
DROIDFAX: A Toolkit for Systematic
Characterization of Android Applications

Haipeng Cai
Washington State University, Pullman, USA

hcai@eecs.wsu.edu

Barbara G. Ryder
Virginia Tech, Blacksburg, USA

ryder@cs.vt.edu

Abstract—As the Android app market keeps growing, there is
a pressing need for automated tool supports to empower Android
developers to produce quality apps with higher productivity.
Yet existing tools for Android mostly aim at security and
privacy protection, primarily targeting end users and security
analysts. Towards filling this gap, we present DROIDFAX, a
toolkit that targets the developers to help them comprehensively
understand Android apps regarding their code structure and
behavioral traits. To that end, DROIDFAX features a systematic
app characterization in multiple dimensions and views, through
lightweight code analysis and profiling of both ordinary method
calls (including those via reflection and exceptional control flows)
and inter-component communications (including those within and
across apps). The toolkit also includes a statement coverage
tracker that works directly on bytecode and a dedicated tracer
of events occurred during app executions. Applying DROIDFAX
in two use cases has resulted in important findings about app
behavioral patterns and an advanced security defense technique
for Android. Empirical results also showed promising efficiency
and scalability of DROIDFAX for practical adoption. A demo
video for DROIDFAX can be viewed here or downloaded here.

I. INTRODUCTION

As developers in other application domains, those of
Android applications (apps) need a variety of tools to help
them enhance development productivity while achieving and
maintaining product quality. Yet, of numerous tools developed
for Android to date, the majority target app-store analysts
and end users concerning security and privacy [1]–[3]. In
contrast, there are not sufficient tool supports immediately
serving the developers. Among others, tools that assist
developers with understanding app construction and behaviors
can potentially empower them to avoid making choices that
cause excessive costs and/or compromise quality during app
development. Moreover, by knowing good choices based on
this understanding, the developers can produce apps that have
smaller security attack surfaces.

A few tools do exist that are capable of addressing a
broader scope than security/privacy for Android apps, but
they typically focus on coarse-level characteristics (e.g., app
interaction with execution environments via network traffic [4],
[5] and file operations [6]). Others are mostly limited to a
specific aspect of app behaviors (e.g., in terms of system
calls [7] and framework APIs [8]). While useful for obtaining
a high-level understanding about app behaviors, these tools do
not provide immediate information for systematic and in-depth
examination of code-based app characteristics.

Towards filling this gap, we present DROIDFAX, a toolkit
that directly serves Android app developers, helping them gain
a comprehensive understanding of structural and behavioral
traits of apps as regards to how they are coded and executed.
DROIDFAX characterizes given apps through lightweight code

analysis, instrumentation, and profiling. The substrate of this
toolkit is a (Dalvik) bytecode manipulation and analysis
framework that enables tracing of both ordinary method calls
and Intent-based inter-component communications (ICCs). All
method and ICC invocations are characterized rather than only
particular calls to SDK APIs, including those made through
reflection or via control flows due to exception-handling
constructs. The communication characterization addresses
ICCs linking components within individual apps as well as
those across different apps. DROIDFAX works at application
level requiring no modifications of the Android framework.
Thus, it is not subject to portability issues or changes of the
Android SDK which constantly evolves.

On top of the underlying framework, instrumented apps
are exercised with either manual or automated inputs to
produce method call and ICC traces. Based on these traces,
a dedicated data analysis component of DROIDFAX derives
various run-time app characteristics. Notably, DROIDFAX
systematically characterizes each app in three orthogonal
dimensions (structure, communication, and security) and three
complementary views (static, callsite, and instance). The
static app characteristics are directly computed from app
package files (APKs) through lightweight static analysis. To
accommodate needs for understanding additional aspects of
app executions, our toolkit also includes two specialized tools
for Android: a statement coverage tracker that works directly
on APKs (requiring no access to app source) and a dedicated
tracer that monitors events during app executions.

We have successfully applied DROIDFAX for a dynamic
characterization study of randomly sampled apps which
revealed important findings about app behaviors [9]. In another
use case, comparative results from DROIDFAX on benign
versus malicious apps led to the development of an advanced
app security defense tool that achieved state-of-the-art
effectiveness with superior capability and robustness [10].
Our empirical results also show promising efficiency and
scalability of DROIDFAX for practical adoption.

