
CCLearner: A Deep Learning-Based Clone
Detection Approach

Liuqing Li, He Feng, Wenjie Zhuang, Na Meng and Barbara Ryder
Department of Computer Science, Virginia Tech

Blacksburg, VA, USA
{liuqing, fenghe, kaito, nm8247}@vt.edu, ryder@cs.vt.edu

Abstract—Programmers produce code clones when developing
software. By copying and pasting code with or without modifi-
cation, developers reuse existing code to improve programming
productivity. However, code clones present challenges to software
maintenance: they may require consistent application of the
same or similar bug fixes or program changes to multiple code
locations. To simplify the maintenance process, various tools have
been proposed to automatically detect clones [1], [2], [3], [4],
[5], [6]. Some tools tokenize source code, and then compare the
sequence or frequency of tokens to reveal clones [1], [3], [4], [5].
Some other tools detect clones using tree-matching algorithms to
compare the Abstract Syntax Trees (ASTs) of source code [2], [6].
In this paper, we present CCLEARNER, the first solely token-based
clone detection approach leveraging deep learning. CCLEARNER
extracts tokens from known method-level code clones and non-
clones to train a classifier, and then uses the classifier to detect
clones in a given codebase.

To evaluate CCLEARNER, we reused BigCloneBench [7], an
existing large benchmark of real clones. We used part of the
benchmark for training and the other part for testing, and
observed that CCLEARNER effectively detected clones. With the
same data set, we conducted the first systematic comparison ex-
periment between CCLEARNER and three popular clone detection
tools. Compared with the approaches not using deep learning,
CCLEARNER achieved competitive clone detection effectiveness
with low time cost.

Keywords-deep learning; clone detection; empirical

I. INTRODUCTION

Programmers create and maintain code clones in software
development. Previous research shows that code clones are
common in software systems. For instance, there was about
19% duplicated code in X Window System (X11) [8], and
15-25% duplicated code in Linux kernel [9]. A recent study
on 7,800 open-source projects written in C or C++ shows that
44% of the projects have at least one pair of identical code
snippets [10]. By copying and pasting code with or without
modification, developers reuse existing code to improve pro-
gramming productivity. On the other hand, code clones also
present challenges to software maintenance: they may require
consistent application of the same or similar bug fixes or
program changes to multiple code locations.

There are four main types of code clones defined by
researchers—Type-1, Type-2, Type-3, and Type-4 [11]. Type-1
(T1) clones are identical code fragments which may contain
variations in whitespace, layouts, or comments. Type-2 (T2)
clones are code fragments allowing variations in identifiers,
literals, types, whitespace, layouts, and comments. Compared

with Type-2 clones, Type-3 (T3) clones allow extra mod-
ifications such as changed, added, or removed statements.
Type-4 (T4) clones further include semantically equivalent but
syntactically different code fragments.

Various clone detection techniques have been built [1], [2],
[3], [4], [5], [6]. For instance, SoucererCC tokenizes source
code, and indexes code blocks with a token subset [5]. Given
a code snippet to look for clones, SourcererCC uses the tokens
from the snippet to retrieve candidate blocks, and to identify
clones by matching tokens and comparing their frequencies.
NiCad parses programs to pretty-print statements for code
normalization, and then identifies code snippets which have
similar normalized representations [3]. Both SourcererCC and
NiCad mainly detect T1 and T2 clones. Deckard creates an
Abstract Syntax Tree (AST) for each code fragment, and
then leverages a tree similarity algorithm to identify similar
code [2]. Compared with SourcererCC and NiCad, Deckard
detects extra T3 clones at the cost of additional runtime
overhead [5]. There is only one deep learning-based approach;
it locates clones by extracting features from both program
tokens and syntactic structures [12].

We have designed and implemented CCLEARNER, the first
solely token-based clone detection approach using deep learn-
ing. We believe that the usage of terms like reserved words,
type identifiers, method identifiers, and variable identifiers, can
effectively characterize code implementation. If two methods
use the same terms in similar ways, the methods are likely to
be clones and implement similar functionalities. Meanwhile,
if we consider the clone detection problem analogous to clas-
sifying code pairs as clones or non-clones, deep learning can
be used to detect clones, because it can effectively find good
features in training data and conduct fuzzy classification [13].

Unlike prior approaches which were specially designed to
reveal certain types of clones, CCLEARNER applies deep
learning on known code clones and non-clones to train a
model. The model can intelligently characterize the common-
ality and any possible variation between clone peers regardless
of the clone types. With the trained model, CCLEARNER
then compares methods pair-by-pair in any given codebase
to identify various kinds of clones.

Specifically, given a pair of methods (clones or non-clones),
CCLEARNER uses ANTLR [14] and Eclipse ASTParser [15]
to parse each method for both usage and frequency of reserved
words, operators (e.g., “+”), literals, and other identifiers.

CCLEARNER then organizes the tokens into eight categories,
and separately computes the similarity score for each category.
Next, it characterizes the method relationship with the com-
puted similarity vectors. For training, CCLEARNER uses both
clone pairs and non-clone pairs as positive and negative exam-
ples. It extracts similarity vectors for both kinds of examples,
and feeds them to a deep neural network (DNN) [16] to train
a binary-class classifier. In the testing phase, CCLEARNER
compares every two methods in a given codebase to predict
the method relationship as “clones” or “non-clones”.

We evaluated CCLEARNER and three popular clone detec-
tion tools1 (Deckard [2], NiCad [3], and SourcererCC [5])
using BigCloneBench [7], an existing large benchmark of
clone data. Compared with the other tools, CCLEARNER
achieved high precision and recall with low time cost. To
assess CCLEARNER’s sensitivity to the parameter settings in
DNN and the selected features, we experimented with different
configurations of DNN, and investigated different feature sets.
We observed that CCLEARNER’s clone detection effectiveness
varied a lot with parameter settings and selected features.

In summary, we have made the following contributions:
• We designed and implemented CCLEARNER, the first

solely token-based clone detection approach using deep
learning. With deep learning, CCLEARNER effectively
captures the similar token usage patterns of clones in
training data to detect clones in testing data.

