
JUnitMX — A Change-aware Unit Testing Tool

Jan Wloka∗, Barbara G. Ryder†, and Frank Tip‡

∗ Dept. of Computer Science, Rutgers University, Piscataway, NJ 08854, USA
jwloka@cs.rutgers.edu

† Dept. of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
ryder@cs.vt.edu

‡ IBM T. J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA
ftip@us.ibm.com

Abstract

Developers use unit testing to improve the quality of soft-
ware systems. Current development tools for unit testing
help to automate test execution, to report results, and to
generate test stubs. However, they offer no aid for de-
signing tests aimed specifically at exercising the effects of
changes to a program. This paper describes a unit testing
tool that leverages a change model to guide developers in
the creation of new unit tests. The tool provides developers
with quantitative feedback and detailed information about
change effects, which not only facilitate the writing of more
effective tests, but also motivate developers with an achiev-
able coverage goal.

1 Introduction

Unit testing is used by software developers for various
purposes. First and foremost, unit tests are used to test the
effect of changes on existing functionality. When used in re-
gression testing, they can also protect against unintentional
change effects caused by other developers. Moreover, a set
of unit tests is a prerequisite for any refactoring activity [4],
and in test-driven development, unit tests are used to guide
developers with the design of new functionality before im-
plementing it [2].

While most developers agree on the advantages of hav-
ing a solid test suite with good code coverage, most also ad-
mit the difficulty of developing such a test suite. For exam-
ple, test-driven development encourages developers to im-
plement the “simplest thing that could possibly work” [5]
for a given test, which ideally results in a test suite that
reveals the effect of any change on existing functionality.
However, if a developer makes changes to an application
that has low test coverage, the absence of test failures (a
“green bar” in JUNIT) does not and should not give much

confidence about the correctness of these changes. In fact,
the situation is even worse because developers often do not
know what is covered by their tests, and therefore do not
know how much confidence they should gain from success-
ful tests. Furthermore, it can be difficult to decide how to
construct tests that effectively exercise newly added func-
tionality. Often, developers write unit tests “blindly”, that
is, without really knowing which parts of the new function-
ality are covered by existing tests and which require addi-
tional tests. Since successful tests do not show the absence
of errors, but rather the inability of the test suite to find any
error, the “green bar” may leave the developer feeling over-
confident.

In this paper, we present a unit testing tool, JUNITMX1,
which is aware of the developer’s edit in a program, and thus
can guide him in writing those unit tests that effectively ex-
ercise all changed parts of a program and their effects on
program behavior. The remainder of the paper is structured
as follows. Section 2 describes background, terms and con-
cepts on change impact analysis. Section 3 presents the tool
JUNITMX, how it is used, and implementation details. Sec-
tion 4 illustrates how JUNITMX can guide the development
of unit tests, and Section 5 presents concluding remarks.

2 Change-aware Development Tools

Developers are changing software systems in their daily
work, e.g., to implement new features, fix faults or refac-
tor overly complex program structures. Their tool support
for program changes, however, is often limited to change
history logs, access to version control systems, or textual
merge views. Other tools within an integrated development

1 The MX in JUNITMX stands for multi-extension. The testing model
of JUNIT is extended with a custom class loader that allows for instrumen-
tation before tests are run, and a post-processor that augments test results
with data from additional analyses.

1

environment (IDE) for, e.g., testing, debugging, or quality
assurance, have no access to the developer’s program edit.
Change-aware development tools are an attempt to expose
change information within an IDE to other development
tools.

2.1 Change Model and Classifications

A technique that can be used to predict the possible ef-
fects of a program edit on a code base is called change
impact analysis. It computes an abstract representation
of a program edit, subdividing it into a set of atomic
changes. This representation enables a classification of
different kinds of changes and their dependences, making
program edits amenable to program analysis. The specific
change impact analysis used consists of decomposition of
the edit, computation of change dependences and impact
classification [10, 6, 9].

