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ABSTRACT
Security transformation is to transfer applications to meet security

guarantees. How to prioritize Android apps and find suitable trans-

formation options is a challenging problem. Typical real-world apps

have a large number of sensitive flows and sinks. Thus, security ana-

lysts need to prioritize these flows and data sinks according to their

risks, i.e., flow ranking and sink ranking. We present an efficient

graph-algorithm based risk metric for prioritizing risky flows and

sinks in Android grayware apps. Our risk prioritization produces

orderings that are consistent with published security reports.

We demonstrate a new automatic app transformation framework

that utilizes the above prioritization technique to improve app se-

curity. The framework provides more rewriting options than the

state-of-art solutions by supporting flow- and sink-based security

checks. Our prototype ReDroid is designed for security analysts

who manage organizational app repositories and customize third-

party apps to satisfy organization imposed security requirements.

Our framework enables application transformation for both bench-

mark apps and real-world grayware to strengthen their security

guarantees.

CCS CONCEPTS
• Security and privacy→ Software security engineering; Soft-
ware security engineering; Software reverse engineering;

KEYWORDS
Android Rewriting, Security Transformation, Sink Prioritizing

1 INTRODUCTION
The research on mobile app security has been consistently focused

on the problem of how to differentiate malicious apps from benign

apps. Static data-flow analysis has been widely used for screening

Android apps formalicious code or behavioral patterns (e.g., [20, 23–

25]). In addition, the use of machine-learning methods enables au-

tomatic malware recognition based on multiple data-flow features

(e.g., [9, 28, 29, 32]).
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These solutions are useful for security analysts who manage

public app marketplaces or organizational app repositories. An or-
ganizational app repository is a private app sharing platform within

an organization, the security of apps on which is regulated and

approved by the organization based on its security policies and

restrictions. The organization may be a government agency where

employees with certain security clearance levels are required to

install apps from the specified repository to their work phones. For

example, the DoD (Department of Defense) has its own private

app store for DoD employees [4]. The organization may also be a

company, where employees possessing highly sensitive proprietary

information and trade secrets are required to install apps compliant

with the company’s IT security policies.

In these scenarios, a security analyst is often faced with a new
type of apps, besides malware and benign apps. These apps are

mostly benign, but with undesirable behaviors that are incompat-

ible with the organization’s policies. Such apps or app libraries

may be from trustworthy companies or developers, and may have

passed standard conventional screenings. However, the app con-

tains potentially sensitive data flows that are incompatible with the

organization’s policies. As requesting developers to change their

code is oftentimes infeasible, current practices are to either reject

the app or reluctantly accept it, despite its undesirable security

behaviors. A similar dilemma is faced by individual users as well.

For example, a privacy-conscious user may wish to dynamically re-

strict an app’s location sharing at runtime according to her specific

preferences.

Our work is motivated by this new need of security customiza-

tion of apps. A general-purpose framework for customizing the

security of off-the-shelf apps would be extremely useful and timely.

Such a framework involves several key operations: (1) [Prioriti-
zation] to identify problematic code regions in the original app,

(2) [Transformation] to modify the code and repackage the app.

In addition, post-rewrite monitoring may be needed, if the access

or sharing of sensitive data is determined dynamically. We have

made substantial progress towards these goals. We report several

new techniques, including quantitative risk metrics for ranking

sensitive data flows and sinks in Android apps.

Existing app rewriting solutions for Android are limited in sev-

eral aspects. These solutions are specific to certain code issues and

are not designed for general-purpose security customization. For

example, Davis and Chen performed an HTTP-specific rewriting

that ensures the use of HTTPS in the retrofitted apps [18]. Rewrit-

ing for the Internet permission check has also been performed [22].

AppSealer [34] proposed a rewriting solution to mitigate compo-

nent hijacking vulnerabilities. Due to the specific rewriting needs,

the target locations to be rewritten are relatively straightforward to
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identify. Most of the existing solutions use direct parsing for code-

region identification. Yet, oftentimes it is unclear which regions

of the code need to be modified in order to achieve the best risk

reduction. We found that it is not uncommon for real-world apps to

have more than 100 sensitive flows (tainted flows based on SuSi la-

beling). If additional post-rewrite monitoring is required at runtime,

then modifying every single sensitive flow or sink may substantially

slow down the performance. Because the rewriting process at the

binary or bytecode level is error-prone, minimizing the impact of

rewriting on the original code structure is also important.

