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Abstract. This paper discusses the design and implementation of a
profile-based power-aware compiler using dynamic voltage scaling. The
compiler identifies program regions where the CPU can be slowed down
without resulting in a significant overall performance loss. Two strategies
have been implemented in SUIF2. The single-region strategy slows down a
single region for energy savings, while the multiple-region strategy slows
down as many regions as needed. A comparison of both strategies based
on six SPECfp95 benchmarks shows that in five out of six cases, the
energy-delay product and energy/performance tradeoffs were compara-
ble. In the remaining case, the multiple regions approach was significantly
better. Both strategies achieved energy savings of up to 48% for the five
programs at the slowdown between 1% and 16%, and energy savings of
74% for the multiple regions vs. 50% for the single region strategy for
the remaining program at the slowdown up to 21%.

1 Introduction

With the advances in technology, power is becoming a first-class architecture
design constraint not only for embedded/portable electronic devices but also for
high-end computer systems [18]. Effective use of energy for programs running on
such systems can prolong battery lifetime, reduce heat, cooling requirements, and
overall operation costs. One way to tackle the problem is to use components that
provide multiple power modes with different performance/functionality trade-
offs and to manage power modes in such a way that the requested services and
desired performance levels are satisfied with the minimum energy usage.

In this paper, we focus on software-controlled power management using dy-
namic voltage scaling [19]. Dynamic voltage scaling is a technique that varies the
CPU supply voltage and frequency on-the-fly to provide multiple power modes
with different performance levels. Energy efficient computation can be achieved
by dynamically adapting the CPU performance level to the current needs, i.e.,
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reducing the CPU supply voltage and frequency when the CPU is not being fully
utilized.

The presented approach uses whole program analyses at compile time to
identify CPU slack that can be exploited through dynamic voltage scheduling
without resulting in significant performance penalties. The target applications
are not real-time systems with hard deadlines, but applications that may tolerate
a small performance loss in exchange for power and energy savings. Given a
soft execution deadline, i.e., a user supplied acceptable performance penalty, our
compilation strategy determines CPU slowdown factors for program regions that
are expected to yield the highest energy savings within the performance penalty
range.

One factor that distinguishes our work from others is the type of CPU slacks
being exploited. Some work (e.g. [19, 15]) identifies the slacks between the pro-
cessing time and human perception time, while others (e.g. [13, 21]) take advan-
tage of the difference between the conservative performance estimation and the
real execution time for applications with hard performance deadlines. In this pa-
per we exploit a third type of CPU slacks – in which the memory accesses are on
the critical path for performance. Since the CPU processing is not on the critical
path, it can be slowed down without introducing significant performance loss.
However, the CPU may not be slowed down too much since it issues memory
instructions and may alter the criticality of the memory bottleneck.

The presented work is one of the first to use a compiler approach for voltage
scheduling. Compilers have the advantage that the entire program can be an-
alyzed, and in addition be modified to exhibit a desired characteristic, thereby
enabling further optimizations. Compilation strategies work well if the program
behavior can be derived at compile time. For such applications, more aggressive
optimizations can be performed, and the performance and energy overhead intro-
duced by operating systems or hardware approaches can be avoided. However,
not all programs allow static analyses that yield sufficient information about
their runtime characteristics. In such cases, operating system and/or hardware
techniques (e.g. [23]) are more promising strategies. We believe that hybrid ap-
proaches for voltage scheduling consisting of a combination of compiler, oper-
ating system, and hardware strategies will be most effective and necessary, for
instance in multiprogramming environments. A discussion of such hybrid ap-
proaches is beyond the scope of this paper.

This paper presents the design and implementation of a profile-based power-
aware compiler using dynamic voltage scaling. The compiler identifies memory-
bound program regions and implements two strategies in SUIF2. The single-
region strategy slows down a single region for energy savings, while the multiple-
region strategy slows down as many regions as needed. A comparison of both
strategies based on six SPECfp95 benchmarks shows that in five out of six cases,
the energy-delay product and energy/performance tradeoffs were comparable.
In the remaining case, the multiple regions approach was significantly better.
Both strategies achieved energy savings of up to 48% for the five programs at
the slowdown between 1% and 16%, and energy savings of 74% for the multiple



regions vs. 50% for the single region strategy for the remaining program at the
slowdown up to 21%.