II. DROIDFAX ARCHITECTURE

The overall architecture of DROIDFAX is shown in Figure 1.
The three major components of DROIDFAX (as marked by
numbered gray boxes) correspond to three phases of its
process: code analysis, tracing, and data analysis. Also
denoted are the three inputs to and three kinds of outputs of
the toolkit (as marked by boxes of dashed boundaries). The
process flow (indicated by arrowed lines) depicts how these
inputs are used to produce the outputs through the three phases
summarized below. The design of the two specialized tools is
also unified in this architecture.

https://youtu.be/s9bYSLUep_I
https://www.dropbox.com/sh/u69n68ewu1hxkit/AAAfNOkZ3AsG4x0buK_j4QVra?dl=0


Static information

Instrumentation
for tracing method 
and ICC invocations

①Code analysis

Dalvik bytecode manipulation and analysis 

Static analysis
for computing types and 

static characterization metrics

Android 
apps

Instrumented apps
App execution

for collecting traces

App 
inputs

Android
Device

Tracing

Traces of calls and 
Intents (and/or events)

Data analysis

②

list of predefined 
callback interfaces

lists of predefined 
sources and sinks

DroidFax inputs

DroidFax 
outputsCharacteristics of apps

Trace summarization
for computing dynamic 
characterization metrics

③

Fig. 1: DROIDFAX architecture, which shows its composition and process for systematic characterization of Android apps.

The code analysis phase takes the app(s) for characterization
and instruments them to enable tracing. The second input, a
list of callback interfaces, is used for implementing the event
tracer. The main outputs of this phase are the instrumented
apps. In addition, static characteristics are computed directly
from app APKs, using the third input: lists of sources (APIs
that allow user apps to access sensitive/private information)
and sinks (APIs that send data out of the invoking app).
Moreover, static information of the apps is computed to serve
the subsequent phase of data analysis. Static analysis in this
phase is built on our Dalvik bytecode analysis framework [11],
which deals with low-level binary manipulation.

The tracing phase takes the instrumented apps and executes
them on an Android device to collect traces. Either manual
operations or automatically generated tests can be used as the
app inputs required for triggering the executions. DROIDFAX
incorporates utilities for using Monkey [12] to drive app
executions with random inputs on an emulator [13], during
which users can supplement with manual inputs as well. This
phase outputs traces of all method and ICC invocations. For the
event tracer, it outputs traces of events instead or additionally.

The last phase data analysis computes the multi-view and
multi-dimensional characteristics from the traces it takes as
main inputs. It also takes the static information computed in
the first phase along with the lists of sources and sinks and
the list of callback interfaces. This phase outputs dynamic
characterization metrics. Finally, all (static and dynamic)
characterization results are reported in a graphical, textual, or
tabular format, which are the ultimate outputs of DROIDFAX.

III. CODE ANALYSIS

DROIDFAX performs two lightweight steps in code analysis:
instrumentation for dynamic characterization, and static
analysis for computing both static and dynamic characteristics.

A. Instrumentation
DROIDFAX performs instrumentation only at application

level, without modifying the Android platform. For each
given app, the instrumentation is realized by inserting
probes in the app bytecode. For ease and extensibility of
our implementation, each probe is simply an invocation
of a run-time monitor. Different probes and associated
run-time monitors are needed for tracking different execution
information. All run-time monitors are organized as one
third-party library, which can be modified by users
for customized tracing, without re-instrumenting the apps
(if already instrumented) nor changing the instrumenter
in the code-analysis component of DROIDFAX. After

instrumentation, the code of these monitors is built into the
resulting APK and will be invoked when the instrumented app
runs to the associated probes. Currently there are four different
monitors in this component, as described below.

