
Blended Analysis for Performance Understanding of
Framework-based Applications∗

Bruno Dufour
Dept of Computer Science

Rutgers University
dufour@cs.rutgers.edu

Barbara G. Ryder
Dept of Computer Science

Rutgers University
ryder@cs.rutgers.edu

Gary Sevitsky
IBM T.J. Watson Research

Center
sevitsky@us.ibm.com

ABSTRACT
This paper defines a new analysis paradigm, blended program anal-
ysis, that enables practical, effective analysis of large framework-
based Java applications for performance understanding. Blended
analysis combines a dynamic representation of the program calling
structure, with a static analysis applied to a region of that calling
structure with observed performance problems. A blended escape
analysis is presented which enables approximation of object effec-
tive lifetimes, to facilitate explanation of the usage of newly created
objects in a program region. Performance bottlenecks stemming
from overuse of temporary structures are common in framework-
based applications. Metrics are introduced to expose how, in ag-
gregate, these applications make use of new objects. Results of
empirical experiments with the Trade benchmark are presented. A
case study demonstrates how results from a blended escape analysis
can help locate, in a region which calls 223 distinct methods, the
single call path responsible for a performance problem involving
objects created at 9 distinct sites and as far as 6 call levels away.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures; D.3.4
[Programming languages]: Processors

General Terms
Experimentation, Languages, Measurement, Performance

Keywords
Dataflow analysis, escape analysis, program understanding, perfor-
mance, framework-intensive applications, Java

1. INTRODUCTION
Commercial object-oriented programs are commonly built by

integrating numerous layers of libraries and frameworks. These
framework-based systems may be web server applications (e.g., us-
ing J2EE, web services, and portal frameworks), or client applica-
tions (e.g., using Eclipse). In these systems, understanding perfor-

∗This work was funded in part by IBM Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’07, July 9–12, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-734-6/07/0007 ...$5.00.

mance problems can be difficult for a number of reasons. Typically,
problems are not localized in a few hot methods; more often there
are patterns of problematic activity spanning many frameworks, the
combined result of design choices in each framework [20]. To the
user seeking to understand its performance, an application resem-
bles an iceberg, where only a small portion of the code is famil-
iar, and performance consequences are hidden under many layers
of unfamiliar code below. The scale of activity (e.g., number of
method calls, number of objects created) adds to the difficulty of
understanding even simple features. In one study of framework-
based applications [24], in the simplest version of a stock trading
application, a simple transaction that reads 10 records from an ex-
ternal database required 28,747 calls, at average calling depth of
39. In our experience, industrial applications are often even more
layered;1 thus, locating performance problems and understanding
them well enough to ameliorate them, a difficult task even for ex-
perts, requires analysis-based tool support.

Motivating problem. Object churn (i.e., the creation of a high
volume of temporary objects) is one factor in many performance
problems in framework-based systems. In addition to object allo-
cation and garbage collection costs, object initialization is a source
of significant execution activity. It is common for temporaries to
occur as mini-data structures (i.e., groups of connected objects),
built up with much effort only to be thrown away shortly there-
after. Initialization may involve long chains of calls across multiple
frameworks, and may include the creation of subordinate tempo-
raries, used only for the construction of slightly longer-lived data. 2

In a typical example from an industrial application we analyzed,
a loop reads a list of dates; each iteration builds a temporary Java
SimpleDateFormat to parse each input, even though they are all in
the same format. Each SimpleDateFormat is a structure of 9 or more
instances from 7 distinct classes; building one costs 511 calls and
creates 16 subordinate temporaries in the process.

Current profiling tools (e.g., Jinsight [9], HPROF 3, ArcFlow [1]),
provide some valuable information about new objects, such as the
context in which they are created and whether they survive a garbage
collection; however, they provide limited information about how
these objects are used. Knowing what happens to a new object,
particularly specific information about its effective lifetime (i.e., its
dynamic scope)4 can be helpful for understanding performance in

1Note: Sevitsky is a member of a group at IBM Research that has
diagnosed performance problems in dozens of framework-based in-
dustrial applications.
2We informally term temporaries subordinate, to mean their only
purpose is to facilitate the initialization of other temporaries.
3http://java.sun.com/developer/technicalArticles/Programming/HPROF.html
4Effective lifetime means the period between the object’s creation
and its last use during an execution. This is distinct from a common

expensive regions. In the previous example, knowing that each
SimpleDateFormat structure is only used within one iteration of the
loop would suggest reuse through memoization or caching. Fur-
thermore, knowing which objects have effective lifetimes bounded
by the construction of each SimpleDateFormat would let us classify
them and their initialization code as a secondary problem, to be
studied only if the initial problem cannot be fixed.

Blended analysis paradigm. In this paper we present a new
analysis paradigm for performance understanding of framework-
based applications. This paradigm is called blended analysis, be-
cause dynamic analysis is used to obtain the calling structure of
a particular execution of interest and then a static analysis is per-
formed on that calling structure to obtain more detailed semantic
information relevant for performance understanding. We examine
one execution, rather than all executions, because we are addressing
the performance problems of a particular execution. By applying a
static analysis to a dynamically derived calling structure, we derive
further information about what may have occurred in that execu-
tion, without incurring execution-time overhead, and avoiding the
problems presented to static analysis by the use of reflection and
dynamic class loading. Our hypothesis is that blended analysis will
enable a more precise and scalable analysis for performance un-
derstanding at an acceptable cost, in comparison to a purely static
analysis (i.e., too imprecise) or a purely dynamic analysis (i.e., too
costly because sampling will not provide sufficient precision).

Blended escape analysis. As a first test of the hypothesis, we
have designed a blended escape analysis that will enable explana-
tion of regions of program execution subject to object churn. Es-
cape analysis is a technique for approximating the effective lifetime
of objects. It computes if and how newly created objects become
visible beyond the method in which they were created. There are
many existing static escape analyses, [8, 6, 7, 25, 11, 5], but for
framework-based applications, achieving scalability and precision
with them is a challenge, given the degree of software layering, the
reliance on collections and reflection, and the prevalence of long
chains of calls that massage data [17, 20]. Unfortunately, we can-
not only look at the application code, since for performance un-
derstanding we need to see all layers that contribute to a problem,
and problems are often caused by interactions between the frame-
works. A purely dynamic approach, collecting object effective life-
time data at a finer granularity, is prohibitively expensive. Simple
schemes to reduce the amount of data collected, such as filtering
out libraries or aggregating by class, are of limited value because
they lose valuable context. A blended escape analysis offers a way
to avoid these difficulties.

There are many choices of dynamic information for input to a
blended escape analysis. In our study we chose a call graph aggre-
gated from more detailed information captured during a run, and
used static allocation sites as our object abstraction. In framework-
based applications, it is common for low-level libraries to generate
objects whose eventual usage varies according to the calling con-
text. To address this, our approach retains distinct escape state in-
formation at each calling context where an object is visible, unlike
a traditional escape analysis. This allows a user to study specific
usages of common objects.

In a typical use of our technique, the user starts by identifying
a scenario (e.g., a web transaction), and a known expensive region
that she would like to better understand. Blended escape analysis
consists of (i) running the scenario to collect the calling context
data for the specified region, and (ii) then running our escape anal-
ysis on that calling structure. Finally, object escape information

definition of object lifetime used in garbage collection, that is, the
period between object creation and collection by a GC.

is made available to the user as annotations on the calling context
information.