2 Basic Compilation Strategy

Our compilation strategy tries to find memory-bound program regions where
CPU may be slowed down without affecting significantly the overall program
performance. The basic idea is to “hide” the degraded CPU performance behind
the memory hierarchy accesses which are on the critical path. Within each such
region, a slowdown factor will be selected by the compiler. A slowdown factor
δ is defined as a ratio of the peak CPU frequency to the desired frequency. For
example, δ = 2 on a 1 GHz machine indicates the desired frequency of 500 MHz.
In our model, we assume that the dynamic frequency and voltage changes only
occur between regions with different slowdown factors.

Our compilation strategy considers the entire program (P ) as the union of
program regions (Ri), i.e., P def=

⋃
iRi, each of which is characterized by a

quadruple (W c
i ,W

b
i ,W

m
i , vi). The values of W c

i , W b
i ,Wm

i represent the workload
(in cycles) of different parts of region Ri, and vi represents the number of times
Ri is accessed for the entire program execution. The total workload for region
Ri is then defined as Wi = W c

i +W b
i +Wm

i , and the total workload for program
P is defined as W =

∑
iWi.

A program region is split into three parts to better estimate the performance
impact of the CPU slowdown for a region [9]. Specifically, if region Ri is slowed
down by a factor of δ, the resulting performance will become

Wi(δ)
def= δ ∗W c

i + max(δ ·W b
i ,W

b
i +Wm

i )

where

– W c
i is the number of cycles in region Ri that the CPU is busy while the

memory is idle (cpu busy); this includes CPU pipeline stalls due to hazards
and activities of both level one cache and level two cache,

– Wm
i is the number of cycles in region Ri that the CPU is stalled while

waiting for data from memory (memory busy),
– W b

i is the number of cycles in region Ri that both CPU and memory are
active at the same time (both busy).

Slowdown factor δ, by its definition, is never less than one, i.e., δ ≥ 1. In addition,
the total workload of region Ri, Wi, is treated as an abbreviation of Wi(1).

The model assumes that CPU cycles that did not overlap with memory ac-
tivities before the slowdown, W c

i , will also not overlap with memory activities
after the CPU slowdown, and that the CPU cycles that did overlap with mem-
ory activities before the slowdown, W b

i , will maintain that property after the
slowdown. As a result, a performance penalty of δ ∗W c

i will occur if the entire
W b
i workload can be hidden behind the memory activity workload (W b

i +Wm
i ).



If only partial hiding is possible, an additional performance penalty will be ac-
counted for.

The dynamic voltage scheduling based on program regions is formulated as
follows: given a program (P =

⋃
iRi), we are solving the mixed-integer nonlinear

programming (MINLP) problem (P) for variables δi’s:

(P) minimize E = 1
W ·

∑
iWi/δ

2
i

subject to∑
iWi(δi) + s ·

∑
i,j vij · θ(δi, δj) ≤ (1 + r) ·W

1 ≤ δi
δi ∈ R

where s represents the performance cost of each transition, vij represents the
number of transitions between region Ri and Rj, and r represents the user-
defined performance penalty, Function θ(·, ·) indicates whether a transition oc-
curs or not and is defined as follows.

θ(δi, δj)
def=
{

0 if δi = δj
1 otherwise

The first inequality models the resulting performance of all regions after their
respective slowdown, plus the transition costs introduced by switching between
different voltages/frequencies. Problem (P) searches for the appropriate δi values
such that the performance penalty of the voltage scaled program does not exceed
the user-specified value and its (relative) energy consumption E is minimized.

For example, the real execution of swim on training input indicates the fol-
lowing transitions for Figure 1

R1
1→ R2, R2

10→ R3, R3
1→ R4, R3

1→ R5, R3
8→ R6, R5

1→ R2, R6
8→ R2.

where the weight of each edge represents vij. Given performance tolerance of
1% (r = 0.01) and an assumed voltage scaling overhead of 10,000 cycles (s =
10000), the optimal solution for problem (P) is E = 77.3% with the following δ
assignment:

δ1 = 1, δ2 = 1.03, δ3 = 1.03, δ4 = 1, δ5 = 4.58, δ6 = 1.75.