Method call monitor. After each callsite in the app code, a
probe invoking this monitor is inserted. For ordinary static
calls, the monitor reports the name of invoked method at
the callsite (along with package and class name prefixes).
For reflective calls, it reports the receiver object of the call
such that the method actually called can be resolved at
runtime. In addition, the caller name is also passed to the
monitor, so that a dynamic call relationship in the form of
caller→callee can be recorded during the tracing phase. To
be practically adoptable, DROIDFAX also monitors callsites in
exception-handling constructs, including methods invoked in
catch and finally blocks [14].

Intent monitor. A probe calling this monitor is inserted
before each ICC callsite. To resolve the run-time value of each
Intent field, the entire Intent object is passed to the monitor,
which will dump all Intent fields during the tracing phase. To
compute app characteristics related to ICCs, the calling context
of the ICC must be recorded as well. Thus, the monitor also
records the ICC callsite itself and its (enclosing) caller method.

Event monitor. Android apps feature an event-driven
programming paradigm. Each event is associated with a
callback that responds to the occurrence of the event. There are
two main classes of callbacks in Android: (1) lifecycle methods
which respond to events related to the platform’s management
of the lifecycles of an app and its components, and (2) event
handlers which respond to all other kinds of events, including
system and user-interface (UI) events. DROIDFAX performs
specialized instrumentation for monitoring callbacks so as to
trace the associated events as required by the event tracer.
Instead of probing the callsites directly, a probe that calls the
event monitor is inserted at the entry of each callback that is
defined in the app code. The reason for this special treatment
is that the callbacks are typically invoked by the Android
framework, which DROIDFAX does not instrument. The list
of callback interfaces as part of the inputs for DROIDFAX
setup (Figure 1)is used here to recognize callbacks.

Statement coverage monitor. DROIDFAX probes after
each branch in an app to compute the statement coverage
of run-time inputs to the app in real time during its
executions. The coverage of a branch implies the coverage
of statements that depend on the outcome of that branch.
This is another specialized instrumentation, as needed by the
statement coverage tracker. DROIDFAX works at app level, so
it only reports the coverage for code available in the app APK.



DROIDFAX provides flexible options allowing for skiping
any of the above instrumentations. While the instrumentation
for event monitoring mainly serves the event tracer, users can
opt for tracing events along with method calls and/or ICCs.

B. Static Analysis
To derive characteristics about app executions (e.g.,

component and callback distribution), DROIDFAX needs a
few kinds of type information for its data-analysis phase: (1)
the component type (e.g., Activity, ContentProvider) of each
method (according to the inheritance relationship between its
enclosing class and any of the four app component types in
Android), (2) the type of callback interface (e.g., System, UI)
implemented by each of such enclosing classes, and (3) the
type of methods (and enclosing classes) in terms of three code
layers: user code, third-party library, and the Android SDK.
Computing (1) and (2) is realized through a class hierarchy
analysis, while obtaining (3) requires parsing the manifest file
of the app APK: user code is identified through the package
information in the manifest, Android SDK code is identified
according to the known list of SDK packages, and the rest is
considered third-party library code.

Other static information computed during this step includes
(1) total numbers of components of each type, (2) total
numbers of classes and methods in each code layer, (3) total
numbers of callbacks in each category, and (4) total number
of Intent sending and receiving callsites (i.e., incoming and
outgoing ICCs). This information is derived from the code of
apps (rather than their execution traces), and is mainly used for
calculating various kinds of coverage statistics (e.g., coverage
of user-code methods, coverage of sources and sinks, etc.).

IV. TRACING

The computation of all dynamic characterization metrics
relies on the traces collected at runtime. For each instrumented
app, the tracing component of DROIDFAX installs the app to
and then launches it on a pre-configured Android emulator.
Next, the Monkey input generator is started to feed the
installed app. The resulting traces are collected through
Logcat [15], the standard logging utility as part of the Android
SDK that pulls the outputs of logging APIs invoked during app
executions to the host machine that runs the emulator. The
trace content may include any combinations of (1) method
call relationships, (2) ICC Intent objects, and (3) description
of events, depending on the instrumentation options used in
the first phase. A single file stores all traces per app, and the
order of different trace items is that in which corresponding
run-time monitors are invoked in the instrumented app. To
compute characteristics related to inter-app ICCs, DROIDFAX
launches a pair of apps simultaneously on the same emulator,
with Monkey feeding each alternately for an equal amount of
time (as user specified). Traces from both apps are stored in a
single file, with the APK package names differentiating traces
from each app. Note that the inner workings of DROIDFAX is
orthogonal to the input source: other input generators of users’
choice can be utilized in place of Monkey.