We have validated the approach on Trade5 a web server bench-
mark for retail brokerage applications. The multiple configurations
of Trade, using different combinations of commonly used frame-
works, mirror the variety of architectures found in real-world web
server applications. For each of four configurations, we run a sin-
gle transaction and analyze several expensive regions that perform
different types of functions. To evaluate the analysis results, both
for describing the object escape properties of code regions and for
identifying areas of object churn, several new metrics are intro-
duced.

There are many ways that the blended escape analysis results
could be used to aid performance understanding. First, by provid-
ing an upper bound on object effective lifetimes, the analysis can
sort out which objects are temporary with respect to specific call-
ing contexts. This is useful for pointing out regions that make the
most use of temporaries, as in the above SimpleDateFormat exam-
ple. Second, by identifying objects that do escape a given context,
the analysis can help explain the construction of longer-lived data.
Third, escaping objects can shed light on what a section of unfa-
miliar code was intended to produce. Finally, a reduced version of
the points-to information built during the course of the analysis can
expose how new objects are grouped into larger structures at each
calling context.

We have only begun to explore possibilities for making the re-
sults available to a user, and we demonstrate one such approach.
We start with a calling context tree (CCT) [2], aggregated from the
information gathered during the run. In our example we assume the
user explores this data with an existing performance analysis tool,
and has identified a smaller, suspect region to study. Because our
blended escape analysis is based on a static object abstraction, we
can further refine its results by using dynamic object allocation in-
formation collected during the run, to reflect the instances actually
allocated at each CCT node in the region, and the paths on which
these allocations occurred. This allows us to annotate the CCT with
the number of instances captured at each node, and thus highlight
for the user the calling contexts that are key users of temporaries.
In our example we show how in a region of 476 CCT nodes, we
can quickly find the single node responsible for using most of the
temporaries. We show how escape and connectivity information at
just a few nodes can help the user identify an optimization oppor-
tunity involving objects created at 9 distinct allocation sites, as far
as 6 call levels away.

Summary. The main contributions of this paper include:

• a new analysis paradigm for blending static and dynamic
analyses for performance understanding to achieve high pre-
cision for acceptable and practical cost,

• an instantiation of the paradigm in a blended escape analysis
that extends previous techniques by calculating contextual
escape information for an object in each method it reaches,

• an empirical study of the object escape properties for several
regions of the framework-intensive Trade benchmark, and

• a demonstration of novel uses of escape analysis for perfor-
mance understanding, by refining escape results to expose
how new objects are used.

Overview. In Section 2, we give some background on escape
analysis, and in Section 3 we describe our blended analysis tech-
nique, including some of the challenges of aligning the static and
5https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=trade6

dynamic program representations. In Section 4, we present de-
tails of our blended escape analysis and the implementation choices
made. In Section 5 we describe our experiments, the metrics col-
lected, and the results of our study. In Section 6 we show an exam-
ple of how the results of the analysis can aid performance under-
standing. In Section 7 we discuss related work and close with our
conclusions in Section 8.

2. ESCAPE ANALYSIS
Escape analysis computes an approximation of the effective life-

time of an object. It has been used traditionally for compiler opti-
mizations requiring either information about an object (i) escaping
a method invocation or (ii) escaping an allocating thread. The for-
mer (i) allows the object to be stack-allocated, (i.e., allocated on
the run-time stack rather than in the heap), reducing heap fragmen-
tation as well as average garbage collection time. The latter (ii) can
be used to avoid expensive synchronization operations.

When an object is allocated, the run-time stack contains the meth-
od invocations that form its allocation context. If during execution,
that object can be accessed beyond the lifetime of an invocation of
a method f in its allocation context, then we say that the object es-
capes f . Alternatively, an object is captured by method g, if g is in
its allocation context and the object cannot be accessed beyond the
lifetime of the invocation of g.6

Escape analysis examines the values of references to determine
the escape behavior of objects in a program. Each object therefore
has an associated escape state: globally escaping, non-escaping or
escaping through parameters and/or return values (arg-escaping).
For example, an object is globally escaping if it is referenced by
a static field, non-escaping if it only can be referenced within a
method through local reference variables, or arg-escaping if it es-
capes transitively through an argument or return value. In this last
case, the object will eventually either be captured by some other
method (i.e., become non-escaping) or will globally escape.

Several escape analysis algorithms have been proposed in the
literature. They can be divided into two main categories: set-based
and dataflow algorithms.

Set-based algorithms. Set-based algorithms use set constraints
as a mechanism to compute escape information. Three set-based
escape algorithms have been proposed for the Java language. All
of them are designed for speed over precision and are both context-
and flow-insensitive. Moreover, they associate escape state with
references rather than objects. Bogda and Hölzle [7] proposed an
algorithm for synchronization removal that is based on escape anal-
ysis. Their analysis is performed in two stages: the first stage iden-
tifies references that get stored in the heap, while the second stage
narrows down the set of references to those that allow local ob-
jects to escape. Gay and Steensgaard [11] proposed an algorithm
that relies on assigning a fresh status to a new object, which is then
propagated to methods and references, and used to compute escape
information. Beers et al. [5] have proposed an escape analysis al-
gorithm specifically designed to have its results encoded as class
file attributes and used at runtime by the Just In Time (JIT) com-
piler. Their algorithm uses two passes: the first computes approx-
imations of run-time types for references, and the second uses the
types computed in the first pass to find captured variables, (i.e.,
variables through which objects do not escape).

Dataflow algorithms. The dataflow escape algorithms are com-
monly accepted as being more precise than the set-based algorithms
but also are more expensive. Two dataflow algorithms have been

6The same terms can be used to describe the relation between ob-
jects and their allocating execution threads.

proposed in the literature: one by Whaley and Rinard [25] and one
by Choi et al. [8]. Both algorithms build a representation of the
relationships between references in a program (similar to points-to
analysis) and associate escape state information with an abstract
object. Each abstract object represents the set of possible objects
created at runtime at an allocation site. These two algorithms differ
in their treatment of strong updates and their representation of data
structures (i.e., object aggregates).

The algorithm by Choi et al. relies on connection graphs to rep-
resent relationships between references and abstract objects. Con-
nection graphs contain two main kinds of nodes: object nodes rep-
resenting abstract objects and reference nodes corresponding to vari-
ables or fields in the program. Nodes are decorated with their es-
cape property.

Example of escape analysis. The example in Figure 1 illustrates
the Choi et al. escape analysis. The code builds a linked list from
an array of primitives and then performs a linear search on it. The
type of data stored in the list depends on command line parameters
passed to the program and thus cannot be determined statically.
Figure 2 shows the static call graph for this application.

Escape analysis proceeds in a bottom-up manner on the call graph.
A connection graph is generated at each call graph node to repre-
sent a summary of the relevant data structures at that node and the
(current) escape state of abstract objects. Cycles in the call graph
are handled by iterating until the solution converges. Objects cre-
ated before a method invocation can be introduced into that method
through parameter-argument associations. Such objects are repre-
sented by phantom nodes in the connection graph that act as place-
holders, and play a key role in mapping information from callees to
caller during the interprocedural analysis.

Figure 3 shows the connection graph for the makeList(int[])
method. Rectangular nodes correspond to abstract objects, diamond-
shaped nodes to fields, round nodes to variables (or return values)
and dashed boxes to phantom nodes. For example, the node labeled
P1 corresponds to the array of integers passed to makeList(int[])
as a parameter. The method contains two allocation sites, S1 and
S2, which are represented by object nodes of the same name. The
1-limited7 analysis makes the S2 node point back to itself through
its next field. The S2 node also points to the S1 node through its
payload field, because information from the connection graph of
the Node(Data, Node) constructor called at S2 has been merged
into the connection graph for makeList. Finally, the return node
points to the return value, a Node object. Note that the connection
graph for makeList(char[]) is the same shape, except it contains
a node for a char[] instead of an int[].