Using the optimal δ assignment, the compiler can then insert DVS instructions
at appropriate places. In our example, the entries of regions R2, R4, R5, and R6

are “guarded” with DVS instructions of desired CPU frequency. The simulation
result showed that the performance degradation is 2.2% with relative energy
consumption of 75.1%.

A special case of the region-based compilation strategy is to find a single
program region that minimizes the energy consumption within the same (1+r) ·
W deadline. Issues related to the single-region strategy have been discussed in
[8]. An important difference between the single-region strategy and the multiple-
region strategy is that the single-region strategy considers the combined regions
as well, i.e., Ri&j = Ri ∪ Rj. For example, the single-region strategy not only
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R1 116.98 27.35 8.27 1
R2 52.82 200.67 54.46 10
R3 59.70 207.52 38.34 10
R4 2.81 4.43 1.22 1
R5 0.06 27.98 2.72 1
R6 9.79 201.25 52.06 8

Fig. 1.W = 1068 million cycles, s = 10000, and r = 0.01. Workloads are given in million
cycles. The graph on the left represents the control flows between regions R1−R6. On
the right, there are workload characteristics for each region Ri, which is recorded by
the profile.

evaluates regions R1 - R6 but also examines combined regions R2&3, R5&6, and
R1−6. With the same performance tolerance of 1% and DVS overhead of 10,000
cycles, the compiler found that the combined region R5&6 with δ5&6 = 2.07 gives
the best energy saving. That is, the δ assignment derived by the single-region
strategy can be described as follows:

δ1 = 1, δ2 = 1, δ3 = 1, δ4 = 1, δ5 = 2.07, δ6 = 2.07.

Experimental results showed that this selection resulting in energy consumption
of 75.7% and a performance penalty of 2.7%.

The experimental results showed that, for five of six SPECfp95 benchmarks
we tested, both multiple-region strategy and single-region strategy were similar
in their effectiveness. Multiple-region strategy did much better in one bench-
mark. While conceptually the multiple-region strategy should be as effective as
the single-region strategy, it is more complicated to implement and it raises dif-
ferent issues from the single-region strategy. More detailed comparisons will be
discussed in Section 4.

3 Implementation

The prototype of the dynamic voltage scheduling based on program regions
is implemented as part of SUIF2 [24] using the profile-driven approach. Both
multiple-region strategy and single-region strategy are implemented. The proto-
type implementation has four phases. The first phase instruments the original C



program at appropriate program locations. The instrumented code is then exe-
cuted (the second phase), collecting information needed in the third phase. The
third phase uses both the instrumented program and the profile information to
determine the best δ assignment for the program. Once the slowdown factors of
regions are determined, the final phase restores the instrumented program back
to the original one, and inserts speed setting instructions at appropriate region
boundaries. The output of the prototype is the original program with a few
additional DVS instructions. Figure 2 shows the phases of the implementation.

instrumented
C program

?

SUIF2 passes

?

original
C program

-�
�
�
�
�
�>

machine

6
profile

SUIF2 passes

6

DVS’ed
C program

Fig. 2. The flow diagram of the compiler implementation.

Phase 1: Instrumentation – Two kinds of program constructs are instru-
mented in our implementation, namely call sites and explicit loop structures.
Explicit loop structures include for, while and do-while loops. Loops based
on goto’s are not instrumented in the current implementation.

Phase 2: Profiling – The information collected for each instrumented pro-
gram construct R is the quadruple (W c

R,W
m
R ,W

b
R, vR). While our experimental

results rely on a simulator, hardware performance counters may also be used, if
such counters are available.