Decomposing a developer’s edit. First, the textual dif-
ference between two program versions, is decomposed into
a set of atomic changes. An atomic change represents the
modification of a program element. Atomic changes reflect
the semantics of the language, e.g., adding a method (AM),
changing the body of a method (CM), or deleting a field
from a class (DF). The element in the program that is af-
fected by a change is called denoted program element. A
complete set of atomic changes and a full introduction to
change impact analysis is presented in [10, 9].

Change dependences. After the decomposition of the
edit, dependencies between atomic changes are computed.
An atomic change may be dependent on one or more other
atomic changes, that must be applied also in order for the
resulting program to compile (structural dependences) [7].
Other effects of an edit on program behavior are captured
by mapping dependences [12] (e.g., changing a field initial-
izer may result in an implicit change to the bodies of the
constructors for the class in which the field is declared).

Impact classification. In the last step, atomic changes
are correlated with program representations, such as a call
graph, to compute structural and behavioral effects of every
atomic change. A dynamic call graph is captured for every
unit test in the suite. The call graphs are used to obtain the
(method-level) changes that can affect a test’s outcome. Ev-
ery change that can be mapped to a graph node or edge, or
is a transitive dependence of such a change is considered to
be covered by the test [9]. All other changes are reported
as un-covered changes. Since atomic changes are associ-
ated with program elements (AST nodes), every denoted el-
ement can be classified as Addition, Change, or Deletion,
which again can be either Structural or Behavioral. For
example, a method associated with changes {AM, CM} is
classified as Behavioral Addition.

2.2 Applications

Our change impact analysis results in two primary
mappings (i) atomic changes to program elements and
(ii) atomic changes to program behavior represented by
a dynamic call graph for each test. Both mappings can
be used to classify change effects on the program’s code
base and on program behavior. Several classifications of
changes have been shown useful in support of various
development activities:

Structurally dependent changes can be used to form
a syntactically valid program version from a subset of
atomic changes [3, 7].
Structural and mapping dependences combined can
form a program version from a subset of atomic changes
with a valid program behavior according to the test suite
associated with this intermediate version [12].
Affected tests can be determined as the set of tests that
exercise a program element denoted by a set of atomic
changes [9].
Covered changes can be computed for each test, rep-
resenting those atomic changes that are directly or indi-
rectly associated with a program element exercised by the
test, also termed affecting changes [9].
Failure-inducing changes that are most likely to cause
a test failure can be computed by analyzing the relation-
ship between changes and the passing and failing tests
that they affect [11, 8].
Safely committable changes are the subset of atomic
changes that can be released safely to a version control
repository because they will not alter any test outcome,
even in the presence of failing tests [12].

Based on these classifications, core development activities,
such as debugging [3, 7], fault localization [11, 8], testing
and test development [1], and resolution of change conflicts
[12] can be supported by tools.

3 The Change-aware Unit Testing Tool

The unit testing tool JUNITMX is an extension to the
JUnit Eclipse plug-in. It leverages the change impact anal-
ysis described in the previous section to guide developers in
writing more effective unit tests.

3.1 Using JUNITMX

The tool JUNITMX is built as an extension to the widely
used JUnit Eclipse plug-in. Developers already familiar
with JUnit and the Eclipse JDT2 can build on knowledge
with a familiar tool when using JUNITMX. Change-aware
tools operate on two program versions: an original and an

2http://www.eclipse.org/jdt/

2

edited version. JUNITMX provides different options for se-
lecting these program versions. By default it uses the latest
version in the repository (CVS HEAD) as the original ver-
sion, and the program version in the local workspace as the
edited version. Alternatively, a developer may select a spe-
cific version in the repository as the original version, or to
choose two different projects in the local workspace as the
original and edited versions.

A special run configuration enables developers to run a
JUnit test suite with JUNITMX. This configuration runs the
test suite associated with the edited version. JUNITMX
augments the existing JUnit plug-in by showing the follow-
ing information:

1. The number of changes that are not covered by any
test is shown along with the number of test runs, errors
and failures. This number is an upper bound on the
changes that should be covered by additional tests.

2. JUnit’s familiar red–green color scheme is extended to
red–yellow–green. Intuitively, the green bar is only
shown if all tests pass and the all changes are covered
by the tests. If all tests pass but some changes are not
covered by tests, a yellow bar is shown. Whenever a
test fails or crashes, a red bar is shown.