After the connection graph has been built, escape states are prop-
agated along its edges. Because the data and return nodes are ini-
tially arg-escaping, this state is propagated to all nodes that are tran-
sitively reachable from them. Therefore, all nodes in the connection
graph are marked as arg-escaping, as shown.

Figure 4 shows the connection graph for the main method. The
analysis starts by creating the phantom object P3 for the args pa-
rameter. It then creates an object node for the array of integers
allocated at statement S3 and marks it initially as non-escaping.
Information from the connection graph for the makeList(int[])
method is then merged into the connection graph for main by map-
ping the actual argument of the call to the corresponding parameter
node in the callee’s connection graph. Therefore, S3 is mapped to
P1. Because makeList does not make P1 escape globally, the es-

7In points-to analysis, recursive data structures must be represented
by finite summaries of their possible shape. A standard representa-
tion uses k-limiting which retains the first k elements of a recursive
structure and approximates the rest by summary nodes[16].

public class ListExample {
static Node global_node;

public static Node find(Node head, Data data) {
for (Node n = head; n != null;) {

if (n.payload.equals(data)) return n;
n = n.next;

}
return null;

}

public static Node makeList(char[] data) {...}

public static Node makeList(int[] data) {
if (data == null) { return null; }

Node head = null;
for (int i = data.length - 1; i >= 0; i--) {

S1: Data d = new IntData(data[i]);
S2: head = new Node(d, head);

}
return head;

}

public static void main(String[] args) {
Node list; Data key;

if (args.length == 0) {
S3: list = makeList(new int[] {0,1,2,3,4,5});
S4: key = new IntData(3);

} else {
S5: list = makeList(new char[] {’a’, ’b’, ’c’});
S6: key = new CharData(’a’);

}
global_node = find(list, key);

}}

interface Data { }
class IntData implements Data {...}
class CharData implements Data {...}
class Node {...}

Figure 1: Code listing for escape analysis example

ListExample
makeList(char[])

CharData(char) Node(Data,Node)

Object
getClass()

Object()

IntData(int)

ListExample
makeList(int[])

ListExample
main(String[])

ListExample
find(Node,Data)

IntData
equals(Object)

CharData
equals(Object)

Figure 2: Call graph for ListExample

cape state of S3 does not have to be updated. The connection graph
for makeList(char[]) is merged similarly.

The return value of each call to makeList is a reference to a Node
that itself is used as an actual argument in the call to find in main,
(i.e., S2, S2’). After processing the call to find, the analysis merges
the connection graph of find with that of main. This results in an
edge between the global node field and each of the return values
from the calls to makeList. The processing of the call to find cre-
ates the cross edges between the two payload fields and their as-
sociated S1 objects, because the algorithm is not context-sensitive,
and therefore, cannot separate effects which occur on different calls
to find [22].

For ease of implementation, all static fields of classes referenced
are treated as instance fields of the singleton global object G, shown

Arg escape

S1: IntData

S2: Node

payload next

P1: int[]

datareturn

Figure 3: Connection graph for makeList(int[]) method

Global escape Captured Arg escape

G

global_node

S2: Node

payload next

S1: IntData

S2’: Node

payload next

S1’: CharData

S3: int[]

S4: char[]

S5: IntData

S6: CharData

P3: String[]

args

Figure 4: Connection graph for main method

as a phantom node. The G object is initially marked as globally es-
caping; after propagation, all objects reachable from the global no-
de field are marked as globally escaping as well.

3. BLENDED ANALYSIS
This section describes blended analysis, a new analysis paradigm

that performs an interprocedural static analysis on a calling struc-
ture obtained through dynamic analysis, thus capturing properties
of a single execution. There are practical uses for an analysis of
even a single execution. When confronted with poor performance
in an execution, we need to know more about that particular exe-
cution to understand which performance problems have occurred.
When debugging, we are concerned with the specific execution that
resulted in an error.

The goal of a blended analysis is to achieve the precision of a
fully dynamic analysis (to understand a particular execution) for
much less cost. Often, obtaining all needed information dynami-
cally is prohibitively expensive or impossible. For example, com-
puting escape analysis information dynamically would require track-
ing all object allocations and pointer updates. Studies such as [15]
have shown that obtaining such information precisely can slow down
the execution of a program by as much as two orders of magnitude.
Limits on the amount of overhead that can be tolerated while profil-
ing a deployed application in a production environment make this
approach impossible to use in practice. Blended analysis offers an
alternative by allowing a static analyses to be performed off-line to
gather the needed information, based on an easy to collect record of
the execution. The rest of this section discusses the blended anal-

ysis paradigm, its novel aspects as well as the new challenges it
raises.

Calling structure. Interprocedural static analysis requires infor-
mation about the possible callees at each analyzed call site. In tra-
ditional analysis, this information is usually computed in the form
of a call graph. Call graphs can be built with varying degrees of
precision (e.g., [13]). In a blended analysis, the calling structure
is obtained from an execution trace; therefore, virtual dispatch can
be resolved exactly. The execution trace is often represented as a
tree structure in which each edge represents a call. Call trees are
typically very large even for relatively short program runs, but for-
tunately, such detailed traces contain more information than may
be required. Smaller calling structures such as call graphs or Call-
ing Context Trees (CCTs) [2] can be easily obtained by aggregating
nodes in the call tree. Techniques also exist to collect CCTs di-
rectly at runtime (e.g., [26]). Sometimes, a problematic transaction
or a scenario (i.e., a partial transaction with specific functionality)
is identified in advance and the execution trace is limited to that part
of the application. In this case, the calling structure is restricted to
that part of the program to be examined by the analysis.

A dynamically obtained calling structure must be modified to be-
come amenable to static analysis. For instance, calls to static class
initializers appear in the trace as part of the class loading mecha-
nism. We represent them in the call graph as program entry points,
as in static analysis. In contrast, calls to run-time support code
such as the class loader or garbage collector are seen explicitly in
dynamic traces, but have no associated call site in bytecode. They
are currently discarded from the calling structure used in blended
analysis.8

As discussed above, when tracing a scenario, the full calling
structure for the execution is not known, and the analysis has to
be performed on a partial calling structure that often does not in-
clude all natural entry points for the application (e.g., main). The
analysis therefore must be started from arbitrary methods that often
have reference parameters. While it is possible to ignore such pa-
rameters and model them as phantom object references (i.e., refer-
ences to objects created outside of the scope of the entry methods),
it is more desirable to handle such objects in a more precise way.
Therefore, a root method is artificially created and used to invoke
other non-natural entry point methods with appropriate parameters.
Declared types are not sufficient to appropriately synthesize param-
eters, since they often correspond to non-instantiatable types (e.g.,
interfaces and abstract classes). Therefore, dynamic information
from the execution trace is used to compute a set of types for each
parameter, from which we synthesize its corresponding objects.

