changes also introduces an increased noise problem: noise that
results from paths that were formerly hot but have turned cold in
the current phase. This kind of phase-induced noise cannot
simply be controlled by prolonging the prediction delay. The
prediction delay must be kept short to recognize phase transition
in the first place. Thus, additional mechanisms for controlling
phase-induced noise are needed, such as garbage collection or
other path retiring schemes [13].
Dynamo addresses phase-induced noise by using a heuristic
flushing scheme. Dynamo monitors the path prediction activity in
order to identify sudden and sharp increases in the prediction rate.
Such increases provide a good indication that a new phase is
about to be entered. After detecting a phase transition, Dynamo
triggers a cache flush and thereby removes all phase-induced
noise from the cache. By scheduling cache flushes approximately
at the time of a phase change we can keep the amount of useful
paths that are inadvertently removed by the flush to a minimum.
We plan to extend our path metrics to model path removal from
the prediction set. With a path removal model we obtain an
abstract measure to evaluate how well a prediction scheme reacts
to phase changes and how well it handles phase-induced noise.

7. Related Work
Hot path prediction has been used in the Boa binary translation
system [17]. In Boa, hot groups are formed by collating
individual paths based on collected branch frequencies. Profile
information is collected during Boa’s interpretation phase. When
a hot group entry has been found, a path is selected by following
the most likely successors according to the collected branch
profile information. Unlike our NET scheme, Boa’s prediction
scheme requires every branch to be profiled. Furthermore,
constructing paths from isolated branch frequencies ignores
branch correlation, which may lead to paths that, as a whole,
never execute.
Several hardware schemes have been developed that perform a
limited amount of path profiling by capturing branch correlation
through branch histories [9,12]. The trace cache uses hardware to
build traces from predicted branch sequences [15]. These
schemes, developed to improve instruction fetch bandwidth are
generally not accessible by user software and can therefore not be
exploited in a dynamic compiler. An exception is the profiling
hardware described in [13] that was specifically developed to
support runtime optimization. The hardware monitors branch
execution and identifies hot spots from collected branch profiles.
A hot spot is defined as a collection of frequently executing
blocks. The hardware also includes mechanisms to detect when
execution strays from previously recorded hot spot information,
which can be used for path retiring. It has not yet been tested how
well the hardware supplied information can be absorbed by a
dynamic optimizer. Since the hardware’s definition of a hot spot
might differ form the one used in the dynamic optimization
software, an additional software layer may be necessary to
transform the hardware provided hot spot information into a form
that can be utilized by the software. However, such a software
layer may not always exist. For instance, when the hardware’s
notion of a branch does not match software’s notion of a “virtual’
branch as for example in a just-in-time compiler, the hardware
supplied information may not be of much use.
Offline profiling techniques benefit from hardware support in the
form of hardware counters [1] and in continuous profiling
environments through PC sampling [2]. A software approach to
reducing profiling cost has been pursued in ephemeral
instrumentation. The idea is to enable intermittent profiling by
providing mechanisms for rapid insertion and deletion of
instrumentation code [18].
Our evaluation of the NET prediction scheme has shown that
producing good path predictions does not require a sophisticated
path profiling scheme. A similar result regarding path profiling
has also been obtained for the offline case. A study comparing
edge and path profiles reports that collecting edge profiles
provides sufficient information to compute a large percentage of
the hot portion of the corresponding path profile [6].

8. Conclusion
This paper presented a new software profiling scheme for
predicting hot program paths. Our NET scheme delivers
prediction quality that is comparable to a path profile based
scheme at only a fraction of the cost. Besides its performance
advantages the simple design and ease of engineering make the
NET prediction scheme an ideal candidate for use in dynamic
compilations systems. We developed an abstract metric to

210

measure the quality of our prediction scheme independently of a
particular implementation. In addition we also evaluated the NET
prediction performance in a realistic dynamic optimization
system. Both evaluations demonstrate the efficiency and
effectiveness of the NET prediction scheme.
Our evaluation of hit rate and noise in path prediction sets shows
that it is imperative for hot path predictions to be made early and
based on only small amounts of profiling history. Intuition may
suggest that if profiling is free, longer profiling intervals will
always lead to better hot path predictions. However, this
projection does not account for missed opportunity cost. Missed
opportunity cost rises continuously with longer prediction delays
and thereby progressively lowers the effectiveness of the hot path
prediction. These observations suggest that dynamic compilation
systems may in fact not benefit much from sophisticated
hardware for the purpose of online profiling; a low overhead
software solution such as the NET scheme may well be sufficient
for the needs of these systems.
In the future, we plan to study the phase change problem further.
Unlike accumulated offline profiling schemes, an online
prediction scheme naturally reacts to phase changes. However, it
is not clear at what granularity sensitivity to phase changes is
most beneficial. We are working in extending our hit rate and
noise metrics to model predictions in the presence phased
program behavior.