In this paper, we demonstrate a new security customization

technique for Android apps. We first define a quantitative risk

metric for sensitive flows and sinks in a taint-flow. For sensitive

sinks, the metric summarizes all the sensitive flows that a sink is

involved in. We design an efficient graph algorithm that computes

the risks of all sensitive sinks in time linear to the size of a directed

taint-flow graph G, i.e., O ( |E |), where |E | is the number of edges

in G. (A taint-flow graph is a specialized data-flow graph that only

contains data flows originated from predefined sensitive sources

and leading to predefined sensitive sinks.) The risk value of a sink is

calculated based on all the sensitive API calls made on the sensitive

data flows leading to a sink. A sink may be associated with multiple

such sensitive flows.

In order to rank risky sinks, we map sensitive API calls to quanti-

tative risk values, using a maximum likelihood estimation approach

through parameterizing machine-learning classifiers. These clas-

sifiers are trained with permission-based features and a labeled

dataset. Then, we use the risk metric to identify and rewrite the

sinks associated with the riskiest data flows without reducing the

app’s functionality.

In addition to sink prioritization, we also demonstrate a new

and automatic code rewriting technique that can verify and ter-

minate the riskiest sink at runtime. For the Android-specific inter-
component communication (ICC) mechanism, we propose ICC relay
to redirect an intent. We replace the original intent with a relay

intent; the relay intent then redirects the potentially dangerous

data flow to an external trusted app for runtime security policy

enforcement. The communication between the modified app and

the trusted app is via explicit-intent based ICC. The trusted app

is where data owner may implement customized security policies.

The technical contributions of our work are summarized as follows.

(1) We present a new sink-ranking algorithm that is useful for

prioritizing sensitive data flows in Android apps. Our algo-

rithm relies on two main technical enablers. The one en-

abler is a quantitative risk metric for sensitive flows and

sinks in taint-flow graphs that is based on machine learn-

ing techniques. The other enabler is an efficient O ( |E |)-time

taint-graph based risk-propagation algorithm that ensures

the maximum coverage of all sensitive sources and internal

nodes of a sink.

(2) We implement a new app transformation framework Re-
Droid 1

. We use ReDroid to demonstrate the usage of rewrit-

ing in defending ICC hijacking and privacy leak vulnera-

bilities. Our rewriting shows high flexibility, e.g., all the

1
ReDroid is short for Rewriting AnDroid apps.

benchmark apps are successfully rewritten for log moni-

toring. Our rewriting supports automatic flow-based and

sink-based rewriting.

(3) We performed an extensive experimental evaluation on the

validity of permission risks and sink rankings. Our inspection

indicates that top risky sinks found by ReDroid are consistent

with external security reports. We demonstrate the effective-

ness of both inter-app ICC relay and logging-based rewriting

techniques. Our rewriting is practical by successfully rewrit-

ing benchmark apps and real-world grayware. The trans-

formed app enables one to monitor runtime activities involv-

ing Java reflection, dynamic code loading, and URL strings.

We automate the sink prioritization and app transformation via

rewriting. Our ranking algorithm supports both sink ranking and
flow ranking. However, due to the interdependencies of flows, cut-

ting a flow in the middle may cause much more runtime errors than

removing the flow’s end-point sink. In addition, a sink aggregates

multiple flows, making them more risky than a single flow. Thus,

we focus on rewriting sinks.

2 OVERVIEW
We first show a few examples to motivate the needs for ranking

sensitive data flows and rewriting apps for security.

Security Transformation via App Rewriting. Table 1 sum-

marizes the security applications with our rewriting. Our rewriting

identifies multiple vulnerabilities such as ICC hijacking and privacy

leak. We rewrite apps to enforce security policies, these security

policies help a security analyst efficiently detect vulnerable activi-

ties and offer security mitigations. Our rewriting framework can

prevent vulnerabilities in stand alone apps and vulnerabilities in

app communication channels. We elaborate our rewriting feasibility

with more details in Section 4.1.