Dynamic language features. Dynamic class loading and reflec-
tion are typically difficult problems for a traditional static analy-
sis. A common approach to handling them is to require user input
specifying the set of all possible classes that can be loaded at run-
time and the set of all possible targets at each reflective call site.
Blended analysis does not require this effort, because at runtime
the set of loaded classes can be recorded. Even dynamically gen-
erated classes that do not exist statically (e.g., those generated by
the Java Virtual Machine to handle certain reflective features such
as proxy classes) can be recorded. The static analysis component
of the blended analysis therefore has access to all loaded classes.
Similarly, targets of reflective calls can be recorded.

Limitations. Since the dynamic calling structure represents only
calls that occur during a single execution (or set of executions) of a
given application, the analysis is safe only for that given execution,
rather than all possible executions as in traditional static analysis.

8This is an area for future exploration. In some applications, we
have observed costly object churn hidden in class loaders.

Global escape Captured Arg escape

G

global_node

S2: Node

payload next

S1: IntData

S3: int[]

S4: char[]

S5: IntData

S6: CharData

P3: String[]

args

Figure 5: Connection graph for main with dynamic call graph

In addition, we make the common assumption of software testing,
that the execution is deterministic and thus, repeatable, so that what
we learn from this execution can be used to predict what will occur
on subsequent executions with the same input.

4. BLENDED ESCAPE ANALYSIS
In this section we present a specific instance of the blended anal-

ysis paradigm, blended escape analysis, and describe its implemen-
tation framework and its limitations. We defined and implemented
a blended version of the escape analysis by Choi et al. [8]. As
mentioned in Section 2, this analysis associates escape information
with abstract objects. In order to be able to study how objects es-
cape in addition to which objects escape, we modified the analysis
to keep track of a distinct escape state for each object at each node
in the calling structure, rather than keeping only one escape state
per abstract object. Thus, the escape states of an abstract object
can be examined along a path in the calling structure; especially in
layered applications, it may be valuable to know that an abstract
object escapes on one path in the calling structure but is captured
on another path.

Example. If the code from Figure 1 is invoked without any com-
mand line arguments, it can be easily observed that the else part of
the branch in main is not executed. Therefore, the call graph for the
application will be the same as the one presented in Figure 2 with
the exception of the char-related nodes (shown in dashed boxes).

Figure 5 shows the corresponding connection graph obtained by
a blended analysis for the main method. The global node field
now only points to a list of IntData objects. Note that objects
S5 and S6 are present in the connection graph because the else
branch of the if statement still is analyzed even though it was not
executed.9

Implementation. We implemented a blended escape analysis
comprised of two components: one for dynamic analysis and the
other for static analysis. The dynamic analysis component is a
modified version of Jinsight, a software visualization tool based
on the Java Virtual Machine Profiling Interface (JVMPI), extended
to export aggregated calling structures from execution traces. We
turn off the just-in-time compiler (JIT) for the profiled application,
in order to avoid confusion in the dynamic call graph, for exam-
ple, caused by method inlining.10 While a more efficient tracing

9As future work we plan to explore pruning control flow graphs
using dynamic knowledge of the calls that were executed.

10We plan to explore relaxing this requirement in future work.

technique could be achieved, this Jinsight-based approach has the
advantage of allowing the results from our blended analysis to com-
plement the information that is already available to the Jinsight
user. Our tool is currently able to generate dynamic call graphs
and CCTs in addition to dynamic call trees. Because it relies on
the JVMPI, Jinsight does not provide information pertaining to call
sites within a method. We therefore assume that any call site which
matches an observed target method in signature and type is a po-
tential invocation of that method.

Our tool allows a user to generate the calling structure for an
entire trace or only part of a trace. The generated calling struc-
ture can also contain information about dynamic object allocations
at each node. While this information is not currently used by the
blended analysis, it is relevant to refining analysis results as dis-
cussed in Section 6. The modified Jinsight tool also monitors class
loading to record classes that may not be available statically.

The static component of the blended analysis framework is im-
plemented on top of the IBM WALA analysis framework.11 This
component can use static call graphs built using the WALA infras-
tructure or dynamic calling structures generated from our modified
version of Jinsight. This design permits future experiments with
different levels of calling context in the analysis. Models for native
methods have been hand-coded. Our current implementation uses
allocation sites as a representation of abstract objects, but could be
easily adapted to use other representations such as allocation infor-
mation from the actual run.

To handle reflection, we hand-coded specification templates for
reflective methods that are automatically instantiated for an ob-
served target of a reflective call. These specifications make reflec-
tive calls appear exactly like regular method calls, so that this com-
ponent also can be used to perform a safe static analysis on a static
call structure expanded with these reflective calls.

Limitations. Recall that as a blended analysis, our blended es-
cape analysis uses a calling structure derived from one execution;
therefore, the static analysis escape results derived are only safe
with respect to that particular execution. In this implementation,
dynamic information is used to prune the possible interprocedural
targets of a virtual call; other pruning uses are possible (see Sec-
tion 6). Within each method, the static analysis is flow-sensitive,
with no assumptions made about branches taken. All static allo-
cation sites within reachable methods in the calling structure are
assumed to be possibly executed. This implementation used a call
graph: use of other calling structure aggregations is possible.

5. EXPERIMENTS
Experimental Setup. Experiments with blended escape analy-

sis were performed on the Trade 6.0.1 financial transactions bench-
mark running on WebSphere 6.0.0.1 and DB2 8.2.0.12 The Trade
benchmark defines parameters that determine how it interfaces with
the WebSphere middleware. We experimented with four configura-
tions of Trade by varying two of the parameters: the run-time mode
and the access mode. The run-time mode parameter controls how
the benchmark accesses its backing database: the Direct configu-
ration uses the Java Database Connectivity (JDBC) low-level API,
while in the EJB configuration database operations are performed
via Enterprise Java Beans (EJBs). The access mode parameter was
set to either Standard or WebServices. The latter setting causes the
benchmark to use the WebSphere implementation of web services

11WALA is available under the Eclipse public license from
http://wala.sourceforge.net.

12Trade, WebSphere and DB2 are now available to academic re-
searchers through the IBM Academic Initiative.

(e.g., SOAP, WSDL and UDDI) to access transaction results. All
other parameters retained their default values. The four configura-
tions, having varying degrees of layering, reflect the variety seen in
real-world web server applications. The scenarios we tested imple-
ment identical functionality, regardless of the configuration. Note
that in the web services cases there are separate threads simulat-
ing a web services client and server; we analyzed portions of both
threads together, so that the functionality we capture is comparable
with the other configurations.

Data Points. For all four configurations, the benchmark was
warmed up with 5000 steps of the built-in scenario in order to al-
low for class loading and the population of caches. We then traced
a single login transaction using our modified version of Jinsight.
This transaction performs a number of functions. We chose three
major subtasks of the transaction as our scenarios for analysis:

• login : Authenticates a user using information stored in a
back-end database. In the process it updates the database
with the last login time.

• getHoldings : Retrieves a user’s portfolio information from
a back-end database into Java objects. The user’s data was 9
holdings records.

• jsp : Formats the user’s portfolio as a web page using the
Java Server Pages (JSP) technology. It also retrieves and for-
mats market summary data via a nested JSP. Note that for
this scenario, only three of the four configurations could be
run while ensuring comparable functionality.