• We conducted the first systematic empirical study to
compare deep learning-based clone detection with ap-
proaches not using deep learning. CCLEARNER detected
more true clones than SourcererCC and NiCad, and found
clones more efficiently than Deckard.

• We investigated the sensitivity of CCLEARNER to
changes in parameter settings and feature sets, and made
two observations. First, CCLEARNER worked best with 2
hidden layers and 300 training iterations in DNN. Second,
similarly used reserved words, markers, type identifiers,
and method identifiers were good indicators of clones.

II. BACKGROUND

In this section, we first introduce some basic concepts of
deep learning, and then define the terms used in the paper.

A. Concepts of Deep Learning

Deep Learning includes a set of algorithms that attempt to
model high-level abstractions in data. There are various deep
learning architectures, such as deep neural networks, deep
belief networks, and recurrent neural networks [13]. For our
project, we applied deep neural networks.

Neural Networks are a set of pattern recognition algorithms
modeled after the human brain. A typical neural network
system has three layers: input layer, hidden layer, and output
layer. Each layer’s output is simultaneously the subsequent
layer’s input. The input layer takes input data, while the output
layer produces the recognized patterns [17].

1We contacted the authors of the existing deep learning-based clone
detection tool [12], but were unable to get the tool.

…"…"

…"…"

…"…"

…"…"

Input"layer"

Hidden"layer"1"

…"…"

Hidden"layer"n"(n">"1)"

…"…"

Output"layer"

Fig. 1: The deep neural network architecture with one input
layer, one output layer, and multiple hidden layers.

Deep Neural Networks (DNNs) are neural networks with
multiple hidden layers between the input and output lay-
ers [18]. As shown in Fig. 1, a DNN has at least two hidden
layers to process data in multi-steps for pattern recognition.
Each node in the network combines its inputs, such as x1, x2,
. . . , xm, with a set of coefficients or weights to either amplify
or dampen the inputs. In this way, each node separately
determines which input is most helpful for the overall learning
task (such as classifying data), and whether or to what extent
each input progresses further through the network to affect the
ultimate outcome, say, an act of classification [16].

It is challenging to decide the best configuration of coef-
ficients or weights in one trial, so a DNN usually involves
multiple iterations to tune those coefficients. In the initial
iteration, a DNN makes the initial guess for coefficients of
all nodes, predicts labels accordingly, and then measures the
prediction error against the ground truth labels. This error
measurement provides feedback to the next iteration for coef-
ficient adjustment. Therefore, even though the initial iteration
may produce a bad prediction model with coefficients poorly
guessed, as more iterations take place, the model gradually
evolves to a better one with coefficients updated and the
prediction error minimized.

Like other machine learning techniques, DNN can also
be classified into two types: supervised and unsupervised
learning. The former is usually used in classification tasks that
depend upon labeled data sets. The latter is widely applied to
pattern analysis and clustering, both of which require unla-
beled data. DNN has performed well in many classification
tasks, such as face detection, objects identification, gestures
recognition and spam classification [16].

B. Terminologies

In this paper, a clone method pair or true clone pair
includes two methods with similar code. Each method in the
clone method pair is called a clone peer of the other method.
A non-clone method pair or false clone pair includes two
methods implemented with dissimilar code, and each of the
methods is called a non-clone peer of the other.

III. APPROACH

We designed and implemented CCLEARNER to detect
clones with token usage analysis and deep learning. As shown

Clone	Method	Pairs	

Non-clone	Method	
Pairs	

Training	

Tes*ng	

Feature	Extrac+on	

Tokeniza+on	

(methodA,	methodB)	

(token_freq_listA,	token_freq_listB)	

Categoriza+on	

token_freq_catA1	
	

… …	
	

token_freq_catA8	
	

token_freq_catB1	
	

… …	
	

token_freq_catB8	
	

Similarity	
Computa+on	

sim_score1	
	

… …	
	

sim_score8	
	

Deep	
Learning	

Classifier	

Source	
code	

Method	
Extrac+on	

(m1,	m2,	m3,	…)	

Method	Pair	
Enumerator	

Clone	Method	Pairs	

Non-clone	Method	
Pairs	

Fig. 2: CCLearner consists of two phases: training and testing. The first phase takes in both clones and non-clones to train a
classifier in a deep learning framework. The second phase takes in a codebase to detect clones with the trained classifier.

in Fig. 2, there are training and testing phases in our approach.
Both phases extract features of token usage to either charac-
terize or detect clones. In this section, we will first discuss
how features are extracted (Section III-A), and then explain
the training and testing phases (Section III-B and III-C).

A. Feature Extraction

To extract the features that characterize the clone (or
non-clone) relationship of method pairs, for each given
method pair (methodA,methodB), CCLEARNER first tok-
enizes code using ANTLR lexer [14] to identify all tokens
used in each method, and then records the occurrence count
of each token. Such token usage information is organized
as a token-frequency list for each method, represented as
token_freq_listA for methodA and token_freq_listB for
methodB in Fig. 2. CCLEARNER then categorizes tokens and
computes features as similarity scores of token usage.

Token Categorization and Extraction. When various to-
kens are extracted from a method, such as reserved words (e.g.,
“for” and “if”) and operators (e.g., “+” and “&”), different
types of tokens may have different capabilities to characterize
clones. For instance, T1-T3 clones are more likely to have
common reserved words than common operators, because
these clones almost always have identical program syntactic
structures but may contain slightly different arithmetic or
logic operations. Therefore, CCLEARNER classifies tokens
into eight categories to create eight disparate features. Table I
presents the eight token categories with an exemplar token-
frequency list shown for each category.