Phase 3: Region Selection – The choice of program regions is implemen-
tation dependent. A program region can be defined as small as a basic block or
as large as a procedure body. While program regions of small granularity may
expose more opportunities for energy reduction, the large amount of them may
prohibit the solver to find the optimal δ assignment in an efficient way. Our
current implementation assumes a program region to be of single entry and sin-
gle exit. For the multiple-region strategy, only perfect loop nests are considered
as the program regions. For the single-region strategy, since combined regions
are also taken into account, our implementation considers loop nests, call sites,
if-statements, and sequence of regions as program regions.



As part of the third phase, the multiple-region strategy is required to solve
a MINLP problem (P). Currently, we rely on a MINLP solver, namely MINLP
[14], on the NEOS server [6] to solve the problem. Since the solver will run for
a long time if the problem size is too large, we adopted various techniques to
either reformulate the problem or cut down the problem size by approximation.
In addition, the profiling phase only records the quadruple of each region but
not the transitions between regions. An reaching definition analysis sub-phase
has been implemented to estimate the values of vij. More details are discussed
in the following section.

For single-region strategy, a pre-analysis is needed to compute the quadruple
of each combined region since it is not profiled. Once all the quadruples of
candidate regions are available, the enumeration process begins, to find the δ
assignment (or the region) that has the smallest objective function value E is
problem (Ps). The details of the implementation can be found in [8].

Phase 4: Code Generation – Finally, the speed-setting instructions are
placed at appropriate program locations. For the single-region strategy, the entry
and exit of the slowed-down region are “guarded” with these instructions. The
speed at entry of the region is set according to the slowdown factor. At exit, the
speed is resumed to the original, non-scaled frequency. For the multiple-region
strategy, only the entry of a region is considered as a candidate location to insert
the speed-setting instruction. The region is “guarded” if there is an immediately
preceding region that has a different slowdown factor.

3.1 Estimate the Transition Graph

For the multiple-region strategy, the information about the number of transitions
between regions vij is needed. While it can certainly be done through edge/path
profiling techniques (e.g. [3]), the current prototype implements a reaching defi-
nition analysis pass to estimate the values from the profiles of regions. The idea
is to treat each region as an assignment to a global variable shared by all the re-
gions. In doing so, reaching definition analysis captures the control flows between
basic regions. The number of transitions between two regions is then determined
by the minimum of the number of visits for both regions, i.e., vij = min(vi, vj).

This analysis may over-estimate the values of vij ’s. For example, the analysis
result of transitions between regions in Figure 1 derives the following transition
graph:

R1
1→ R2, R2

10→ R3, R3
1→ R4, R3

1→ R5,

R3
8→ R6, R4

1→ R5, R4
1→ R6, R5

1→ R2, R6
8→ R2.

Comparing with the real execution behavior, the estimated transition graph
introduces two unrealizable transitions R4

1→ R5 and R4
1→ R6. A more precise,

possibly more costly, analysis to estimate vij’s is to solve it as a network flow
problem, i.e., the total incoming flows are always equal to the total outgoing
flows. In this case, the extra transitions introduced by our analysis will not make



a big impact because R4 will be executed only once. In general, the analysis may
under-estimate the potential energy reduction using the multiple-region strategy.

3.2 Reformulate the Problem

Problem (P) is difficult to be described in modeling languages such as AMPL
and GAMS, which is in turn needed by the MINLP solver. To eliminate the
maximum function and the binary function θ(·, ·), problem (P) is reformulated
as follows:

(P’) minimize E = 1
W ·

∑
iWi/δ

2
i

subject to∑
i(W

c
i · δi + zi) + s ·

∑
i,j vij · θij ≤ (1 + r) ·W

zi ≥ δi ·W b
i , zi ≥W b

i +Wm
i

θij · (1− u) ≤ δi − δj ≤ θij · (u− 1)
1 ≤ δi ≤ u
δi ∈ R, θij ∈ {0, 1}

Variables zi and θij are introduced to model the results of the maximum function
zi = max(δi ·W b

i ,W
b
i +Wm

i ) and the binary function θij = θ(δi, δj), respectively.
The upper bound of a slowdown factor, u, is also introduced to support specifying
θij. In practice, this upper bound always exists from the hardware features. It
is defined to be u = 5 throughout the paper.