The trace produced by the coverage tracker is different:
it immediately gives the result of the characterization, thus
it needs no further analysis. The tracker produces a single
line of coverage number in percentage as soon as the number
increases by at least 1%. The last line indicates the final
coverage attained by the inputs.

V. DATA ANALYSIS

The data-analysis component computes a variety of
characterization metrics, in different perspectives (called
dimensions) and granularity levels (called views). To capture
the general structural and behavioral patterns of apps, each of
these metrics is defined as a relative statistics rather than an
absolute number.

A. Characterization Dimensions
DROIDFAX characterizes each app in terms of three

orthogonal dimensions each focusing on a different aspect of
the code structure and behavioral traits of the app: structure,
communication, and security.

Metrics in the structure dimension characterize the structure
of an app in terms of class/method distribution and
categorization. In particular, structure metrics are percentages
(1) of method calls targeting each of the three layers of app
code, at the granularity levels of class and method, (2) of
method calls within each layer and between any two layers,
and (3) of method calls that are callbacks, in total and in each
category. DROIDFAX computes metrics (1) and (2) according
to the code layer membership of classes and methods in
the static information passed from the code-analysis phase.
To compute metrics (3), the list of callback interfaces is
utilized. We manually created this list where the interfaces are
first classified into two first-level categories (System and UI)
and then further divided into ten sub-categories (five in each
first-level category, e.g., System Status within System category,
and Dialog within UI category).

Metrics in the communication dimension characterize the
communication of each component in an app with other
components of the same app and with components in other
apps. In particular, communication metrics are percentages (1)
of components (i.e., the endpoints of ICCs) of each type, (2)
of ICCs in each of four categories based on their being internal
or external (two components of an ICC are in the same app
or not) and implicit or explicit (one component of the ICC
specifies explicitly the other component or not), and (3) of
ICCs in each of three categories based on the payloads in the
associated Intent being carried in the data or extras field
of that Intent, or both. DROIDFAX computes these metrics
referring to the component types associated with each method
as part of the static information.

Metrics in the security dimension characterize app traits
concerning security in terms of accesses to sensitive data and
operations. In particular, security metrics are percentages of
method calls that are sources or sinks, in total and in each
source/sink category. To compute these metrics, DROIDFAX
refers to the lists of sources and sinks where each source (sink)
is labeled with the category the data (operation) it accesses
(e.g., Contact Information and Network Management).

B. Characterization Views
To offer understandings of app characteristics from different

perspectives, DROIDFAX computes the above metrics both
based on app code only and from app execution traces. This
differentiation leads to each metric in three complementary
granularity levels (i.e., views): static, callsite, and instance.
The latter two are dynamic views.

Specifically, metrics in the static view count classes and
methods appeared in the app code, while metrics in the



0.22% 

70.26% 

9.80% 

0.04% 

0.27% 

13.95% 

1.73% 

0.04% 

3.70% 

0.14% 

9.10% 

29.58% 

0.38% 

0.01% 

38.00% 

14.05% 

0.00% 

8.75% 

0% 10% 20% 30% 40% 50% 60% 70% 80%

SDK->3rdLib

SDK->SDK

3rdLib->SDK

3rdLib->UserCode

UserCode->3rdLib

UserCode->SDK

UserCode->UserCode

SDK->UserCode

3rdLib->3rdLib malware

benign

Fig. 2: Part of our findings with DROIDFAX: benign apps tend
to have dominating calls from the SDK and considerable calls
to user code, while malware tends to behave in the opposite.

dynamic view count those that appeared in app traces. Further,
metrics in the callsite view consider the presence of methods
and their enclosing classes based on the associated callsites
covered, ignoring the call frequency of the callsites. The
callsite view thus captures the diversity of class/method
invocations. Metrics in the instance view count all instances
of class/method invocations, capturing run-time app behaviors
reflected by call frequencies.