Automation of Prioritization and Rewriting. The prioriti-

zation and rewriting of an app are both automatic. During the

prioritization analysis, our approach reports sensitive sinks, along

with their risk values and taint flows. Based on the analysis results,

security analysts could customize rewriting strategies for their in-

teresting sinks, e.g., selecting top-k sinks. The selected sinks are

automatically rewritten by our framework. The app is recompiled

with the security policy enforced for post-rewrite monitoring.

Flow and Sink Prioritizing. Apps typically have a large num-

ber of sensitive flows. In order to show the importance of ranking

these flows, we conduct an experiment on 100 apps that are ran-

domly selected from Android Genome Database [35]. We found a

single app can contain more than 20 distinct sinks. On average, an

app contains more than 100 sensitive flows. These statistics indicate

the complexity of sensitive flows and sinks in a single app. An ap-

propriate prioritizing mechanism would help a security analyst to

facilitate the app monitoring, e.g., identifying most sensitive flows

and sinks. The motivating experiment indicates the need for priori-

tizing sensitive flows and sensitive sinks according to systematic

quantitative metrics.

A Toy Example. In Figure 1, we use a toy taint-flow graph

(simplified from GoldDream) to illustrate several possible sink-

ranking methods and how they impact security. The figure contains

two sensitive source (s1 and s2), three sensitive sinks (t1, t2, and



Type Vulnerability

Our Framework

Addresses

Inter-app Com. ICC hijacking ✓
(IAC) Collusion ✓

Stand-alone Privacy Leak ✓
App Reflection ✓

String Obfuscation ✓
Dynamic Code Loading ✓

Table 1: The vulnerabilities that can be identified by our
rewriting framework. Our rewriting framework can iden-
tify vulnerabilities in stand alone apps and vulnerabilities
in app communication channels.

s1: getDeviceID

n1

PHONE_ST

s2: getLocation

LOCATION

n2
n3: addMessage

READ_SMS

t1: sendTextMes.

SEND_SMS

t2: sendHttpPost

INTERNET

t3: sendTextMes.

SEND_SMS

Figure 1: An example of a taint-flow graph. Nodes represent
function calls or instructions. Permissions (shownat the bot-
tom of a node) associated with the functions (shown at the
top of a node) are shown. Directed edges represent data de-
pendence relations.

t3) and several internal nodes, one of which involves a sensitive

function. Permissions associated with the functions are shown at

the bottom of nodes. Consider two approaches for ranking the risks

of sensitive sinks: a sink-only approach and a source-sink approach.

In the sink-only approach, the risk level of a sink is determined only

by the sink’s function name and the permission it requires. This

approach clearly cannot distinguish two different sinks sharing

the same function name, e.g., t1 and t3. It is also unclear how to

compare the risk level of t1’s and t2’s permission.

In a more complex source-sink approach, the risk of a sink is

determined not only by the sink itself, but also by all of its sensitive

sources. For example, in Figure 1 the risk of sink t2 is associated
with the permission set (PHONE_ST, RECEIVE_SMS, and INTER-

NET), where the first two permissions are from the two sources s1
and s2, and the last permission is from the sink itself. Although this

source-sink approach also needs a method to quantify the risks of

permissions, it is more desirable than the sink-only method. The

reason is that the source-sink approach more accurately reflects

sensitive flow properties. This example indicates that a reasonable

sink-ranking algorithm needs 1) to capture internal data depen-

dences; 2) evidence-based quantification of risk. In ReDroid, we

evaluate and compare several sink ranking mechanisms in terms

of how they impact app rewriting.

2.1 Workflow
We briefly describe our workflow with key operations.

(1) Taint-flow Construction. We generate the taint-flow graph

that describes sensitive data flows from sources to sinks. Nodes

in the taint-flow graph are mapped to their self risks, as defined

above. This mapping process may vary, if different risk aggregation

function is used. We demonstrate two such functions, source-sink

aggregation and end-to-end aggregation.