3. An additional tab lists all changes not covered by the
test suite. Changes are classified into two groups, Ad-
ditions and Changes 3, and further classified into code
and dispatch changes. An associated source code com-
parison view outlines the source code differences that
led to the change. Clicking on such a change will re-
sult in opening the source code editor and navigating
to the denoted program element.

Given this information, a developer can start creating new
tests to ensure that as yet not covered changes have no unan-
ticipated effect on the program behavior.

3.2 JUnit Integration

JUNITMX hooks into the execution of a JUnit test run
and adds pre- and post-processing phases.

In the pre-processing phase, CHIANTI4 is used to com-
pute a coarse-grained representation of the edit as a set of
atomic changes with structural dependences and mapping
dependences between them.

During execution, JUNITMX uses a custom class loader
for instrumenting the target application’s classes as they are
loaded. This classloader was developed using DILA5, a li-
brary for dynamic load-time instrumentation that is based

3 Deletions are not shown since they are removed from the program and
cannot be covered by any test. Only their effects, e.g., change of dispatch,
are considered by JUNITMX.

4 http://www.prolangs.rutgers.edu/projects/chianti/
5 http://www.prolangs.rutgers.edu/projects/dila/

Figure 1. The User Interface of JUNITMX.

JUNITMX

Original
Program

CHIANTI

DILA

JUNIT

Atomic
Changes

Call
Graphs

Test
Outcomes

Test Run
Post-

processing
Change

Classification

Edited
Program

w/
TestSuite

Figure 2. Overview of the JUNITMX tool.

on the bytecode utilities from the WALA program analysis
library6. The instrumented classes contain instrumentation
code for constructing a dynamic call graph for every test as
it executes.

After the execution of the test suite of the edited pro-
gram version has completed, the post-processing performs
the actual change impact analysis. The dynamic call graphs
are correlated with the atomic changes to calculate those
changes that are covered by each test. Since changes cannot
be applied or tested in isolation, also their interdependences
have to be considered. We say a change is covered by a
test if its denoted element is exercised by the test or one
of its (transitive) dependences is covered by the test [12].
Once all covered changes are computed, we calculate those
remaining uncovered changes that are not covered by any
test.

4 Test Development with JUNITMX

Assume that the developer is working on an extension
the Counter application shown in Figure 3. The orig-

6 http://sourceforge.net/projects/wala

3

a

b

c

public class Counter {

 protected int sum;

 public Counter() { sum = 0; }

 public int getSum() { return sum; }

 public void inc() { ++sum; }

}

public class MultiCounter extends Counter {

 private Counter[] counters;

 public MultiCounter(Counter[] cs) { counters = cs; }

 public void inc() { /*call inc() on each counter*/ }

}

public class Tests extends TestCase {

 /*tests for Counter omitted*/

 public void testMultiInc1() {

 MultiCounter m = new MultiCounter(

 new Counter[] { new Counter(), new Counter() };

 m.inc();

 assertEquals(1, cs[0].getSum());

 assertEquals(1, cs[1].getSum());

 }

 public void testMultiInc2() {

 Counter m = new MultiCounter(

 new Counter[] { new Counter(), new Counter() };

 m.inc();

 assertEquals(2, m.getSum());

 }

}

Figure 3. Partial code for Counter application.

inal program version contains only the lines not shown
in boxes, and is extended to provide counting of multi-
ple values. The developer makes sure that he is working
on the latest version of the repository and creates the test
testMultiInc1 (see 3(a)). The new test asserts that ev-
ery call to method inc() on a MultiCounter object
increments each counter stored in this object. To get the
new test compile, the developer defines a new constructor
in MultiCounter and adds the field counters to store
multiple Counter object (see 3(b)). The code satisfies the
compiler but the test run fails as expected. A redefinition of
method inc() in class MultiCounter that increments
all counters stored in field counters can satisfy the test.
While testMultiInc1 passes now, JUNITMX is still
not satisfied and shows a yellow bar. Apparently, there are
changes that are not covered by the current test suite.