Metrics. We define four metrics to capture aspects of the escape
behavior in aggregate, for a given scenario under study.
Distribution of escaping object states: For each abstract object, we
compute its final escaping state. Each object can either globally es-
cape on all paths in the calling structure, be captured on all paths,
or sometimes be captured and sometimes globally escape. We re-
port the percentage of objects that fall within each category.
Distribution of allocating nodes: For each node in the calling struc-
ture that contains at least one allocation site, we compute the total
number of abstract objects created at that node and the number of
those objects that are marked as non-escaping at that node.
Depth of escaping path: For those abstract objects that eventually
escape globally along some path in the calling structure, we com-
pute the length of the shortest path from the calling structure node
where the object is allocated to a node from which it escapes.
Depth of capturing path: For those abstract objects that are even-
tually captured on all paths in the calling structure, we compute the
length of the shortest path from the calling structure node where
the object is allocated to a node where it is captured.

Results. Table 1 shows a comparison of the size of each sce-
nario and configuration. Clearly the EJB and WebServices configu-
rations introduce additional complexity over Direct. The combined
effect of these additional frameworks, in the WebServices config-
uration, is not completely additive, however, suggesting that EJB
and WebServices make use of common frameworks. Interestingly,
the getHoldings and login scenarios have very similar values for
the number of invoked methods, number of allocated types, num-
ber of abstract objects and stack depth. While only login makes
database updates, the primary effect appears to be the shared us-
age of database access code. The additional instances reflect the
fact that getHoldings receives more records from the database, an
effect that is magnified in the more layered configurations. The
jsp scenario performs a different task, which leads to a noticeable
difference in these characteristics.

Scenario Config. Methods Invocations Instances Instance Abstract Max Stack
Allocated Types Objects Depth

get- Dct-Std 710 4,484 186 30 549 26
Holdings Dct-WS 3,308 127,794 5,522 166 2,517 53

EJB-Std 1,978 60,936 1,751 82 1,834 62
EJB-WS 4,479 184,288 7,088 210 3,747 72

login Dct-Std 752 3,497 131 30 571 26
Dct-WS 3,296 59,301 3,185 160 2,484 49
EJB-Std 1,991 14,983 551 77 1,812 49
EJB-WS 4,447 70,757 3,584 198 3,670 66

jsp Dct-WS 3,647 195,379 7,346 178 2,726 66
EJB-Std 2,336 250,715 7,511 96 2,027 67
EJB-WS 4,680 425,946 14,026 219 3,847 66

Table 1: Size comparison of all scenarios and configurations

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Dir-

Std

Dir-

WS

EJB-

Std

EJB-

WS

Dir-

Std

Dir-

WS

EJB-

Std

EJB-

WS

Dir-

WS

EJB-

Std

EJB-

WS

getHoldings login JSP

P
e
r
c
e
n
ta
g
e
 o
f
a
b
s
tr
a
c
t
o
b
je
c
ts

Bars from top to bottom represent:

never captured, sometimes captured,

always captured.

Figure 6: Breakdown of abstract objects by escape state

Distribution of escaping object states: Figure 6 shows the break-
down of abstract objects according to their final escape state on
paths in the call graph. It is clear that most objects eventually glob-
ally escape or are captured (i.e., observe the black and grey parts of
the bars). Also, on average there are more captured objects than es-
caping objects, indicating a significant use of temporaries in these
scenarios. Interestingly, there is little variation between these cat-
egories over all 11 data points, despite the significant variations in
underlying framework implementations.

Distribution of allocating nodes: Figure 7 a) shows the distri-
bution of allocating call graph nodes in getHoldings, according to
the number of abstract objects they allocate. This graph shows
that most methods allocate few objects. There are, however, a few
methods that allocate a surprisingly high number of objects (e.g.,
one method allocates 46 objects in the EJB configurations). Fig-
ure 7 b) shows the capturing behavior of allocating methods. It
can be observed that most allocating methods capture a small num-
ber of the objects they allocate; on average only about half of the
allocated objects are captured in their allocating method.

Depth of escaping path: Figure 8 shows the depth of escaping
path results for all four benchmark configurations in the getHold-
ings scenario. The depth of escaping path metric demonstrates
significant differences between configurations. For instance, the
Direct-Standard configuration, which is the simplest of all four,
has higher frequencies for longer shortest escape depths than the
other three configurations. The total number of allocated objects
in Direct-Standard is much lower than in the other configurations.
These two observations may mean that the complex configurations
introduce more short-lived objects than Direct-Standard. On the
other hand, because of the conservative nature of the escape analy-

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5 6 7 8 9 10 11 >11

Number of allocation sites

%
 o
f
a
ll
o
c
a
ti
n
g
 c
a
ll
 g
r
a
p
h
 n
o
d
e
s
 i
n
 g
e
tH
o
ld
in
g
s

Bars show in order, left to right:

Direct Standard, Direct WebServices,

EJB Standard, EJB WebServices

a)

0%

5%

10%

15%

20%

25%

30%

35%

1 2 3 4 5 6 7 >7

Number of locally captured abstract objects

%
 o
f
a
ll
o
c
a
ti
n
g
 c
a
ll
 g
r
a
p
h
 n
o
d
e
s
 i
n
 g
e
tH
o
ld
in
g
s

Bars show in order, left to right:

Direct Standard, Direct WebServices,

EJB Standard, EJB WebServices

b)

Figure 7: Allocations in getHoldings

0%

5%

10%

15%

20%

25%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 >16

Shortest escaping path depth in getHoldings

P
e
r
c
e
n
ta
g
e
 a
b
s
tr
a
c
t
o
b
je
c
ts
 t
h
a
t
e
s
c
a
p
e

 t
o
 c
a
ll
e
r
s
 o
f
th
e
ir
 a
ll
o
c
a
ti
n
g
 m
e
th
o
d

Bars show in order, left to right:

Direct Standard, Direct WebServices,

EJB Standard, EJB WebServices

Figure 8: Shortest escaping path depth

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

1 2 3 4 5 6 7 8 9 10 11 12

Length of Shortest Capturing Path In getHoldings

%
c
a
p
tu
r
e
d
 a
b
s
tr
a
c
t
o
b
je
c
ts

n
o
t
c
a
p
tu
r
e
d
 b
y
 a
ll
o
c
a
ti
n
g
 m
e
th
o
d

Bars show in order, left to right:

Direct Standard, Direct WebServices,

EJB Standard, EJB WebServices

Figure 9: Shortest capturing path depth

sis, complex data structures are more likely to be marked as glob-
ally escaping than simple data structures. This is more likely to
happen earlier on escape paths than for simpler data structures.

Only the Direct-WebServices and EJB-WebServices configura-
tions have escaping path depths that are longer than 40. This sug-
gests that the WebServices Trade configuration introduces much
longer call chains to build data structures through the additional
layers of frameworks that it uses. The results for login (not shown)
are very similar to those for getHoldings. It may be that uses of
these frameworks are stylized which causes this similarity; this is
a subject for future investigation. However, the results for the jsp
scenario (not shown) exhibit a significant variation from the pre-
vious scenario for objects that have escaping depths of at least 6
nodes. This suggests that the jsp scenario either uses more or dif-
ferent layers of framework.

Depth of capturing path: Figure 9 shows the results for the
depth of capturing path metric for all four benchmark configura-
tions in the getHoldings scenario. This metric has much smaller
depth values than the escaping depth metric, which suggests that
escaping objects used as part of persistent data structures, migrate
through more framework layers than captured objects, which are
more likely to be used as temporaries. As previously, the getHold-
ings and the login scenario have very similar behavior. While the
results for the jsp scenario (not shown) only differ significantly for
capturing depths of at least 6, they exhibit some variation for depths
as low as 2. This illustrates again that the jsp scenario differs from
the other two scenarios in terms of its framework usage.