The size of problem (P’) can be characterized by a pair (n,m) that spec-
ifies a transition graph of n regions and m transitions. MINLP problems are
in general considered as extremely hard problems since they combine the nu-
merical difficulties of nonlinear programming with the combinatorial aspect of
integer programming. Experiences tell us that when the number of transitions
m exceeds over 50, the solver has a hard time to solve it efficiently. As a result,
various techniques have been applied, if necessary, to reduce the problem size.
In particular, two techniques have been used to identify large vij ’s and enforce
regions Ri and Rj to be of the same slowdown factor. The first technique does
not affect the solution space while the second technique may restrict the possible
solution space.

Technique 1: θij = 0 if s · vij > r ·W .
Technique 2: θij = 0 if vij > 0 and the optimal solution of the following

problem is never negative.

minimize Wi/δ
2
i +Wj/δ

2
j − (Wi +Wj)/δ2

subject to
W c
i · δi + zi +W c

j · δj + zj + vij = (W c
i +W b

i +W c
j +W c

j ) · δ +Wm
i +Wm

j

zi ≥ δi ·W b
i , zi ≥W b

i +Wm
i , zj ≥ δj ·W b

j , zj ≥W b
j +Wm

j

1 ≤ δi, δj ≤ u
δi, δj ∈ R



3.3 Other Issues

There are a couple of other issues involved in the design of the multiple-region
strategy, for example,

1. How to model the δ’s of regions that behave like the wild card? Our formu-
lation suggests that each region will have a specific δ value. Alternatively,
regions can be left “open” without any specific δ assignment.

2. How to model the “conflict” between certain regions? For example, once a
procedure has δ assignment for regions inside it, it does not make sense to
assign δ’s to all call sites to this procedure.

In our problem formulation for multiple-region strategy, all regions are as-
sumed to be independent, i.e., none of regions can prohibit the rest from being
slowed down. In practice, however, this may not be the case. Consider the C code
in Figure 3. In this code, there are five regions R1−R5 that can be slowed down,
including two call sites R2 and R3 to the same procedure h(). Suppose the call
sites R2 and R3 are chosen to be slowed down with slowdown factors δ2 and δ3,
respectively, and δ2 6= δ3. It does not make sense to assign slowdown factors to
regions in procedure h(), i.e., R4 and R5. On the other hand, we may slow down
regions in a procedure, and enforce all the calls to that procedure excluded from
basic region candidates. In summary, there are “conflicts” between regions being
slowdown candidates.

void f() {
R1 for(int i=0; i<n; i++)
R2 { h(); }

}

void g() {
R3 h();

}

void h() {
R4 for(int i=0; i<n; i++)

{ /* code without calls */ }

R5 for(int i=0; i<n; i++)
{ /* code without calls */ }

}

Fig. 3. A possible code structure that complicates the choices of basic regions. Regions
R1 −R5 are potential candidates for our compiler strategy, but not all of them can be
slowed down at the same time.

Our current implementation only considers the perfect loop nests without
calls inside as the candidate regions. For Figure 3, it means that only regions R4



and R5 are considered. The conflictness can be modeled by introducing a control
binary variable for each case that there are multiple call sites to a procedure, and
is smoothly integrated into our multiple-region problem formulation. All these
issues will be addressed in the future.

4 Experiments

The experimental setting is as follows. Six SPECfp95 benchmarks were used as
program inputs. The SimpleScalar out-of-order issue processor timing simulator
[5] with memory hierarchy extensions and DVS extensions served as the under-
lying machine model. The transition costs, i.e., voltage switching overheads were
modeled in the simulator. The training data sets (train.in) provided with the
benchmarks distribution were used during the profiling phase of our compiler. To
reduce the simulation time, the reduced reference data sets (std.in) developed
by Burger [4], were used instead of the original reference data inputs. The user-
specified relative performance penalty r was varied from 1% to 10%, in order to
expose energy performance trade-offs. Finally, a simple analytical energy model
was used to estimate the energy consumption of a program.