TABLE I: Token categories

Index Category name An exemplar token-frequency list
C1 Reserved words <if, 2>, <new, 3>, <try 2>, . . .
C2 Operators <+=, 2>, <!=, 3>, . . .
C3 Markers <;, 2>, <[, 2>, <], 2>, . . .
C4 Literals <1.3, 2> , <false, 3>, <null, 5>, . . .
C5 Type identifiers <byte, 2> , <URLConnection, 1> ,. . .
C6 Method identifiers <read, 2> , <openConnection, 1>, . . .
C7 Qualified names <System.out, 6>, <arr.length, 1>, . . .
C8 Variable identifiers <conn, 2> , <numRead, 4>, . . .

In Table I, we use a list of <key, value> pairs to represent

each token-frequency list, where “key” is a token, and “value”
shows the occurrence count. The token-frequency lists of C1-
C3 can be easily constructed from ANTLR lexer output,
because the token sets of reserved words, operators, and
markers are well defined. However, for C4-C8 tokens, ANTLR
cannot always precisely identify tokens or clearly differentiate
between various types of tokens. For instance, given positive
numbers and negative numbers (e.g. 1 and -1), ANTLR only
extracts positive numbers (e.g., 1) as literals, although negative
numbers should also be treated as literals. Furthermore, given
an identifier foo, ANTLR cannot tell whether the identifier
represents a type or a variable.

To precisely identify C4-C8 tokens, CCLEARNER also uses
Eclipse ASTParser [15] to create an Abstract Syntax Tree
(AST) for each method, and implements separate ASTVisitors
to extract different kinds of tokens by visiting certain types
of AST nodes. For example, given a statement int v = -1 +

a.b.foo(), CCLEARNER creates the AST in Fig. 3. Notice
that ASTParser does not replace ANTLR in CCLEARNER,
because ASTParser cannot reveal all tokens that ANTLR
detects, including reserved words and markers.

VariableDeclara*onStatement	

VariableDeclara*onFragment	Primi*veType	“int”	

SimpleName	“v”	 InfixExpression	=	

PrefixExpression	 MethodInvoca*on	+	

NumberLiteral	“1”	−	 QualifiedName	 .	 SimpleName	“foo”	

SimpleName	“a”	 SimpleName	“b”	.	

()	

Fig. 3: The AST of int v = -1 + a.b.foo()

To identify literals (C4 tokens), an ASTVisitor [19] was
implemented to visit all literal AST nodes (e.g., BooleanLiteral
and CharacterLiteral), and to create an entry in the token-
frequency list for each unique literal. For the AST in Fig. 3,
when the NumberLiteral (1) is visited, CCLEARNER further
checks whether the literal is a subexpression of a negative

number (i.e. -1); if so, the negative number is extracted. In this
way, we differentiate between positive and negative numbers.

For type identifier (C5 token) extraction, we implemented
an ASTVisitor to visit all type-relevant AST nodes like Prim-
itiveType, TypeLiteral, etc.. For our example, when Primi-
tiveType (int) is accessed, CCLEARNER creates an entry for
the type name, and then counts the name’s occurrence.

To extract method identifiers (C6 tokens), we built an
ASTVisitor to visit all method-relevant AST nodes such as
MethodDeclaration and MethodInvocation. In this way, all
method names used in a method implementation can be pre-
cisely identified. In our example, there is a MethodInvocation
element, and CCLEARNER thus extracts the method name foo.

Qualified names (C7 tokens) are special tokens, so we
created an ASTVisitor to especially process all QualifiedName
nodes. Given a qualified name like Foo.Goo.Bar, we may
interpret it as a type identifier or variable identifier, we can also
interpret part of the name like Foo.Goo as a type or variable.
With the limited program syntactic information derived from
a method’s AST, we cannot always precisely decide whether
a qualified name represents a type. Although we can invoke
the resolveBinding() API on a qualified name, the invocation
does not always help resolve the name binding, either. To avoid
any inaccurate categorization of type or variable identifiers,
we thus simply treat qualified names as a separate category
of tokens. For the example in Fig. 3, a.b is extracted as
a qualified name, even though we do not know whether it
represents a type or a variable.

Variable identifiers (C8 tokens) are harder to extract than
above tokens, because there is no fixed set of AST node types
which may contain such identifiers in particular positions.
Therefore, we created an ASTVisitor to visit all SimpleName
nodes, and to deduct the SimpleNames that are covered by
tokens belonging to any of above categories. In our exemplar
AST, there are four SimpleName elements: v, a, b, and foo.
Since a and b are covered by the qualified name a.b, while
foo is already identified as a method name, CCLEARNER ends
up with recognizing one variable identifier (v) in this way.

In summary, as shown in Fig. 2, after extracting
different categorized tokens for each method
under comparison, CCLEARNER creates vectors
of token-frequency lists, which are represented as
[token_freq_catA1, . . . , token_freq_catA8] for methodA,
and [token_freq_catB1, . . . , token_freq_catB8] for
methodB .

Similarity Computation. When two methods are charac-
terized as vectors of token-frequency lists, we believe the
similarity between the vectors should reflect the similarity of
their methods. Intuitively, the more similar two vectors are,
the more likely those two methods are clones to each other.
Correspondingly, if two methods are dissimilar, their vectors
are divergent. Therefore, for each method pair, CCLEARNER
computes a similarity score between the token-frequency lists
of each token category, and then constructs an eight-value
similarity vector to characterize the method pair relationship.

Formally, for category Ci(1 ≤ i ≤ 8), if we represent the

two term-frequency lists as LAi and LBi, then the similarity
score sim_scorei is calculated as below:

sim_scorei = 1−

∑
x
|freq(LAi, x)− freq(LBi, x)|∑

x
(freq(LAi, x) + freq(LBi, x))

,

where x ∈ tokens(LAi) ∪ tokens(LBi). (1)

Intuitively, we enumerate all tokens contained in either
of the two lists. For each enumerated token x, we
compute both its absolute frequency difference value
(|freq(LAi, x) − freq(LBi, x)|) and frequency sum
(freq(LAi, x) + freq(LBi, x)) between the lists. Next,
we sum up all absolute frequency difference values and all
frequency summations separately to compute a ratio, which
is deducted from 1 to get the similarity score. According to
the formula, the range of similarity score is [0, 1].