Acknowledgements
We would like to thank Mike Smith for numerous discussions
and for his helpful comments on this paper.

References
[1] Ammons, G., Ball, T., and Larus, J.R. Exploiting hardware

performance counters with flow and context sensitive
profiling. In Proc. of the 1997 Conf. on Programming
Language Design and Implementation, June 1997.

[2] Anderson, J.M., Berc, L.M., Dean, J., Ghemawat, S.,
Henzinger, M.R., Leung, S.A., Sites, R.L., Vandevoorde,
M.T., Waldspurger, C.A., and Weihl, W.E. Continuous
profiling: Where have all the cycles gone? In Proc. of the 16th
ACM Symp. on Operating Systems Principles, St. Malo,
France. October 1997.

[3] Bala, V., Duesterwald, E., and Banerjia, S. Transparent
dynamic optimization: The design and implementation of
Dynamo. Hewlett Packard Laboratories Technical Report
HPL-1999-78. June 1999.

[4] Bala, V., Duesterwald, E., and Banerjia, S. Dynamo: A
transparent runtime optimization system. In Proc. of the 2000
Conf. on Programming Language Design and
Implementation. Vancouver, B.C., June 2000.

[5] Ball, T. and Larus, J.R. Efficient path profiling. In Proc. of
the 29th Int. Symp. on Microarchitecture, Paris. 1996.

[6] Ball, T., Mataga, P. and Sagiv, M. Edge profiling versus path
profiling: The showdown. In Proc. of the 25th Symp. on
Principles of Programming Languages, San Diego, CA,
January 1998.

[7] Burke, M., Choi, J.-D., Fink, S., Grove, D., Hind, M., Sarkar,
V., Serrano, M..J., Sreedhar, V.C., Srinivasa, H.. The
Jalapeno Dynamic Optimizing Compiler for Java. In Proc. of
the 1999 ACM Java Grande Conference, San Francisco, CA.
June 1999.

[8] Chang, P., Mahlke, S.A., and Hwu, W.M. Using profile
information to assist classic code optimization. Software -
Practice and Experience, Vol. 21, No. 12, December 1991.

[9] Calder, B. and Grunwald, D. Fast and accurate instruction
fetch and branch prediction. In Proc. of the 21st Int. Symp. on
Computer Architecture. April 1994.

[10] Cmelik, R.F. and Keppel, D. Shade: a fast instruction set
simulator for execution profiling. Technical Report UWCSE-
93-06-06, Dept. Comp. Science and Engineering, Univ.
Washington. 1993.

[11] Ebcioglu, K., Altman E., Sathaye, S., and Gschwind, M.
Execution-based scheduling for VLIW architectures. In Proc.
of Europar’99, Lecture Notes in Computer Science 1685,
Springer-Verlag 1999.

[12] McFarling, S., and Hennesy, J. Reducing the cost of
branches. In Proc. of the 13th Int. Symp. on Computer
Architecture. 1986.

[13] Merten, C.M., Trick, A., George, C.N., Gyllenhaal, J.C.,
and Hwu, W.-M.W. A hardware-driven profiling scheme for
identifying program hot spots to support runtime
optimization. In Proc. of the 26th Int. Symp. on Computer
Architecture. Atlanta, Georgia. 1999,

[14] Pan, S, So, K., and Rahmeh, J. Improving the accuracy of
dynamic branch prediction using branch correlation. In Proc.
of the 5th Int. Conf. on Architectural Support for
Programming Languages and Operating Systems. 1992.

[15] Rotenberg, E., Bennett, S., and Smith, J.E. Trace cache: a
low latency approach to high bandwidth instruction fetching.
In Proc. of the 29th Int. Symp. on Microarchitecture, Paris.
1996.

[16] Sannella, M., Maloney, J., Freeman-Benson, B., and
Borning, A. Multi-way versus one-way constraints in user
interfaces: experiences with the DeltaBlue algorithm.
Software – Practice and Experience 23, 5 (May). 529-566.
1993.

[17] Sathaye, S., Ledak, P., LeBlanc, J., Kosonocky, S.,
Gschwind, M., Fritts, J., Filan, Z., Bright, A., Appenzeller,
D., Altman, E., and Agricola, C. BOA: Targeting multi-
gigahertz with binary translation. In Proc. of the 1999
Workshop on Binary Translation, Newport Beach, CA.,
October 1999.

[18] Smith, M. Private communication, March 2000.
[19] Yeh, T. and Patt, Y. A comparison of dynamic branch

predictors that use two levels of branch history. In Proc. of
the 20th Int. Symp. on Computer Architecture. 1993.

[20] Young, C. and Smith, M. Static correlated branch
prediction. ACM Transactions on Programming Languages
and Systems, Vol. 21, No. 5, September 1999.

[21] Zhang, X. et al. System support for automatic profiling and
optimization. In Proc. of the 16th ACM Symposium on
Operating Systems Principles, St. Malo, France. Oct. 1997.

211