SimpleScalar provides a cycle-accurate simulation environment for a mod-
ern out-of-order superscalar processor with 5-stage pipelines and fairly accurate
branch prediction mechanism. The memory extensions model the limitedness of
non-blocking caches through finite miss status holding registers (MSHRs) [12].
Bus contention and arbitration at all levels are also taken into account. Table 1
gives the simulation parameters used in the experiments.

The DVS extensions introduce a new speed-setting instruction. The speed
setting instruction takes as argument an integer that specifies the desired CPU
frequency. Its semantics was implemented in the following way: (1) stop fetching
new instructions and wait until CPU enters the ready state, i.e., the speed setting
instruction is not speculative, the pipeline is drained, all functional units are idle,
and all pending memory requests are satisfied, (2) wait a fixed amount of cycles
to model the process of scaling up/down to the new frequency, and (3) resume
the course using the new frequency. Each step has an associated performance
penalty. In the simulation we set the step (2) cost as 10,000 cycles (10 µs for a
1GHz processor) if the desired CPU frequency is different from the current one,
and zero otherwise.

For our profile-based compilation strategy, it was assumed that the under-
lying machine provides a marker instruction. A marker instruction takes as ar-
gument an integer that specifies the marker value. When it is executed, the
hardware starts to collect the quadruple for the associated marker value. At any
given cycle, only one marker value is alive.

Due to long simulation times, a simple analytical energy model was used
to estimate the energy consumption of an entire program execution. It models
total CPU energy usage, including both active and idle CPU cycles. The model
is based on associating with each CPU cycle an energy cost. Specifically, given
a program in which region R is slowed down by δ, the total CPU energy E is



Table 1. System simulation parameters.

Simulation
parameters Value

fetch width 4 instructions/cycle
decode width 4 instructions/cycle

issue width 4 instructions/cycle, out-of-order
commit width 4 instructions/cycle

RUU size 64 instructions
LSQ size 32 instructions

FUs 4 intALUs, 1 intMULT, 4 fpALUs, 1 fpMULT, 2 memports
branch predictor gshare, 17-bit wide history

L1 D-cache 32KB, 1024-set, direct-mapped, 32-byte blocks, LRU,
1-cycle hit, 8 MSHRs, 4 targets

L1 I-cache as above
L1/L2 bus 256-bit wide, 1-cycle access, 1-cycle arbitration

L2 cache 512KB, 8192-set, direct-mapped, 64-byte blocks, LRU,
10-cycle hit, 8 MSHRs, 4 targets

L2/mem bus 128-bit wide, 4-cycle access, 1-cycle arbitration
memory 100-cycle hit, single bank, 64-byte/access

TLBs 128-entry, 4096-byte page

compiler gcc 2.7.2.3 -O3

defined as:

E = (W c +W b)− (1− 1/δ2) · (W c
R +W b

R)︸ ︷︷ ︸
E1

+ ρ ·Wm︸ ︷︷ ︸
E2

where E1 and E2 models the CPU energy consumed by active cycles and idle
cycles, respectively. In our experiments, an idle cycle was assumed to consume
30% of the energy cost of an active cycle, i.e., ρ = 30%. It accounts for the
energy consumption of clocked components such as clock tree [10].

Finally, we assume that the operating system uses the following simple for-
mula to determine the appropriate CPU frequency f(δ) from a compiler-provided
slowdown factor δ:

f(δ) def= d fpeak

lmem · δ
e · lmem

where fpeak is the peak CPU frequency and lmem is the memory latency in peak
CPU cycles. The reason lmem is involved in the speed setting is because we had
observed the clock skew effects due to mismatch of the memory and CPU cycle
times [9]. This simple formula guarantees that the selected frequency is a multiple
of memory latency. In our experiments, fpeak was set to be 1000 and lmem was
set to be 100. Since the compiler sets a limit on the lowest CPU frequency to
be used (in terms of u in problem (P’)), it amounts to say that we considered
a DVS system whose CPU frequency ranges from 200 MHz to 1000 MHz with
discrete frequency/voltage levels.