(2) Risk Propagation to Sinks. The operation outputs the ag-

gregate risk set for each sensitive sink. The propagation needs

to efficiently traverse the data-dependence edges from sources to

sinks. The key in designing the propagation algorithm is to visit

each graph edge a constant number of times, realizing O ( |E |) com-

plexity, where |E | is the size of the graph edges. We present our

solution in Section 3.1.

(3) Permission-Risk Mapping. We follow a maximum likelihood

estimation approach to produce a risk value for each permission

empirically. Intuitively, the risk of a permission is high, if the permis-

sion is often requested by malware apps, but rarely by benign apps.

With labeled training data and machine learning (ML) classifiers

with permission-based features, we automatically map permissions

to risk values r ∈ [0, 1]. We present our ML-solution in Section 3.2.

(4) Flow-based Sink Prioritization. To obtain the risk score of

a sink, one needs to quantify the risk associated with the sink’s

aggregate permission. The risk score of a sink is computed by its cor-

related permissions with risk values. We rank the sinks according

to their risk scores. The risk score of sinks captures its importance

and security properties in the app.

3 RISK METRICS AND COMPUTATION
We aim to quantitatively compute and rank risks of sinks in an app.

Our approach is to construct the sensitive taint-flow graph and

compute the set of permissions associated with each flow through

graph propagation algorithms. The aggregation algorithms find

the accumulated risk factors (naming permissions) of a source-sink

path in O ( |E |) complexity, where |E | is the number of edges in the

graph. Our risk is based on the permissions of sensitive APIs.

Next, we describe technical details of our operations. We present

risk propagation in Section 3.1, permission mapping in Section 3.2

and rewriting in Section 3.3.

3.1 Risk Propagation
The purpose of risk propagation is to aggregate all risky flows

associated with a sink.

Graph ConstructionWe use Android-specific static program

analysis to obtain the taint-flow graph G (V ,E, S,T ), which repre-

sents the data dependence among code statements in the app from

sensitive sources to sinks, where n ∈ V is the statement in the code

and e = {n1 → n2} ∈ E represents that n2 is data dependent on n1,
S ⊆ V is the sensitive source set S andT ⊆ V is the sensitive sink set.

Loops may occur due to control dependence, e.g., while loops. Our
subsequent permission aggregation only computes over distinct

permissions. Because each loop execution involves the same set of

permissions, we follow each loop only once. This reduction gener-

ates a directed acyclic graphG (V ,E, S,T ). We then apply transitive

reduction transforms G (V ,E, S,T ) into G ′(V ,E ′, S,T ).
Risk Propagation to Sinks. With the assignment of all the

statements, we perform risk propagation analysis algorithm on the

graph G ′(V ,E ′, S,T ). Each node in the graph is initialized with the

corresponding self risk and the empty set as its aggregate risks.



Rewriting

Granularity

RetroSkeleton [18]

and [10][19]

ReDroid

(Ours)
Package-level (Repackage) ✓ ✓
Class-level (Class Inject) ✓ ✓
Method-level (Method Invoc.) ✓ ✓
ICC-level (Intent Redirect) – ✓
Prioritization-based Rewriting – ✓

Table 2: Comparison of ReDroid with existing Android
bytecode rewriting frameworks. Method invoc. is short for
method invocation to invoke a customized method instead
of an original method. RetroSkeleton is the standard rewrit-
ing framework for Android apps. Our rewriting supports
more Android-specific rewriting strategies than RetroSkele-
ton.

E2E aggregation for a sink t generates a set that consists of all
the distinct permissions corresponding to the taint-flow subgraph

that is reversely rooted by t . The difference between the two ag-

gregations is on the sensitive internal nodes. The SS aggregation

only considers the sensitive sources and sinks, whereas the E2E

aggregation includes the permissions of internal nodes. The E2E

aggregation produces all the distinct permissions that are required

by the taint-flow subgraph that is reversely rooted by a sink t .

3.2 Permission-Risk Mapping
We follow a maximum likelihood estimation approach [31, 33], to

empirically map a permission p to their quantitative risk valuew (p).
We parameterize binary classifiers with permission-based features.