Our similarity calculation formula is meaningful. When
two methods are identical and have purely identical token-
frequency lists, the ratio between the absolute frequency differ-
ence sum and total frequency sum is always 0, so the similarity
score for each category is 1. When two methods are totally
different and share no token in common, the corresponding
ratio is 1, while the similarity score is 0.

Suppose we have two token-frequency lists: LA = {<
a, 3 >,< b, 4 >,< c, 5 >} and LB = {< b, 3 >,< c, 6 >,<
d, 2 >}. The similarity score is computed as 1−(|3−0|+ |4−
3|+|5−6|+|0−2|)/((3+0)+(4+3)+(5+6)+(0+2)) = 0.70.
Generally speaking, the more tokens shared between lists and
the less frequency difference there is for each token, the higher
similarity score we can derive. Note that if two methods have
no token for certain category (such as keywords), we set the
corresponding similarity score as 0.5 by default. We tried to set
the default value as 0 or 1, but none of these values worked
as well as 0.5. Maybe the 0.5 works because it makes the
similarity in that token category to be equally meaningful to
determining clone pairs or non-clone pairs.

With the features extracted as similarity vectors,
CCLEARNER further leverages deep learning to train
and test a classifier for clone detection.

B. Training

To train a binary-class classifier for clone detection, we
need feature data for both positive and negative examples
of the clone relationship. The positive examples are feature
vectors extracted from clone method pairs, while the nega-
tive examples are vectors derived from non-clone pairs. In
our training data, each data point has the following format:
< similarity_vector, label >, where similarity_vector is
a vector of eight similarity scores, and label is either 1 to
represent “CLONE”, or 0 to represent “NON_CLONE”.

As our approach is built on the token-frequency list com-
parison between methods, when method bodies are small,
any minor variation of token usage can cause significant
degradation of similarity scores, making the training data
noisy. To avoid any confusion caused by small clone methods,

we intentionally constructed training data with methods that
contained at least six lines of code.

We used DeepLearning4j [20]—an open source library of
DNN—to train a classifier. Since there are eight features
defined, we configured eight nodes for the input layer, with
each node independently taking in one feature value. As there
are two labels for the classification task: “CLONE” and
“NON_CLONE”, the output layer contains two nodes to
present DNN’s classification result. CCLEARNER configures
the DNN to include 2 hidden layers and to run 300 iterations
for training, because our experiments in Section IV-E show
that CCLEARNER worked best with these parameter settings.

Research literature recommended that the number of nodes
in each hidden layer (h_num) should be less than twice of the
number of input nodes (i_num) [21]. In CCLEARNER, since
i_num = 8, we simply picked h_num = 10 as the default
setting so that h_num < 2 ∗ i_num.

C. Testing

Given a code base, CCLEARNER first extracts methods
from source code files with Eclipse ASTParser, and then
enumerates all possible method pairs. CCLEARNER feeds each
enumerated method pair to the trained classifier to decide
whether the methods are clones. If two methods are judged
as clones, CCLEARNER reports them accordingly.

Theoretically, when n methods are extracted from a code
base, there are n(n − 1) pairs enumerated, and the clone
detection algorithm complexity can be O(n2). To reduce the
comparison run-time overhead, we implemented two heuristics
to filter out some unnecessary comparisons between methods.
One filter was designed to compare two methods’ lines of
code (LOC). If one method’s LOC is more than three times
of the other method’s LOC, it is very unlikely that the methods
are clones, and we can simply conclude that the methods are
non-clones, skipping any further processing to extract features
or execute the classifier. Another filter removes any candidate
method with less than six LOC for two reasons. First, small
methods may contain so few tokens that CCLEARNER cannot
effectively detect them based on the token usage comparison.
Second, prior research shows that the six-line minimum is
common in clone detection benchmarking [11], [5].

The output layer has two nodes to separately predict
the likelihood of clones and non-clones: lc and lnc, where
lc+ lnc = 1. In order to map the continuous likelihood values
to either “CLONE” or “NON_CLONE” discrete classification,
we require lc ≥ 0.98 to precisely detect clones without
producing many false alarms.

IV. EVALUATION

In this section, we will first describe the benchmark we
used (Section IV-A), and how we constructed training and
testing data sets with the benchmark (Section IV-B). We then
describe the metrics and how they were calculated to evaluate
the effectiveness of clone detection approaches (Section IV-C).
With the metrics defined, we compared CCLEARNER with
three popular approaches that detect clones without using

machine learning or deep learning (Section IV-D). Finally, we
investigated different parameter settings (Section IV-E) and
various feature sets (Section IV-F) to explore the best way of
applying deep learning in CCLEARNER.

A. Benchmark

We reused BigCloneBench [7], an existing large benchmark
of code clones. Svajlenko et al. built the benchmark by mining
for clones of specific functionalities, and manually labeling
clones and non-clones. After downloading the benchmark tar
file from its website [22], we leveraged PostgreSQL [23] to
load the benchmark data. The database covers implementations
of 10 functionalities, containing over 6 million tagged true
clone pairs and 260 thousand tagged false clone pairs. The 10
functionalities correspond to 10 source code folders indexed
as Folder #2-#11 by the benchmark creators. The alternative
implementations of each functionality are put into the source
code files of one folder. Among the data, the true clones are
tagged as T1, T2, VST3 (Very Strong Type 3), ST3 (Strong
Type 3), MT3 (Moderately Type 3), or WT3/4 (Weak Type
3 or Type 4) [24]. In our experiment, the downloaded latest
version of BigCloneBench has slightly different numbers of
clones in the database from the numbers reported in the paper,
so we presented our observed numbers in Table II.

As shown in the table, true clone pairs do not evenly
distribute among the 10 folders. Specifically, Folder #4 has
22,113 source files, 4,676,552 LOC, containing the largest
number of known true clone pairs and false clone pairs. In
contrast, Folder #5 only covers 56 source files, 3,527 LOC,
and contains the fewest true and false clone pairs.