The compilation time for both single-region strategy and multiple-region
strategy is in the order of minutes. This does not include the time needed to
perform the profiling (phase 2) which may take up to several hours. We are
currently investigating compile-time models to derive the information generated
by phase 2. Table 2 lists the more detailed timings of various phases for both
strategies.

Table 2. The compilation time (in seconds) of both single-region strategy and multiple-
region strategy for r = 1%.

phase 1 phase 2 phase 3&4
single multiple

swim 4 6452 8 16

tomcatv 3 95591 5 9

mgrid 6 96138 11 17

turb3d 19 120721 1313 79

applu 48 4757 88 95

apsi 64 4317 572 244

The user-provided performance tolerance ratio r defines a soft deadline, i.e.,
in some cases, the real performance may exceed this limit. As a result, both
single-region and multiple-region strategies have different sets of performance
(T ) and energy consumption (E) for the same r value. One way to compare
them is in terms of the energy-delay product (E · T ) [7]. Table 3 lists the energy-
delay product for six SPECfp95 benchmarks for various r values. It can be seen
that, except for benchmark swim, both strategies are very similar to each other
in the energy-delay product. In other words, when the multiple-region strategy
results in more performance degradation than the single-region strategy, it is
able to cut down more energy consumption to compensate for the additional
performance loss. For benchmark swim, the multiple-region strategy is obviously
more beneficial than the single-region strategy.

5 Related Work

The closest work we are aware of is the intra-task DVS techniques using check-
points. Intra-task scheduling is based on the reclamation of the slacks deviated
from the compile-time (over-)estimation such as the worst case execution time
(WCET). Checkpoints are inserted into the original program at compile time
to indicate where the CPU speed (and voltage) should be re-calculated. While
more checkpoints allow finer performance tuning, the accumulated overheads
of performing CPU re-calculation may become significant and reverses the im-
provement into degradation. One important issue is then where to insert these
checkpoints.



Table 3. The comparison of single-region vs. multiple-region approaches for various
SPECfp95 benchmarks and user-defined performance penalty. E and T are the rela-
tive energy consumption and relative performance compared to the original program
running at full speed.

swim tomcatv
multiple single multiple single

r(%) E T E · T E T E · T r(%) E T E · T E T E · T
1 75.1 102.0 7665.5 75.7 102.7 7772.1 1 84.0 101.0 8489.7 83.5 100.5 8389.1

3 54.6 106.3 5806.7 71.8 115.4 8280.0 3 71.5 103.7 7409.3 74.2 103.2 7658.0

5 42.8 109.8 4698.2 61.7 108.5 6688.4 5 76.4 105.5 6710.9 77.2 105.4 6792.9

7 57.5 109.1 3903.9 58.0 108.6 6244.0 7 57.5 109.1 6276.0 58.0 108.6 6292.7

10 25.9 121.2 3134.4 49.7 117.2 5822.3 10 52.2 113.9 5943.5 52.7 112.5 5928.9

mgrid turb3d
multiple single multiple single

r(%) E T E · T E T E · T r(%) E T E · T E T E · T
1 94.7 101.0 9565.5 95.9 100.9 9680.3 1 90.1 105.7 9524.0 94.9 101.7 9649.6

3 84.2 103.5 8713.6 84.8 103.3 8764.3 3 84.9 107.7 9142.5 92.4 104.9 9698.6

5 76.4 105.5 8059.2 77.2 105.4 8134.9 5 79.6 109.6 8724.1 83.7 105.3 8805.2

7 69.7 107.6 7491.6 69.8 107.7 7512.9 7 74.3 112.0 8317.1 77.9 107.4 8368.0

10 61.2 110.7 6772.1 61.2 110.8 6778.4 10 66.2 115.5 7651.1 70.6 110.6 7803.7

applu apsi
multiple single multiple single

r(%) E T E · T E T E · T r(%) E T E · T E T E · T
1 94.6 101.1 9571.9 93.9 101.2 9508.6 1 94.7 102.7 9718.9 98.0 100.5 9848.0