The task of binary machine learning classifiers is to label an un-

known app as benign (negative) or malicious (positive). The optimal

permission-risk mapping and configuration should maximize the
accuracy of a binary classifier, i.e., low false positives (false alarms)

and low false negatives (missed detection).

We use the feature-importance value of a permission as a se-

curity measurement for the permission sensitivity. An important

permission (e.g., READ_SMS) is an indicator of a sensitive app

from empirical studies [9]. A permission (e.g., INTERNET) with low

sensitivity has a low importance value. Our method automatically

maps a permission string into a quantitative risk value.

3.3 Application Security Transformation
The innovation of our bytecode rewriting is to support Android-

specific ICC and sink prioritization analysis. Our rewriting ad-

dresses Android vulnerabilities and static analysis limitations to aid

security analysts. Existing rewriting solutions do not support our

specific rewriting requirements. Table 2 presents the comparison

of ReDroid with existing Android rewriting frameworks
2
. Unlike

previous rewriting demonstrations on Smali (such as [18, 30]), our

inter-app ICC relay rewriting approach requires more substantial

technical efforts.

The target sink can be selected by the sink prioritization. We

identify a target sink based on its package, class and method names

and the context of the sink (e.g., parameters). Once the target sink is

located, code modification is more challenging, as it needs to ensure

the successful execution of the modified app. We reuse the registers

and parameter fields from the original code. We replace the sink

2
Based on positive feedbacks from security analysts and developers, we aim to release

our tool as a free software. We will provide our project site after acceptance.

function with a new customized function. We compile the new

function separately and extract its Jimple code. The new function’s

parameters need to be compatible with the API specification.

Proactive Rewriting with Inter-app ICC Relay. This ICC-
relay strategy redirects data flows to the risky sink of an app to a

trusted proxy app, so that the trusted proxy app can inspect the

data before it is consumed (e.g., sent out). Our redirection mecha-

nism leverages Android-specific inter-component communication

(ICC). Android ICC mechanism enables the communication among

different apps [15, 17].

The original intent is replaced by a new explicit intent that

invokes methods in the proxy app in order to complete the task.

The original intent is cloned and stored in a data field of the new

explicit intent. This redirection mechanism gives the proxy an

opportunity to inspect the sensitive data of the original intent at
runtime. Specifically, once the trusted proxy receives a request from
the rewritten app via ICC, the execution of the rewritten app is

paused (i.e., onPause is invoked). The proxy can choose to log the

requests and analyze them offline, or perform online inspections

(with respect to pre-defined policies). Upon proxy’s completion,

The original intent is re-constructed to allow the rewritten app to

continue its execution. The execution of the app may be impacted

by the invocation of the ICC, especially when the proxy’s inspection

is performed online.

PassiveRewritingwith Logging. Passive logging-based rewrit-
ing is useful for intercepting dynamically generated data structures

that are related to risky sinks, e.g., a URL string in an HTTP re-

quest that is manipulated along the taint flow. The static taint-flow

analysis can detect the suspicious risky sink with strings as its pa-

rameters. However, the exact content of the string usually cannot

be resolved through static analysis. Logging them to local storage

enables offline inspection.

The advantages of the logging approach are two-fold. (1) It is

relatively straightforward to implement at the Smali level, and

(2) logging does not impact the execution path of the rewritten

app. The rewritten app executes without interruption. However,

the analysis in this approach is conducted the offline, whereas the

redirect mechanism can actively block data leaks at runtime.

4 EXPERIMENTAL EVALUATION
We extend FlowDroid [11] for our static program analysis. Flow-

Droid is the most advanced and popular tool for static taint flow

construction. Our mapping from a statement into the requested per-

mission is based on PSCout [12]. It identifies 98 distinct permissions,

and builds a one-to-one projection from 15,099 distinct statements

to the corresponding permissions. The new permission risk value

is computed based on our machine learning algorithms. The source

and sink identifiers come from Susi [26], which categorizes a large

set of critical sources and sinks. Unless stated otherwise, we use

E2E aggregation to evaluate the properties of analyzed apps.