Combining the static information and app traces,
DROIDFAX also computes various kinds of coverage statistics
at method and class/component levels. In particular, the
metrics are percentages of methods, classes, components,
callbacks, sources/sinks, and ICCs in various categories as
described above, that are found in the traces over the respective
totals found in the code. For most metrics, DROIDFAX reports
the full distribution of metric values of all apps in graphical
formats (charts and boxplots). For other metrics, it reports the
mean metric values with variance in tabular or textual formats

VI. APPLYING DROIDFAX

This section briefly reports two use cases of our toolkit and
its efficiency results, and discusses its limitations.

A. Use Cases
Use case 1. We have recently applied DROIDFAX to a

behavioral characterization study of 125 apps randomly chosen
from Google Play and 62 pairs among these apps [9]. The
study was focused on the dynamic characteristics of apps for
understanding Android application programming and security.
From the outputs of DROIDFAX, we have derived many
new insights about Android app behaviors (e.g., inter-layer
call distribution as shown in Figure 2) and made a number
of recommendations on optimizing app analysis for better
cost-effectiveness tradeoffs. Although not documented in [9],
we also found, among many other findings, that component
distribution in the static view is noticeably less skewed
than in the dynamic views (e.g., Service components are
considerably invoked in code but not much at runtime).

Use case 2. We also have used DROIDFAX to identify
70 features that effectively distinguish behaviors of malware
versus benign apps by comparing DROIDFAX results between
these two groups [10]. With a set of 610 sample apps, we have
developed a security classifier based on those features that
achieved state-of-the-art effectiveness with superior robustness
(e.g., against reflection and resource/syscall obfuscation).

We also successfully applied the coverage tracker of
DROIDFAX as a stand-alone tool for benchmark selection

according to a coverage criterion, in both use cases above.
Currently, we are using the event tracer in our toolkit
for another research project. While our toolkit aims to
immediately assist mobile developers, we envision its broader
use for various research purposes as well.

B. Efficiency and Scalability
Given the goals of the above two use cases, they enabled

only those instrumentations for tracing all method calls and
ICC Intents. For the total of 735 apps of 4KB to 26MB in
size that it has been applied to, DROIDFAX’s time costs in
the code analysis phase ranged from 5 to 85 seconds (29
seconds in an average case). The instrumentation led to app
code size increase by at most 2%. The run-time slowdown
caused by the instrumentation and profiling was up to 3%.
The tracing time and the trace storage space, while expected
to dominate the overall toolkit run-time and storage cost
respectively, will depend on how long users want/need to
manipulate the instrumented apps. Finally, the data analysis
phase of DROIDFAX took no more than 25 seconds. These
numbers suggest that our toolkit can well scale to practical
characterization of a large set of apps.

C. Limitations
To minimize the time overhead of tracing, DROIDFAX

currently stores traces of different kinds all in a plain
textual format. While we have not encountered trace storage
challenges so far as we applied DROIDFAX, other users may
do with apps that produce large traces quickly or in cases
where long executions of apps are needed. A solution would
be to trade the time overhead for better storage efficiency
of DROIDFAX by adopting more sophisticated trace indexing
and/or storage techniques (e.g., hierarchical tracing [16]).

Another limitation of DROIDFAX lies in its static analysis
being subject to heavy/complex code obfuscation. In particular,
complicated renaming of classes and methods may impede
the recognition of component types and/or callback categories.
As a result, metrics in the static view may not be computed
correctly and instrumentation probes could be incorrectly
placed. To overcome such issues, users may use a deobfuscator
to preprocess the apps before applying DROIDFAX to them.

VII. CONCLUSION AND FUTURE WORK

We presented DROIDFAX, a toolkit that systematically
characterizes given Android apps with a diverse set of metrics
in multiple dimensions and views to offer a comprehensive
understanding on the code structure and behavioral traits of
the apps. We have applied DROIDFAX in two recent use cases,
which enabled new empirical findings and development of a
superior technical solution for app security defense. The toolkit
also offers specialized tools for event tracing and statement
coverage tracking. The release package of DROIDFAX with
usage documentation and video demo is available here.