3 85.4 102.8 8775.7 84.6 103.6 8760.0 3 90.4 103.5 9352.8 93.7 101.3 9492.8

5 77.8 105.0 8166.9 78.1 105.9 8266.1 5 86.2 104.3 8994.7 89.6 102.2 9147.5

7 71.4 107.3 7664.1 70.7 108.0 7629.5 7 84.2 104.7 8818.1 85.5 103.0 8810.1

10 61.4 111.6 6859.2 61.9 110.9 6865.4 10 78.3 106.1 8303.1 81.6 103.9 8479.4



Lee and Sakurai in [13] placed checkpoints at the equally sized time slots
of the WCET of a task. In [22,21], Shin et al. put the checkpoints at selected
CFG edges of a task to capture the slacks from run-time variations of different
execution paths. Mossé et al. proposed to insert checkpoints at boundaries of
program constructs such as loops and call sites in [17]. In a follow-up paper [1],
they assumed equally spaced checkpoints in time and tried to determine the
optimal amount. Azevedo et al. in [2] placed checkpoints at every branch, loop
and call site initially, and then used the profile information to guide pruning
some of the checkpoints.

The most significant difference between our work and the above is that we
identify a different type of CPU slacks. We focus on memory-bound regions,
while others consider the run-time variations from the estimation. Our work
also takes into account the overheads induced by the checkpoints explicitly to
prevent from over-doing. These checkpoints are defined at boundaries of program
constructs in the source program, rather than points in the time line, which we
feel more appropriate to the compiler-directed dynamic voltage scheduling.

Some of the task-based algorithms formulated the dynamic voltage schedul-
ing as a (mixed-)integer linear/nonlinear programming problem. For example,
Ishihara and Yasuura in [11] gave an ILP formulation for a set of tasks and a set
of discrete voltage levels. In contrast, the paper by Manzak and Chakrabarti [16]
assumed continuous voltages and a single voltage/frequency for a task. Raje and
Sarrafzadeh [20] formulated the problem for an acyclic task graph and discrete
voltage levels. None of the above took into account the transition costs. Swami-
nathan and Chakrabarty in [25] incorporated transition costs into the problem
formulation. They assumed a single dual-speed CPU executes a set of periodic
non-preemptive real-time tasks.

Our work is different in at least the analytical performance model. Most of
the work assumes pure CPU processing time (i.e., Wm = W b = 0). In contrast,
our model breaks down the total execution time into three parts with respect to
the memory system. While our model estimates more precisely the performance
impact of dynamic voltage scaling on a program, it makes the estimation much
harder due to the non-continuity of the maximum function. In addition, the
problem formulation in this paper assumes continuous performance levels in
terms of the slowdown factors. We expect that the formulation with discrete
performance levels is cleaner (the binary function θ(·, ·) is “inlined”) and may be
easier to solve. However, it remains to be seen how much difference the accuracy
of the performance model and the difficulty of the problem formulation would
make for the real energy-performance trade-offs.

6 Conclusions

Compile-time directed frequency and voltage scaling is an effective technique
to reduce CPU power dissipation. We have discussed a trace-based compiler
approach that identifies regions in the program that can be slowed down with-
out significant performance penalties. Two strategies were implemented within



SUIF2, one that selects a single program regions for CPU slow down (single re-
gion approach), and one that allows multiple regions to be executed at different
CPU frequencies. Based on cycle accurate simulation using the SimpleScalar tool
set, the resulting energy delay products, and the energy savings due to voltage
scaling were comparable for five out of our six SPECfp95 benchmark programs.
Both approaches achieved energy savings of up to 48%, with performance penal-
ties of up to 16%. For the remaining benchmark program, the multiple regions
approach was significantly better in terms of energy-delay product, yielding en-
ergy savings of up to 74% vs. 50% for the single region approach, with maximal
performance penalties of 21% vs. 17%, respectively.

Although these results are very encouraging, more work needs to be done to
improve the compilation efficiency of the single and multiple regions approaches.
For some benchmark programs, the MINLP solver used in the multiple regions
compiler was not able to compute the optimal solution within a reasonable time.
We therefore were not able to include these numbers in this study. We are cur-
rently investigating fast approximation strategies that will only insignificantly
degrade the quality of the determined voltage schedules.
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