B. Data Set Construction

To evaluate CCLEARNER, we need a training data set to
create a classifier, and a testing data set to assess the classifier.
In Table II, since Folder #4 has the largest number of both
true and false clone pairs, we used the data in this folder for
training, and the data in other folders for testing. Table III
shows details of both data sets.

In Table III, the number of true clones and false clones
used for training are smaller than the corresponding numbers
of Folder #4 in Table II. There are three reasons to explain
the difference. First, small methods may contain so few tokens
that the resulting token-frequency lists may vary significantly
even though their methods are very similar. To avoid any noise
caused by small clone methods, we intentionally filtered out
methods containing less than six LOC to construct training
data. Second, MT3 and WT3/4 clones may contain totally
different implementations of the same functionality. Training a
classifier with such noisy data can cause the resulting classifier
to wrongly report a lot of clones and to produce many false
alarms. Therefore, we excluded MT3 and WT3/4 clones from
the training data. Third, we randomly chose a subset of false
clone pairs from Folder #4 to achieve a count balance between
the positive examples and negative examples. In other words,
we ensured that the total number of false clones is equal to

TABLE II: Data in the downloaded BigCloneBench

Folder Id. # of Source Files LOC # of True Clone Pairs # of False Clone PairsT1 T2 VST3 ST3 MT3 WT3/4
#2 10,372 1,984,327 1,553 9 22 1,412 2,689 404,277 38,139
#3 4,600 812,629 632 587 525 2,760 24,621 862,652 4,499
#4 22,113 4,676,552 13,802 3,116 1,210 4,666 23,693 4,618,462 197,394
#5 56 3,527 0 0 0 0 1 34 12
#6 472 83,068 4 0 14 50 124 24,338 4,147
#7 1,037 299,525 39 4 21 212 1,658 11,927 15,162
#8 131 18,527 3 7 5 0 2 259 78
#9 669 107,832 0 0 0 0 0 55 1,272

#10 1,014 286,416 152 64 285 925 2,318 236,726 1,762
#11 64 6,736 0 0 1 6 0 245 0

Total 40,528 8,279,139 16,185 3,787 2,083 10,031 55,106 6,158,975 262,465

TABLE III: Data sets of training and testing in CCLEARNER

Data set # of True Clone Pairs # of False Clone PairsT1 T2 VST3 ST3 MT3 WT3/4
Training 13,750 3,104 1,207 4,602 0 0 22,663
Testing 2,383 671 873 5,365 31,413 1,540,513 0

the total number of true clones (the sum of T1, T2, VST3,
and ST3 clones), which is 22,663.

To construct the testing data, we included all source files
in the other 9 folders (except Folder #4) of BigCloneBench.
CCLEARNER automatically extracts methods from these files,
and compares methods pair-by-pair for clone detection. Since
our evaluation focus is whether CCLEARNER can correctly
identify clone method pairs, the testing data oracle only in-
cludes the known true clone pairs that we expect CCLEARNER
to retrieve, without covering any known false clone pair.

C. Metrics and Their Calculations
We defined and calculated the following metrics to evaluate

the effectiveness of any clone detection approach:
Recall (R) measures among all known true clone pairs, how

many of them are detected by a clone detection approach:

R =
of true clone pairs detected

Total # of known true clone pairs
. (2)

Given a clone detection tool such as CCLEARNER, we could
automatically evaluate the recall for individual clone types or
for some clone types (T1-T4) as a whole. To get the per-
clone-type recall rate of CCLEARNER, we first derived the set
intersection between CCLEARNER’s retrieved clones and the
known clones in BigCloneBench for each clone type, and then
computed the ratio between the interaction set and the known
clones. Since many clone detection tools cannot effectively
retrieve MT3 and WT3/4 clones, similar to prior work [5], we
evaluated the overall recall for T1, T2, VST3, and ST3 typed
clones as below:

RT1−ST3 =
of true clone pairs (of T1-ST3)

Total # of known true clone (of T1-ST3)
. (3)

Precision (P) measures among all of the clone pairs reported
by a clone detection approach, how many of them are actually
true clone pairs:

P =
of true clone pairs

Total # of detected clone pairs
. (4)

Given a reported set of clones, it would be ideal to intersect
this set with the tagged true clone set in BigCloneBench
to compute precision. However, in reality, such intersection
approach is infeasible because according to our experience,
BigCloneBench tags only an incomplete set of the actual
true clones. We observed untagged true clones. With such
incomplete ground truth of clone pairs, we cannot decide
automatically whether a reported clone pair is true or false
if the pair is not covered by the incomplete set.

To properly evaluate the precision of CCLEARNER and
other approaches, we randomly sampled each tool’s reported
clone pairs, and manually examined the method pairs to check
whether they were true clones. To ensure that our sampled
data is representative, we chose 385 reported clones for each
approach. When an approach reports hundreds of thousands of
clone pairs, 385 is a statistically significant sample size with
a 95% confidence level and ±5% confidence interval.

With such sampling-based precision evaluation approach,
we cannot control how many clones are sampled for each type.
Therefore, we could not evaluate the precision rate per type.
Instead, we estimated the overall precision as below:

Pestimated =
of true clone pairs

385 detected clone pair samples
. (5)

C score (C) combines Pestimated and RT1−ST3 to measure
the overall accuracy of clone detection as below:

C =
2 ∗ Pestimated ∗RT1−ST3

Pestimated +RT1−ST3
. (6)

C score varies within [0, 1]. The higher C scores are de-
sirable, because they demonstrate better accuracy at clone
detection. Suppose we have 100 T1-ST3 true clone pairs
in a codebase, and CCLEARNER reports 120 clone pairs,
with 80 of them being true clones. Therefore, RT1−ST3 =
80/100 = 80%, as 80 out of the 100 true clone pairs are
retrieved. Pestimated = 80/120 = 67%, because among the

120 reported clone pairs, only 80 pairs are correctly identified.
C = 2 ∗ 80% ∗ 67%/(80% + 67%) = 73%.