6. PERFORMANCE UNDERSTANDING
WITH BLENDED ANALYSIS

In this section we demonstrate a use of blended escape analysis
to aid performance understanding. In our usage scenario we as-
sume the user is exploring dynamic information with a tool such
as Jinsight or ArcFlow, to identify suspect regions. The results of
the blended escape analysis are used to provide additional insight
into a region. Since our blended escape analysis is based on a static
object abstraction, we first refine our results, using the dynamic
information, to reflect allocations that actually occurred. This post-
processing step aids understanding by removing extraneous objects
from consideration at each calling context, and, more importantly,
by providing instance counts with each escape state, so the user can
assess the magnitude of a potential problem.

Our aim is to help the user understand the usage of temporary
data, to identify areas that can be optimized. First, by computing
the number of instances captured at each calling context, we can

Abstract Objs CCT Contexts
Capturing

Scenario Config. Total Seen Total Static Post.
get- Dct-Std 549 61 1,473 348 17
Holdings Dct-WS 2,517 503 18,267 3,919 322

EJB-Std 1,834 183 8,089 2,223 71
EJB-WS 3,747 606 25,012 5,848 373

login Dct-Std 571 64 2,057 467 28
Dct-WS 2,484 486 18,567 3,975 328
EJB-Std 1,812 195 9,303 2,549 86
EJB-WS 3,670 598 25,864 6,093 381

jsp Dct-WS 2,726 579 19,990 4,329 393
EJB-Std 2,027 268 9,074 2,497 130
EJB-WS 3,847 678 25,278 5,937 428

Table 2: Effect of postprocessing with dynamic allocation in-
formation

guide the user toward regions that make the heaviest use of tem-
poraries. We can also expose the connectivity of temporaries, to
enable their understanding as data structures rather than individual
objects. We can also allow the user to browse individual details to
understand the disposition of particular objects at each calling con-
text. In the rest of this section, we first describe how we postprocess
the blended escape analysis results using dynamic allocation infor-
mation. We then show how this information can enable discovery
of an optimization opportunity.

Reduced connection graphs. For the postprocessing stage, we
illustrate our approach using as input a CCT, decorated with the
number and types of instances allocated at each context. This in-
formation is derived from the original trace. For each context node
in the CCT we can then derive a reduced connection graph, re-
flecting what occurred in the run during the lifetime of the calls
that that context represents. We derive this from the connection
graph the blended escape analysis computed for the corresponding
method. First, we annotate each node in the connection graph with
the number of instances it could represent. These are the instances
allocated during the lifetime of the calls represented by this con-
text, excluding those captured along every path from the allocation
site to this node. At the same time, we remove connection graph
nodes representing objects that could not have been visible in this
context, because either no allocation was observed during this con-
text’s lifetime, or any allocations that did occur were through paths
that captured the object. We then summarize each reduced connec-
tion graph with the count of instances having each escape state. We
can use this to highlight calling contexts that capture any instances
(and that capture a large number of instances). Finally, for ease of
understanding, we simplify the connectivity in the reduced connec-
tion graphs, by eliding links other than those relating Java objects
to one another.

Table 2 shows the result of running the algorithm on each of
our eleven cases. The rightmost two columns show the number of
capturing CCT contexts we identify, first without and then with the
postprocessing step. By postprocessing with the CCT of dynamic
allocations we are able to reduce the number of contexts to consider
by at least an order of magnitude in all cases.

Note that the CCT we use in our illustration is a finer aggregation
than the call graph used by the blended escape analysis. Therefore,
for different CCT nodes representing the same method in the code,
the reduced connection graphs will differ, reflecting the way alloca-
tions actually occurred in different contexts. Note also that it is pos-
sible to use finer or coarser aggregations at this stage; these choices
have an impact on the accuracy of the instance counts. Evaluating
these tradeoffs is an area for further exploration.

HoldingDataBean_Ser.serialize()

HoldingDataBean_Ser.addElements()
9 captured

SimpleSerializer
serialize()

54 captured

DateSerializer
serialize()

27 captured

SerializationContextImpl
getSerializer()

10 captured

Double.toString()
9 captured

DateSerializer
getValueAsString()

108 captured

CalendarSerializer
getDateTimeValue-

AsString()
9 captured

GregorianCalendar
computeFieldsImpl()

9 captured

GregorianCalendar
computeFieldsImpl()

9 captured

via createCalendar()
108 arg-escaped

DateFormat.format()
9 captured

SerializationContextImpl
getSerializerFactory-

FromInterface()
9 captured

Figure 10: CCT for HoldingDataBean Ser.serialize
showing only the capturing contexts

Example: finding and understanding areas that use tempo-
raries. For our illustration we will explore the CCT for a portion of
the getHoldings scenario, in the Direct-WebServices configuration.
This region, headed by the method HoldingDataBean Ser.seri-
alize(), is responsible for formatting stock holding records into
the response portion of a SOAP message. Nine such records were
serialized in this run, each via one call to serialize(). In the
process, 290 new instances of 14 distinct classes were created. We
would like to understand how these instances were used.

Using the CCT and the results of the blended escape analysis
on this run, we build the reduced connection graph for each CCT
node. With these graphs we can compute the number of instances
captured at each CCT node. The CCT rooted at serialize() rep-
resents calls to 223 distinct methods, and has maximum depth of
20 from serialize(). Of the 476 CCT nodes in this region, there
were only 11 that captured any instances. In Figure 10 we show a
reduced version of the CCT, eliding everything but those few cap-
turing nodes. We annotate each node with the number of instances
it captures. In total, of the 290 instances allocated, 262 were cap-
tured.

We can see that the largest number of new instances were cap-
tured in DateSerializer.getValueAsString(). Every holding
record has a number of fields, including one field with the purchase
date. This code is formatting that date field. We can explore the
details of the objects captured there, using the reduced connection
graph shown in Figure 11. Each box represents an abstract object;
objects are arranged in clusters according to escape state. Each
object is annotated with the number of its instances visible at this
context. As we would expect for code whose purpose is formatting,
we see a number of Strings arg-escaping.

Arg-escaped

Captured

9 String
from

StringBuffer.toString()

9 char[]
from

StringBuffer(int)

9 char[]
from

StringBuffer.expandCapacity()

9 GregorianCalendar
from

 Calendar.createCalendar()

27 instances:
 18 char[]
 9 String

63 int[]
from

Calendar()
(3 sites)

18 boolean[]
from

Calendar()
(2 sites)

9 long[]
from

Calendar()

9 int[]
from

GregorianCalendar()

108 instances:
 72 int[]
 18 boolean[]
 9 long[]
 9 GregorianCalendar

Figure 11: Reduced connection graph for
DateSerializer.getValueAsString showing escape
state and connectivity of instances

In the cluster showing captured objects, the connectivity sug-
gests that 9 GregorianCalendar structures are captured here, with
99 associated arrays. This suggests that getValueAsString() is
causing a temporary GregorianCalendar structure to be built in
order to process the date field of each of the nine holding records.
GregorianCalendar is a Java library class used to convert times
between milliseconds and human-oriented units such as months,
days of the week, or minutes. The fact that this structure consists
of so many distinct objects suggests a complex initialization pro-
cess.13 An optimization would be to cache the GregorianCalendar,
possibly per thread. Before making this decision, we would like to
better understand what’s involved in creating these structures.