An immediate next step with DROIDFAX is to use it
in a longitudinal study for understanding how the Android
ecosystem evolves. By characterizing apps from different
groups (e.g., by year and SDK versions) and comparing app
characteristics among these groups, insightful evolutionary
patterns of the ecosystem can be derived and more advanced
applications based on the results may be developed. We also
plan to expand the characterization scope of the toolkit by
including metrics on deeper analysis of app behaviors.

http://chapering.github.io/droidfax


REFERENCES

[1] D. J. Tan, T.-W. Chua, V. L. Thing et al., “Securing Android: a survey,
taxonomy, and challenges,” ACM Computing Surveys, vol. 47, no. 4, pp.
1–45, 2015.

[2] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti, and
M. Rajarajan, “Android security: a survey of issues, malware penetration,
and defenses,” IEEE Communications Surveys & Tutorials, vol. 17,
no. 2, pp. 998–1022, 2015.

[3] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The
evolution of Android malware and Android analysis techniques,” ACM
Computing Surveys, vol. 49, no. 4, p. 76, 2017.

[4] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “ProfileDroid:
multi-layer profiling of Android applications,” in Proceedings of ACM
International Conference on Mobile Computing and Networking, 2012,
pp. 137–148.

[5] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song,
“NetworkProfiler: Towards automatic fingerprinting of Android apps,”
in Proceedings of IEEE International Conference on Computer
Communications, 2013, pp. 809–817.

[6] M. Lindorfer, M. Neugschwandtner, and C. Platzer, “Marvin: Efficient
and comprehensive mobile app classification through static and dynamic
analysis,” in Proceedings of IEEE Computer Software and Applications
Conference, vol. 2, 2015, pp. 422–433.

[7] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. van der Veen, and C. Platzer, “Andrubis - 1,000,000 apps later: A view
on current Android malware behaviors,” in Proceedings of International

Workshop on Building Analysis Datasets and Gathering Experience
Returns for Security (BADGERS), 2014, pp. 3–17.

[8] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “Madam: Effective
and efficient behavior-based Android malware detection and prevention,”
IEEE Transactions on Dependable and Secure Computing, 2016.

[9] H. Cai and B. Ryder, “Understanding Android application programming
and security: A dynamic study,” in Proceedings of International
Conference on Software Maintenance and Evolution, 2017.

[10] H. Cai, N. Meng, B. Ryder, and D. Yao, “Droidcat: Unified dynamic
detection of Android malware,” Tech. Rep. TR-17-01, January 2017,
http://hdl.handle.net/10919/77523.

[11] H. Cai and B. Ryder, “Understanding application behaviours for Android
security: A systematic characterization,” Virginia Tech, Tech. Rep.
TR-16-05, May 2016, http://hdl.handle.net/10919/71678.

[12] Google, “Android Monkey,” http://developer.android.com/tools/help/
monkey.html, 2015.

[13] ——, “Android emulator,” http://developer.android.com/tools/help/
emulator.html, 2015.

[14] H. Cai and R. Santelices, “Diver: Precise dynamic impact analysis
using dependence-based trace pruning,” in Proceedings of International
Conference on Automated Software Engineering, 2014, pp. 343–348.

[15] Google, “Android logcat,” http://developer.android.com/tools/help/
logcat.html, 2015.

[16] H. Cai and R. Santelices, “TracerJD: Generic trace-based dynamic
dependence analysis with fine-grained logging,” in Proceedings
of International Conference on Software Analysis, Evolution, and
Reengineering, 2015, pp. 489–493.

http://hdl.handle.net/10919/77523
http://hdl.handle.net/10919/71678
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/emulator.html
http://developer.android.com/tools/help/emulator.html
http://developer.android.com/tools/help/logcat.html
http://developer.android.com/tools/help/logcat.html

	Introduction
	DroidFax Architecture
	Code Analysis
	Instrumentation
	Static Analysis

	Tracing
	Data Analysis
	Characterization Dimensions
	Characterization Views

	Applying DroidFax
	Use Cases
	Efficiency and Scalability
	Limitations

	Conclusion and Future Work
	References