D. Effectiveness Comparison of Clone Detection Approaches

To evaluate CCLEARNER’s effectiveness of clone detection,
we compared our approach with three popular clone detection
tools: SourcererCC [5], NiCad [3], and Deckard [2]. All these
three tools were executed with the default parameter configu-
ration on CCLEARNER’s testing data. As with CCLEARNER,
SourcererCC detects clones based on the tokens extracted
from source code. NiCad normalizes the code and compares
the code line by line. Deckard compares the ASTs of code
to report clones with similar tree structures. We chose these
tools because they are widely used, and can well represent the
mainstream types of clone detection approaches: token-based
and tree-based.

We compared all tools in four aspects: recall, precision, C
score, and time cost.

TABLE IV: Recall comparison among tools (%)

T1 T2 VST3 ST3 MT3 WT3/4
CCLearner 100 98 98 89 28 1

SourcererCC 100 97 92 67 5 0
NiCad 100 85 98 77 0 0

Deckard 96 82 78 78 69 53

Recall. As shown in Table IV, CCLEARNER worked bet-
ter than SourcererCC and NiCad. Compared with Deckard,
CCLEARNER effectively detected more T1-ST3 clones, but
failed to report many of the MT3 and WT3/4 clones.

There are two reasons to explain CCLEARNER’s insuffi-
ciency. First, CCLEARNER relies on the exactly same terms
used in different methods to compute similarity vectors. When
two clone methods share few identifiers and contain sig-
nificantly divergent program structures, CCLEARNER cannot
detect the clone relationship. Second, according to the Big-
CloneBench paper [7], within each WT3/T4 clone pair, the two
methods share less than 50% of statements in common. With-
out reasoning about the semantics of syntactically different but
semantically equivalent code snippets, it is very challenging
for any token-based approach to detect such clones. In the
future, we plan to devise some supplementary techniques for
these specialist clones.

It is easy to explain why Deckard detected more MT3
and WT3/4 clones than all token-based approaches. Deckard
compares program syntactic structures instead of tokens to
detect code similarity, so the tool is more robust to significant
variations of token usage between clones. If a method does
not share many tokens with its clone method, or organizes
tokens in a different sequential order from its clone, Deckard
is still capable of identifying the structural similarity. However,
it is difficult to understand why Deckard missed some simple
clones (of T1 or T2). Figure 4 shows a clone method pair of T2
in BigCloneBench, where differently used terms are bolded.
Deckard failed to detect this clone pair maybe due to some
implementation issue.

1. public static String MD5(String text) throws
2. NoSuchAlgorithmException,
3. UnsupportedEncodingException {
4. MessageDigest md;
5. md = MessageDigest.getInstance("MD5");
6. byte[] md5hash = new byte[32];
7. md.update(text.getBytes("iso-8859-1"),0,text.length());
8. md5hash = md.digest();
9. return convertToHex(md5hash);
10. }
11.
12.public static String SHA1(String text) throws
13. NoSuchAlgorithmException,
14. UnsupportedEncodingException {
15. MessageDigest md;
16. md = MessageDigest.getInstance("SHA-1");
17. byte[] sha1hash = new byte[40];
18. md.update(text.getBytes("iso-8859-1"),0,text.length());
19. sha1hash = md.digest();
20. return convertToHex(sha1hash);
21. }

Fig. 4: A clone method pair of T2 in BigCloneBench

We found that NiCad could not detect the above T2 clone
pair, either. This may be because NiCad does not tolerate
any literal difference between clones when matching pro-
gram statements. Specifically, among the 6 statements in each
method (line 4-9 and line 15-20), there are 2 statements using
divergent literals (“MD” vs. “SHA-1” in line 5 and 16, and “32”
vs. “40” in line 6 and 17). Therefore, the similarity between
the two methods is calculated as 4/6 = 67%, which is below
NiCad’s default similarity threshold 70%. As a result, the two
methods were wrongly judged as non-clones.

TABLE V: The sampled precision and the total number of
reported and true clone pairs of each tool

CCLearner SourcererCC NiCad Deckard
Pestimated(%) 93 98 68 71
of reported
clone pairs

548,987 265,611 646,058 2,301,526

of estimated
true clone pairs

510,558 260,299 439,319 1,634,083

Precision. Table V shows the Pestimated, the number of
reported clone pairs, and the number of estimated true clone
pairs for each approach. We calculated the number of true
clones by multiplying each Pestimated by the corresponding
number of reported clones. Compared with SourcererCC and
NiCad, CCLEARNER reported the most true clone pairs.
Deckard had a lower Pestimated, but reported the most true
clone pairs over all approaches.

We looked more closely at SourcererCC which had the
highest Pestimated, but reported the fewest true clone pairs.
One reason for this may be SourcereCC’s partial index fil-
tering. SourcererCC indexes methods with only the most rare
tokens used in each method, and detects clones purely among
the methods indexed with the same tokens. If two clone
methods’ most rare identifiers are different, SourcererCC may
index them differently, and wrongly exclude them from further
similarity comparison.

C Score. Table VI shows the C score comparison between
tools. CCLEARNER detected clones more accurately than
other tools because its C score was the highest, which means
that CCLEARNER had both high estimated precision and high
T1-ST3 recall.

TABLE VI: C score comparison between tools (%)
CCLearner SourcererCC NiCad Deckard

93 88 76 77

Time Cost. When comparing clone detection tools, time cost
is also an important factor to consider. This is because if a tool
spends too much time detecting clones, it may not respond
quickly enough to users’ requests, neither will it scale up to
large codebases containing millions of lines of code.

TABLE VII: Time cost of tools on about 3.6M LOC
CCLearner SourcererCC NiCad Deckard

47m 13m15s 33m40s 4h24m

As shown in Table VII, when detecting clones in a codebase
with 3,602,587 LOC, SoucererCC ran the fastest, taking only
13 minutes 15 seconds. NiCad was slower than SourcererCC
and took 33 minutes 40 seconds. Deckard worked the most
slowly and spent 4 hours 24 minutes, because it used an
expensive tree matching algorithm. Our observations on the
three tools’ time cost comparison align with the findings in
prior work [5].