We build our own rewriting framework to support the prioritiza-

tion technique. The app is automatically rewritten and recompiled

into a new app. To evaluate the rewriting efficiency, we test both

benchmark apps and real-word grayware. To explore sink proper-

ties, we test on 923 apps with suspicious behaviors from Genome

dataset and 683 free popular benign apps from Google Play dataset.



App Category

#of ICC

Exits

Logging

Success

ICC Relay

Success

ICCBench Re. In. Re. In.

icc_implicit_action 1 1 1 1 1

icc_implicit_category 1 1 1 1 1

icc_implicit_data 2 2 2 2 2

Icc_implicit_mix 3 3 3 3 3

icc_implicit_src_sink 2 2 2 2 2

icc_dynregister 2 2 2 2 2

DroidBench(IccTA)
iac_startActivity 1 1 1 1 1

icc_startActivity 2 2 2 2 0

iac_startService 1 1 1 1 1

iac_broadCast 1 1 1 1 1

Summary 16 16 16 16 14

Table 3: Evaluation of ICC relay and logging based rewriting
on benchmark apps. The column of Re. means the number
of apps that can run without crashing after rewriting. The
column of In. means the number of apps that we can suc-
cessfully invoke the sensitive sink and observe themodified
behaviors.

The benign apps are verified via the VirusTotal inspection [8]. These

apps cover different categories and contain complex code structures.

We aim to answer the following questions through our prelimi-

nary evaluation:RQ1:Can ReDroid be used to transform real-world

grayware and benchmark apps to defend vulnerabilities? (In Sec-

tion 4.1). RQ2: Are the ranking results reasonable and validate (In

Section 4.2) ?

4.1 RQ1: Security Improvement
We present the feasibility of ReDroid to detect and rewrite real-

world grayware apps that previously have not been reported. Ta-

ble 1 summarizes the security applications with our rewriting. We

utilize benchmark apps to evaluate the efficiency of our rewriting

framework. We also use two grayware examples to demonstrate

how to use rewriting for grayware analysis.

Benchmark Suits Evaluation. We evaluate our ICC relay and

logging rewriting strategies on DroidBench(IccTA)[6] and ICC-

Bench [5]. Apps in the ICC-Bench contain ICC-based data leak

vulnerabilities. DroidBench also involves collusion apps through

inter-app communications. Logging based rewriting achieves 100%

success rate in both rewriting and observing the modified behaviors.

The reason why logging based rewriting achieves high accuracy is

that the inspection of sensitive sinks does not violate the program

control and data dependences. All the rewritten apps keep valid

logic (without crashing) when we run these apps on a real-world

device Nexus 6P. We can detect private data (e.g., intent actions and

extra data fields) in the intent by inspecting the logs. It is worth to

note that the logging based rewriting is easily extended to support

dynamic checking. By implementing a sensitivity checking function

for the logged data, our rewriting can terminate the sink invocation

at runtime to prevent data leakage. Therefore, the logging based

rewriting is more suitable to defend privacy leak vulnerabilities in

stand-alone apps.

For ICC relay rewriting, we can successfully rewrite all the apps

but fail to redirect the intent in two cases. The failed two cases

belong to the icc_startActivity category, where the receiver compo-

nent InFlowActivity is protected and not exposed to components

outside the app. Our ICC relay cannot reinvoke the receiver compo-

nent from the outsider proxy app. Except the two cases, our rewrit-

ing are able to relay and redirect all the intents in the inter-app

communications (IAC). Furthermore, implicit intents only specify

the properties of receiver components by actions or categories. Ad-

versarial apps can intercept implicit intents by ICC hijacking. Our

ICC relay is capable to relay the implicit intent and inspect the

receiver components. Therefore, the ICC relay is more suitable to

defend IAC-based vulnerabilities.