The developer reviews the list of changes shown by
JUNITMX and indeed, there is a lookup change associ-
ated with method MultiCounter.inc() that is not
covered by any test. A double click on this change
opens the editor focussing on method inc(). Inspect-
ing test testMultiInc1, the developer proceeds to
write another test (see 3(c)) that exercises method inc()
on a MultiCounter object but with the declared type
Counter. It asserts that method inc() increases all
counters with a call to method getSum(). The benefit
of the new test is evident from the fact that it fails. In
response to the failure, the developer proceeds to fix the
exposed fault with a redefinition of method getSum() in
class MultiCounter. Now, that all test cases succeed

and all changes are covered the bar finally turns green.

5 Conclusions

JUNITMX seems to be a powerful extension to JUnit
that can help developers to write more effective tests. More-
over, a full change coverage is not just an achievable goal
but also seems to reduce the likelihood of introducing faults
to the program. This correlation and a change-centric test
development approach are major targets of our current eval-
uation.

Finally, JUNITMX is a good example for the potential
of change-aware tools. It demonstrates how even complex
development activities can be supported by tools when they
are aware of what a developer has done to the code.

References

[1] T. Apiwattanapong, R. Santelices, P. K. Chittimalli, A. Orso, and
M. J. Harrold. Matrix: Maintenance-oriented testing requirements
identifier and examiner. In TAIC-PART ’06: Proceedings of the
Testing: Academic & Industrial Conference on Practice And Re-
search Techniques, pages 137–146, Washington, DC, USA, 2006.
IEEE Computer Society.

[2] K. Beck. Aim, fire. IEEE Software, pages 87–89, September/October
2001.

[3] O. Chesley, X. Ren, and B. G. Ryder. Crisp: A debugging tool for
Java programs. In 21st IEEE International Conf. on Software Main-
tenance (ICSM), Budapest, Hungary, pages 401–410, Sept. 2005.

[4] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refac-
toring: Improving the Design of Existing Code. Addison-Wesley,
1999.

[5] P. McBreen. Questioning Extreme Programming. The XP Series.
Addison-Wesley Professional, 1st edition, July 2002.

[6] A. Orso, T. Apiwattanapong, M. J. Harrold, G. Rothermel, and J. B.
Law. An empirical comparison of dynamic impact analysis algo-
rithms. In Proceedings of the International Conference on Software
Engineering (ICSE 2004), pages 47–50, May 2004.

[7] X. Ren, O. C. Chesley, and B. G. Ryder. Identifying failure causes in
Java programs: An application of change impact analysis. In IEEE
Trans. on Softw. Eng., volume 32, pages 718–732, 2006.

[8] X. Ren and B. G. Ryder. Heuristic ranking of java program edits for
fault localization. In ISSTA ’07: Proceedings of the 2007 interna-
tional symposium on Software testing and analysis, pages 239–249,
New York, NY, USA, 2007. ACM.

[9] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: A
tool for practical change impact analysis of Java programs. In Proc.
Conf. on Object Oriented Programming, Systems and Applications
(OOPSLA’04), pages pp 432–448, Oct. 2004.

[10] B. G. Ryder and F. Tip. Change Impact Analysis for Object-oriented
Programs. In Proc. Workshop on Program Analysis for Software
Tools and Engineering (PASTE’01), pages 46–53, 2001.

[11] M. Stoerzer, B. G. Ryder, X. Ren, and F. Tip. Finding Failure-
inducing Changes in Java Programs Using Change Classification. In
Proc. 14th Symp. on the Foundations of Software Engineering (FSE-
14), pages 57–68, Portland, OR, USA, Nov. 7–9, 2006.

[12] J. Wloka, B. Ryder, F. Tip, and X. Ren. Safe-commit analysis to
facilitate team software development. In 31st International Conf. on
Software Engineering (ICSE 2009), 2009. To appear.

4

	1 Introduction
	2 Change-aware Development Tools
	2.1 Change Model and Classifications
	2.2 Applications

	3 The Change-aware Unit Testing Tool
	3.1 Using JUnitMX
	3.2 JUnit Integration

	4 Test Development with JUnitMX
	5 Conclusions