CCLEARNER detected clones within 47 minutes. Similar
to SourcererCC and NiCad, CCLEARNER worked faster than
Deckard because it did not reason about program structures.
However, CCLEARNER was slower than NiCad and Sourcer-
erCC, because it extracted features from method pairs, trained
a classifier before detecting any clone, and compared methods
pair-by-pair to find clones.

In addition to the 47 minutes, CCLEARNER spent 5 minutes
on training. As a classifier can be applied to different code-
bases once it is trained, the time spent on training could be
considered as one-time cost. Due to the pair-by-pair method
comparison mechanism, CCLEARNER’s clone detection is an
embarrassingly parallel task [25], which means that we can
easily parallelize the task in the future to further reduce
CCLEARNER’s time cost.

In summary, CCLEARNER effectively detects various types
of clones with high precision, high recall, and low time cost.

E. Parameter Settings for Training a DNN Model

Two parameters in the DNN algorithm may affect
CCLEARNER’s effectiveness: the number of hidden layers
(layer_num) and the number of iterations (iter_num). To
properly configure these parameters, we have experimented
with different parameter values to investigate the best settings.

As shown in Table VIII, we tried different numbers of
hidden layers in CCLEARNER: 2, 4, 6, 8, and 10, setting
iter_num = 200 by default. We found that with 8 or 10
hidden layers, the weights or coefficients used in DNN were
not converging, and the trained models were unusable. When
layer_num = 2, CCLEARNER achieved the highest C score.

We also experimented with different numbers of itera-
tions in CCLEARNER: 100, 200, 300, 400, and 500, with
layer_num = 2 by default. As shown in Table IX, when
iter_num = 300, CCLEARNER worked best. Therefore, we

used layer_num = 2 and iter_num = 300 as the default
setting to conduct other experiments.

F. Sensitivity to Feature Selection

There are eight features used in CCLEARNER, but we
do not know which feature is most important, or how dif-
ferent features affect the overall clone detection effective-
ness. Therefore, we investigated eight variant feature sets,
ran CCLEARNER with each feature set, and measured the
recall, precision, and time cost. To create a variant set, we
removed one feature from the original set at a time, and
used the remaining seven features to characterize any method
relationship. As shown in Table X, Set 0 corresponds to
the original feature set, while Sets 1-8 are the variant sets
generated in the above way.

Based on Table X, we made three interesting observations.
First, all feature sets achieved the same or very close recall
when detecting T1, T2, and VST3 clones. This may be because
the peers of such clones were very similar to each other and
used the majority of tokens in the same way. Even though
one kind of tokens were ignored when extracting features, the
clone detection results were not affected.

Second, compared with the original feature set (Set 0),
Sets 1, 3, 5 and 6 acquired both lower precision and lower
recall. This means that in Set 0, reserved words, markers, type
identifiers, and method identifiers were important features,
and clone peers were likely to share many of such terms.
Two possible reasons can explain this finding. First, according
to the BigCloneBench paper [7], T1-MT3 clones have at
least 50% syntactic similarity between method peers, so such
clones may share many structure-relevant reserved words like
while, switch, etc., and many markers to indicate similar
statement formats, such as“[” and “:”. Second, when clone
methods implement the same semantics, they seldom use
totally different types or irrelevant methods for data storage
or numeric computation.

Third, compared with Sets 2 and 7, the original feature set
achieved higher recall but maintained the same precision. It
means that both true and false clone pairs may use operators
and qualified names similarly. These two kinds of terms can
help retrieve true clones, but may not filter out false clones as
effectively as the four types of terms mentioned above.

V. THREATS TO VALIDITY

In our evaluation, we intersected the clone pairs found by
CCLEARNER with the tagged clone pairs in BigCloneBench
to automatically evaluate recall. However, based on our obser-
vation, BigCloneBench did not tag all clones actually existing
in the codebase. Instead, it tagged a subset of the actual clones.
Evaluating CCLEARNER against such partial ground truth may
cause the measured recall rates different from the actual rates.

We evaluated CCLEARNER’s precision by having three
authors separately examine sample sets of reported clones.
Therefore, the measured precision rates may be subject to our
human bias or unintentional errors. In the future, we would
like to crowdsource the task or recruit external developers to

TABLE VIII: CCLEARNER’s effectiveness with different hidden layer numbers

Hidden Layer # R% Per Type
RT1−ST3% Pestimated% C%T1 T2 VST3 ST3 MT3 WT3/4

2 100 98 98 83 16 0 89 95 92
4 100 98 98 92 37 1 95 87 91
6 100 98 98 94 47 2 96 69 80
8 Not converging

10 Not converging

TABLE IX: CCLEARNER’s effectiveness with different iteration numbers

Iteration # R% Per Type
RT1−ST3% Pestimated% C%T1 T2 VST3 ST3 MT3 WT3/4

100 100 98 94 68 4 0 81 100 89
200 100 98 98 83 16 0 89 95 92
300 100 98 98 89 28 1 93 93 93
400 100 98 98 91 38 1 95 84 89
500 100 98 98 93 45 2 95 77 85

TABLE X: CCLEARNER’s effectiveness with different feature sets

No. Feature Set Description R% Per Type
RT1−ST3% Pestimated% C%T1 T2 VST3 ST3 MT3 WT3/4

0 All eight features 100 98 98 89 28 1 93 93 93
1 Without C1 tokens (reserved words) 100 98 97 82 16 0 89 91 90
2 Without C2 tokens (operators) 100 98 98 84 18 0 90 93 91
3 Without C3 tokens (markers) 100 98 98 83 18 0 90 91 91
4 Without C4 tokens (literals) 100 98 97 87 25 1 92 87 89
5 Without C5 tokens (type identifiers) 100 98 98 83 16 0 90 86 88
6 Without C6 tokens (method identifiers) 100 98 98 86 20 1 92 77 84
7 Without C7 tokens (qualified names) 100 98 98 85 21 0 91 93 92
8 Without C8 tokens (variable identifiers) 100 98 97 87 24 1 92 83 87

manually examine the reported clones. We will ensure that
each clone is checked by at least two people to avoid some
random errors.