Grayware I – Reflection and DexClassLoad. The grayware app
belongs to the game category targeting Pokemon fans. It is a puzzle

game based on the Pokemon-Go app. The package called mobi.
rhmjpuj.ghmjvk.sprvropjgtn appears on a third-party market (Ap-

pChina Market). We submitted two grayware APKs to VirusTotal

on Aug-10-2016. VirusTotal reports it as benign. However, we found

multiple permissions registered in the app, e.g.,WRITE_EXTERNAL

_STORAGE, GET_TASKS, PHONE_STATE, SYSTEM, RESTART

_PACKAGES and etc. This puzzle app is potentially risky, as it

appears to request for more permissions than necessary and has dy-

namically loaded code (e.g., DexClassLoad) and reflection methods

(e.g., Java.lang.reflection).
We use ReDroid to perform the logging-based rewriting, aim-

ing to intercepting reflection and Dexloaded strings. For reflection,

we focus on strings related to get class and method names (e.g.,

Class.forName and Class.getMethod) before reflect.invoke is trig-
gered. For dynamic dex loading, we focus on strings before they

are passed into system.DexClassLoader.loadClass to dynamically

load classes. The sensitive string parameters are logged by ReDroid.

We test the rewritten app on a real-world device Nexus 6P. We use

Monkey [7] for automatic user interaction with the app. The real-

world grayware is more complex than benchmark apps, we also

manually interact with the app if Monkey cannot reach the modi-

fied code. During our execution (nearly 100 seconds), the reflection

and dynamically loaded classes showed no suspicious activities.

This customization demonstrates the monitoring of Java reflec-

tion and dynamic code loading regions through rewriting. The mon-

itoring of rewritten apps can be automated with minimal human

interactions with pre-defined rules and filters. App customization

provides opportunities to perform dynamic monitoring of apps in

production environments.

Grayware II – URL Strings. The grayware app belongs to the

wallpaper category targeting Pokemon-Go fans. It is a Pokemon

wallpaper app. The package called com.vlocker.theme575c30395*
appears on a third-party Android app market (Anzhi Market). The

app was released leveraging the world-wide popularity of the

Pokemon-Go app. Only 1 out of 55 anti-virus scanners reports

this app as potentially risky. However, the wallpaper app contains

a large number of sensitive sinks as URL.init(), file.write(), exe-
cuteHttp(). It requests multiple permissions, including writing set-

tings:WRITE_EXTERNAL_STORAGE, modifying the file system:

FILESYSTEMS, intercepting calls: PROCESS_OUTGOING_CALLS,

and changing network state: CHANGE_NETWORK_STATE. These

permissions enable the wallpaper app to read sensitive informa-

tion and modify the device state. We rewrote the URL related

sink, e.g., net.URL.init(String) to log string type data before calling

net.URL.openConnection(). By analyzing the logged events, we

found that private data (e.g., phone ID, IMEI) is leaked through a



network request, when a user clicks on an image. Similarly as above,

the monitoring of activities from rewritten apps can be automated.

The experimental results demonstrate the effectiveness of our

approach in rewriting benchmark apps and real-world grayware.

Our rewriting enables security analysts to customize and monitor

apps for security guarantees.

4.2 RQ2: Validation of Sink Priorities
Because of the lack of benchmarks, validating the quality of sink

priorities is challenging. Indeed, we aim to release our dataset as

a benchmark. We compare the riskiest sinks from our analysis

with the descriptions for known grayware and malware apps, to

ensure our outputs are consistent and compatible with the findings

in security websites and articles. These findings are generated by

security analysts with substantially manual efforts. The validation

shows that our automatic sink prioritization results are highly

consistent with manual security analysis. The in-depth literature on

grayware is scant, which increases the difficulty of this validation.

For grayware apps jp.co.jags and android.TigerJumping, our anal-
ysis returns the risky method net.URL located in the jp.Adlantis
package. This finding is consistent with previous report stating

that Adlantis libraries cause binary-classification based malware

detection to fail [28].

For grayware apps org.ohny.weekend, org.qstar.guardx and uk.or
g.battery, our analysis returns a risky sink execute() located in an

ad package com.android.Flurry. This ad library was previously

reported to demonstrate excessive amounts of unauthorized opera-

tions by researchers [21].

For malware in the Geinimi family (e.g., Geinimi–037c*.apk),
our analysis identifies the risky sink sendTextMessage. This sink
is confirmed by a security report [2]. It is identified as a trojan to

send critical messages to a premium number.