Exploring our original CCT, we find that DateSerializer.-
getValueAsString() calls GregorianCalendar.createCalen-
dar() (noted in Figure 10). Its reduced connection graph (not
shown) reveals that these GregorianCalendar structures arg-escape
that method. In the figure we can see that below createCalendar()
is a node, computeFieldsImpl(), that captures nine additional in-
stances (int arrays in this case). These subordinate temporaries are
”byproducts” of the construction of the GregorianCalendar, and
can be counted as a cost of that construction. In total then, we
would save the construction of 117 new instances, by reusing an
existing calendar constructed earlier.

Discussion. By focusing on where objects are used, rather than
on where they are allocated, we are able to aggregate disparate
events into a single summary for the user to focus on. The 117
temporaries in the above example were allocated at 9 distinct sites
across 4 methods, some as far as 6 levels from the context under
consideration for optimization. A single summary helped highlight
the reason for 45 percent of the temporaries in this example.

13The connectivity information is a conservative approximation.
One challenge in blended analysis is to explain to the user the de-
gree of certainty of different aspects of the results. In this example,
the library does in fact build this complex structure each time.

We note also that many of the allocation sites, particularly for
lower-level framework objects, are called from many paths in the
larger getHoldings CCT, with varied escape behavior. This is typ-
ical of applications which make heavy use of frameworks. For ex-
ample, 540 Strings were allocated in StringBuffer.toString,
and are potentially captured at 42 different nodes in the call graph
for getHoldings. Yet in our example region, just 9 instances were
allocated; all arg-escaped from the context we were studying, and
were captured by the calling context, DateSerializer.serialize.
By postprocessing the blended escape analysis using the CCT, and
by retaining distinct escape information along different paths in the
blended analysis, we were able to provide results relevant to the re-
gion we were studying. The postprocessing step also allowed us to
remove extraneous information. In the above example, the original
connection graph for getValueAsString() showed that either a
temporary BuddhistCalendar or GregorianCalendar may have
been used; the reduced connection graph shows that we need only
consider the GregorianCalendar.

In summary, by utilizing additional dynamic information, the
postpass is able to filter the static analysis results for the user, thereby
improving precision. A comparison of the third and fourth columns
in Table 2 shows that in any given run, object creations occurred at
only a small percentage of the allocation sites. One area for fur-
ther study is to understand the degree to which each component of
the additional dynamic information – the object creations versus
their contexts – contributes to the improvement in precision. Fur-
thermore, it is possible that the blended escape analysis algorithm
could employ additional dynamic information, such as the object
instances created, to render the static analysis more precise (i.e.
closer to a dynamic analysis). Specifically, we would like to use
knowledge of created object instances to prune the intraprocedu-
ral paths explored during the static analysis. We will examine this
variant of blended escape analysis in future work.

7. RELATED WORK
Since the research in this paper can be related to much existing

static and dynamic analyses, space limitations force a focus on the
two most relevant areas of research: studies of framework-intensive
systems and examples of previous combined static/dynamic analy-
ses.14 In Section 2, related escape analysis algorithms have already
been described. There also are dynamic analyses of object lifetime
(e.g., [23]), which differ in their goal from our work, as they are
aimed at approximating the last use of an object in order to opti-
mize garbage collection, whereas our analysis finds a usage region
for an object in the call graph. Moreover, these analyses have not
been shown as scalable to framework-based applications, the focus
of our work.

Studies of framework-based systems All the work summarized
in this section shares our goal: to better understand the performance
of framework-based applications. However, these previous studies
all are based solely on dynamic analysis, rather than a combination
of static and dynamic analyses, and they primarily concentrate on
identifying areas with performance problems, either in the program
calling structure or in data structures in dynamic heap snapshots.
The last study reported in this section combines dynamic informa-

14Note: we do not discuss static or dynamic algorithms for shape
analysis of the heap for two reasons: (i) the shape of data structures
is a byproduct of our connection graphs, but the analysis focus is
on effective object lifetimes for a particular execution, (ii) static
shape analyses, which face scalability challenges when applied to
framework-based applications, report data structures possible in the
heap over all executions, information not fine-grained enough to aid
understanding of performance problems in these codes.

tion with manual inspection, to categorize data transformation op-
erations. In contrast, blended escape analysis is a combined static
and dynamic analysis which extracts semantic data about object us-
age in a framework-based application to help explain performance
difficulties. The specific performance problem addressed here, ob-
ject churn, was not studied in this previous work.

Ammons et al. [3], presented a dynamic analysis tool, Bottle-
necks which helps a user explore execution profiles of framework-
based applications in order to find performance bottlenecks. Four-
teen bottlenecks were found by examining two different versions
of Trade3 running on Websphere. This study showed the complex-
ity of the calling structure of these applications by measuring max
and mean depth of call paths and out-degree of call nodes. Srinivas
et al. [24] presented a dynamic analysis technique which identifies
interesting method invocations, those that account for a specified
cumulative percentage of execution cost, in components selected
by the user. The paper considers how to summarize execution costs
in a meaningful way in framework-based codes, using a combina-
tion of base cost (i.e., the cost of an invocation minus the cost of
its callees) and cumulative cost (i.e., the cost of an invocation plus
the cost of its callees). The technique was tested successfully on
e-commerce applications and on parts of the Eclipse IDE.

Two tools have been developed at IBM Research to interpret dy-
namic heap snapshots of framework-based programs, for aiding un-
derstanding of program memory usage, especially for longer-lived
data. Leakbot [19], an automated and scalable memory leak detec-
tion tool, finds the data structures in two successive execution heaps
obtained early in execution, identifies those data structures which
are likely to be leaking by using structural and temporal properties,
and then selectively tracks objects in those data structures, allow-
ing identification of potentially leaking structures. YETI is a tool
for identifying and summarizing key data structures in a heap snap-
shot [18]. YETI derives an object reference graph for the heap, to
show all existing relationships between objects. Clever graph re-
ductions are applied to highlight the key structural relations; these
produce a backbone of the reduced graph that represents thousands
of objects, but contains only tens of nodes.

Mitchell et al. [20] presented a new characterization of the run-
time behavior of framework-based systems, obtained by combining
dynamic analysis with manual inspection of source code. The au-
thors present a decomposition of execution events as a hierarchy
of dataflow diagrams, showing the flow of logical data through a
series of physical transformations. This decomposition is used to
organize the aggregation of operation costs in units of method calls
and object creations. The emphasis of this paper is on develop-
ing high-level abstractions of behavior that organize the observed
method calls into identifiable and recognizable groupings, to better
understand their function and their cost.

Combined static and dynamic analyses There have been pre-
vious combinations of static and dynamic analyses for solving a
wide range of problems, including an early overview paper on this
topic [10]. Typically, the static analysis results are used to direct
where the dynamic analysis should be applied. In contrast, the
blended analysis paradigm uses the dynamic analysis results to en-
able more precise and focused static analysis. Given space limita-
tions, we restrict our remarks to those previous combined analyses
similar in their use of dynamic analysis to our blended analysis.

Gupta et al. [14] used dynamic information – observed break-
points and procedure calls/returns – to prune infeasible control flow
while calculating a static slice to explain program behavior for a
specific execution. Breakpoint information can be used to distin-
guish feasible predicate branches in control flow graphs. Proce-
dure calls/returns enable more accurate calculation of interproce-

dural paths during static slicing. Groce et al. also used dynamic
information to prune infeasible control flow, while worked on im-
proving model checking for C programs. The authors interpreted
failure traces of events by identifying a subset of executions con-
sistent with the trace, and then slicing the code while eliminating
portions that were inconsistent with the trace, thus potentially in-
creasing the precision of the slice [12]. The use of dynamic analysis
to enhance the precision of a subsequent static analysis in these two
papers is similar to the approach in blended analysis, but the code
under analysis is not framework-based nor object-oriented.