For malware in Plankton family (e.g., Plankton–5aff*.apk), our
analysis returns the risky sink execute(HttpRequst) associated with
aggregate permission as READ_PHONE_STATE (from a source

getDeviceId()) and INTERNET. Our finding is consistent with the

report of this malware, which refers to it as the spyware with

background stealthy behaviors involving a remote server [3].

For malware in DroidDream (e.g., DroidDream–fed6*.apk), our
analysis returns the risky sinkwrite(byte[]) in package android.root
.setting. An external report cites this malware for root privilege

escalation [1].

These validation provides the initial evidences indicating the

quality of our ranking results. Our sink prioritization is recognized

by the security analysis reports. We envision our automatic ap-

proach would be a helpful tool to aid security analysts, by reducing

their manual efforts on finding most sensitive sinks and offering

multiple rewriting options.

Summary of Experimental Findings.We summarize our major

experimental findings as follows.

(1) We give multiple demonstrations of app security transforma-

tion, including inter-app ICC relay and logging. Our rewrit-

ing with sink ranking is a practical yet efficient tool for

application security transformation.

(2) Manual inspections show that our risk ranking results are

consistent with the security analysts, for a small set of mal-

ware apps and grayware apps. This consistency indicates

the effectiveness of sink prioritization algorithms.

5 RELATEDWORK
Android Taint Flow Analysis The vulnerability of apps can be

abused by attackers for privilege escalation and privacy leakage

attacks [16]. Researchers proposed taint flow analysis to discover

sensitive data-flow paths from sources to sinks. CHEX [25] and

AndroidLeaks [23] identified sensitive data flows to mitigate apps’

vulnerability. Bastani et al. described a flow-cutting approach [14].

However, their work only provides theoretical analysis on impacts

of a cut, without any implementation. DroidSafe [24] used a point-

to graph to identify sensitive data leakage. FlowDroid [11] proposed

a static context- and flow-sensitive program analysis to track sen-

sitive taint flows. These solutions address the privacy leakage by

tracking the usage of privacy information. Our sink ranking is based

on static analysis and our prototype utilizes FlowDroid.

Android Rewriting The app-retrofitting demonstration in Ret-

roSkeleton [18] aims at automatically updating HTTP connections

to HTTPS. Aurasium [30] instruments low-level libraries for mon-

itoring functions. Reynaud et al. [27] rewrote an app’s verifica-

tion function to discovered vulnerabilities in the Android in-app

billing mechanism. AppSealer [34] proposed a rewriting solution

to mitigate component hijacking vulnerabilities, the rewriting is

to generate patches for functions with component hijacking vul-

nerabilities. Fratantonio et al. [22] used rewriting to enforce secure

usage of the Internet permission. Because of the special goal on

INTERNET permission, the rewriting option cannot be applied to

general scenarios. The rewriting targets and goals in these tools are

specific. Furthermore, our rewriting is more general than existing

rewriting frameworks by supporting both ICC-level and sink-based

rewriting with data flow analysis. ARTist [13] is a compiler-base

rewriting tool tomodify Android runtime virtual machine. However,

compiler-based rewriting relies on a particular Android version and

introduces high runtime overhead. Our bytecode rewriting modifies

an app’s bytecode and is compatible for all the Android versions.

Bytecode rewriting is more suitable for security analysts to rewrite

apps and enforce organization policies. Based on the static code

analysis, we also provide rich contexts (e.g., sink prioritization) for

generating rewriting options.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we present two new technical contributions, a quan-

titative risk metric for evaluating sensitive flows and sinks, and a

risk propagation algorithm for computing the risks. We also de-

sign a new rewriting framework ReDroid, for Android-specific app

customization. We demonstrate the feasibility of both ICC-relay

and logging-based rewriting techniques in our experiments. Re-

droid aids security analysts for practical grayware analysis and

monitoring. We extensively demonstrated how sink ranking is use-

ful for rewriting grayware to improve security. Rewriting with

sink prioritization is a promising solution for application security

transformation.

INTERNET
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