Mock et al. [21] substituted dynamic points-to information for
static points-to relations, to restrict the dependences used in static
slicing to those observed during debugging, and thus increase the
utility of the slices obtained. However, experimental findings were
disappointing because slices only improved where function pointer
references could be exactly resolved. This work, similar to blended
analysis, restricts the static analysis to a particular execution, in that
known values for function pointers are used.

Artzi et al. [4] presented a combined (or staged) static and dy-
namic parameter mutability analysis for Java, in which different
analysis phases are executed in a loosely-coupled pipeline. Com-
munication between the stages is through the derived mutability
data. This work differs from blended analysis in terms of the cou-
pling between the static and dynamic analyses, which is through
the data solution being computed, rather than the program repre-
sentation. Nevertheless, it is similar in presenting a framework
within which specific analysis choices can be instantiated and thus,
different static/dynamic analysis combinations tried. Although the
blended escape analysis presented here has only two analysis phases,
the blended paradigm allows for additional analysis passes.

8. CONCLUSIONS
The growing use of libraries and frameworks in commercial soft-

ware has led to an increase in runtime complexity. Understanding
performance problems in these layered applications can be diffi-
cult. To aid in this task, we have defined a new analysis paradigm
that blends static and dynamic techniques. We have designed a
blended escape analysis for approximating object effective life-
times, to help explain how temporary structures are built and used.
Experiments with several scenarios in Trade have yielded aggregate
results on the use of newly created objects in layered systems. We
have also shown how effective lifetime and connectivity informa-
tion obtained from a blended escape analysis, in combination with
additional dynamic information, can aid in identifying performance
bottlenecks in a particular application.

Acknowledgements. We would like to thank Edith Schonberg
and Nick Mitchell for providing valuable feedback and ideas, as
well as the anonymous reviewers for their helpful comments.

9. REFERENCES
[1] W. P. Alexander, R. F. Berry, F. E. Levine, and R. J. Urquhart. A

unifying approach to performance analysis in the Java environment.
IBM Systems Journal, (1):118–134, 2000.

[2] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware
performance counters with flow and context sensitive profiling. In
Proc. of the ACM SIGPLAN Conf. on Prog. Lang. Design and Impl.
(PLDI), pages 85–96. ACM Press, 1997.

[3] G. Ammons, J.-D. Choi, M. Gupta, and N. Swamy. Finding and
removing performance bottlenecks in large systems. In Proc. of the
European Conf. on Object-Oriented Prog. (ECOOP), 2004.

[4] S. Artzi, M. Ernst, D. Glasser, and A. Kiezun. Combined static and
dynamic mutability analysis. Technical Report
MIT-CSAIL-TR-2006-065, MIT CS and AI Lab., Sep. 2006.

[5] M. Q. Beers, C. H. Stork, and M. Franz. Efficiently verifiable escape
analysis. In Proc. of the European Conf. on Object-Oriented Prog.
(ECOOP), pages 96–122. Springer, 2004.

[6] B. Blanchet. Escape analysis for object-oriented languages:
application to Java. In Proc. of the ACM SIGPLAN Conf. on
Object-Oriented Prog. Sys., Lang. and Appl. (OOPSLA), pages
20–34. ACM Press, 1999.

[7] J. Bogda and U. Hölzle. Removing unnecessary synchronization in
Java. In Proc. of the ACM SIGPLAN Conf. on Object-Oriented Prog.
Sys., Lang. and Appl. (OOPSLA), pages 35–46. ACM Press, 1999.

[8] J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P.
Midkiff. Stack allocation and synchronization optimizations for Java
using escape analysis. ACM Trans. on Prog. Lang. and Sys.,
25(6):876–910, 2003.

[9] W. DePauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, and
J. Yang. Visualizing the execution of java programs. In Software
Visualization: State of the Art Survey, LNCS 2269, 2002.

[10] M. Ernst. Static and dynamic analysis: Synergy and duality. In Proc.
of the Wshp on Dynamic Analysis (WODA), 2003.

[11] D. Gay and B. Steensgaard. Fast escape analysis and stack allocation
for object-based programs. In Proc. of the Int’l Conf. on Compiler
Const. (CC), pages 82–93. Springer-Verlag, 2000.

[12] A. Groce and R. Joshi. Exploiting traces in program analysis. In
Proc. of Int’l Conf. on Tools and Algs for the Construction and
Analysis of Systems (TACAS), 2006.

[13] D. Grove and C. Chambers. A framework for call graph construction
algorithms. ACM Trans. on Prog. Langs and Sys., 23(6):685–746,
2001.

[14] R. Gupta, M. L. Soffa, and J. Howard. Hybrid slicing: Integrating
dynamic information with static analysis. ACM Trans. on SE and
Meth., 6(4), Oct. 1997.

[15] M. Hertz, S. M. Blackburn, J. E. B. Moss, K. S. McKinley, and
D. Stefanovic. Generating object lifetime traces with Merlin. ACM
Trans. on Prog. Lang. and Sys., 28(3):476–516, 2006.

[16] N. Jones and S. Muchnick. Flow analysis and optimization of
lisp-like structures. In Program Flow Analysis: Theory and
Applications. Prentice Hall, 1982.

[17] D. Mandelin, L. Xu, R. Bodik, and D. Kimelman. Jungloid mining:
helping to navigate the api jungle. In Proc. of the ACM SIGPLAN
Conf. on Prog. Lang. Design and Impl., pages 48–61, 2005.

[18] N. Mitchell. The runtime structure of object ownership. In Proc. of
the European Conf. on Object-Oriented Prog. (ECOOP), 2006.

[19] N. Mitchell and G. Sevitsky. Leakbot: An automated and lightweight
tool for diagnosing memory leaks in large Java applications. In Proc.
of the European Conf. on Object-Oriented Prog. (ECOOP), 2003.

[20] N. Mitchell, G. Sevitsky, and H. Srinivasan. Modeling runtime
behavior in framework-based applications. In Proc. of the European
Conf. on Object-Oriented Prog. (ECOOP), 2006.

[21] M. Mock, D. Atkinson, C. Chambers, and S. Eggars. Improving
program slicing with dynamic points-to data. In Proc. of the Conf. on
the Foundations of SE (FSE), 2002.

[22] B. G. Ryder. Dimensions of precision in reference analysis of
object-oriented programming languages. In Proc. of the 12th Int’l
Conf. on Compiler Constr., pages 126–137, April 2003.

[23] R. Shaham, E. Kolodner, and M. Sagiv. Estimating the impact of
heap liveness information on space consumption in java. In Proc. of
the Int’l Symp. on Memory Management, 2002.

[24] K. Srinivas and H. Srinivasan. Summarizing application
performance from a components perspective. In Proc. of the Conf.
on the Foundations of SE (FSE), pages 136–145, September 2005.

[25] J. Whaley and M. Rinard. Compositional pointer and escape analysis
for Java programs. In Proc. of the ACM SIGPLAN Conf. on
Object-Oriented Prog. Sys., Lang. and Appl. (OOPSLA), pages
187–206. ACM Press, 1999.

[26] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi. Accurate,
efficient, and adaptive calling context profiling. In Proc. of the ACM
SIGPLAN Conf. on Prog. Lang. Design and Impl. (PLDI), pages
263–271, 2006.