Limited by the partial ground truth data in BigCloneBench,
we defined our own metric (C score), instead of reusing the
well known F score (harmonic mean of precision and recall),
to assess the overall accuracy of clone detection techniques.
This newly defined metric may bias our parameter tuning
and feature selection for CCLEARNER, and the comparison
experiment between different clone detection tools.

White et al. built a clone detection tool using deep learn-
ing [12]. We were not able to get the tool to empirically
compare it with CCLEARNER. Therefore, we do not know
how our deep learning-based approach compares to theirs.

VI. RELATED WORK

This section describes related work on clone detection tech-
niques, search-based software engineering in clone detection
optimization, and the application of deep learning in software
engineering research.
Clone Detection. There are mainly five types of clone detec-
tion techniques developed: text-based, token-based, tree-based,
graph-based, and metrics-based [26].

Text-based clone detection techniques use line-based string
matching algorithms to detect exact or near-duplication
clones [27], [28]. These approaches are simple and fast,
however, they mainly locate T1 clones and cannot detect more
complicated clones.

Token-based clone detection tools first identify tokens and
remove white spaces and comments from source code. They
then detect clones based on token comparison [1], [29], [3],
[5]. For instance, CCFinder and NiCad replace identifiers
related to types, variables, and constants with special tokens,
and then compare the resulting token sequences [1], [3]. CP-
Miner further converts the token sequence of each statement to
a hash code, concisely representing a program as a sequence of
hash codes. It then cuts the number sequence into smaller sub-
sequences to efficiently detect similar code [29]. SourcererCC
indexes code blocks with the least frequent tokens contained
in the blocks, and then compares blocks indexed by the same
token to find clones [5]. Compared with text-based clone
detection, token-based approaches are robust to formatting and
renaming changes, and can handle T2 clones.

Tree-based clone detection creates an Abstract Syntax Tree
(AST) for each code fragment, and then leverages tree match-
ing algorithms to detect similar subtrees [30], [2]. For example,
Baxter et al. hashed subtrees to B buckets, and only compared
subtrees in the same bucket to avoid unnecessary comparisons
between dissimilar code [30]. Deckard represents each subtree
as a counter vector of different categories of tokens, and then
clusters and compares subtrees based on those vectors [2].
Since tree-based tools care about program syntactic structures,
they can tolerate variations in the number of statements, and
thus can find near-miss clones. However, prior work showed
that such approaches might not scale well to large codebases
due to the significant time cost and memory usage [5].

Graph-based clone detection leverages program static anal-
ysis to construct a Control Flow Graph (CFG) [31] or Pro-
gram Dependence Graph (PDG) [32] for each code fragment,
and then uses subgraph matching algorithms to find similar
code [6], [33], [34], [35]. For instance, Apiwattanapong et
al. defined and used enhanced control flow graphs to match
Object-oriented programs, and to decide what is the difference
between the two versions of a modified program [6]. Krinke
and Liu et al. leveraged PDGs [34], [35], while Komondoor
et al. further sliced programs on PDGs [33] to detect clones.
As CFGs and PDGs can present program semantics while
abstracting away low-level details like token usage, graph-
based clone detection is capable of detecting near-miss clones.
However, the subgraph matching algorithms are usually so ex-
pensive that the approaches are not scalable, and we could not
find any such tool usable for our tool comparison evaluation.

Metrics-based clone detection gathers different metrics of
code fragments, and compares the metric value vectors to iden-
tify clones [36], [37]. The collected metrics may include the
number of function calls, the number of declaration statements,
cyclomatic complexity, and the ratio of input/output variables
to the fanout. Such approaches do not leverage any concrete
program information like tokens or program structures for
code characterization. No such tool is available for use.
Search-Based Software Engineering (SBSE) in Clone De-
tection Optimization. Two approaches used SBSE to find a
set of parameter values that maximize the agreement between
an ensemble of clone detection tools [38], [39]. Specifically,
Wang et al. presented EvaClone, an approach using a Genetic
Algorithm (GA) to search the configuration space of clone
detection tools, and to find the best parameter settings [38].
Ragkhitwetsagul et al. [39] did a replication study on Eva-
Clone, and observed that the optimized parameters outperform
the tools’ default parameters in term of clone agreement
by 19.91% to 66.43%. However, EvaClone gives undesirable
results in terms of clone quality. With deep learning, we aim
to identify the best usage of similarity vectors when detecting
clones, instead of maximizing the agreement of different clone
detection tools.
Deep Learning-Based Research in Software Engineer-
ing. Researchers have recently used deep learning to solve
problems in Software Engineering [40], [41], [42], [12]. For
instance, Lam et al. combined deep learning with information
retrieval to localize buggy files based on bug reports [40].
Wang et al. used deep belief network [43] to predict defective
code regions [41]. Gu et al. used deep learning to generate
API usage sequences for a given natural language query [42].

White et al. recently presented a deep learning-based clone
detection tool [12]. The tool first used recurrent neural net-
work [44] to map program tokens to continuous-valued vec-
tors, and then used recursive neural network [45] to com-
bine the vectors with extracted syntactic features to train
a classifier. However, they did not compare their approach
with any existing clone detection technique using any well-
known clone benchmark. Different from White et al.’s work,
CCLEARNER directly extracts features based on different

categories of tokens in source code, and purely relies on
similar token usage to detect clones. We conducted a compre-
hensive comparison between CCLEARNER and three popular
approaches which detect clones without deep learning. We
used the BigCloneBench data set in our experiment for a
scientific tool comparison. Since White et al.’s tool is not
available even though we contacted the authors, we could not
compare CCLEARNER with it empirically.

VII. CONCLUSION

We presented CCLEARNER, a deep learning-based clone
detection approach. Compared with most prior work,
CCLEARNER does not implement specialized algorithms to
target certain types of clones. Instead, it infers the commonal-
ity and possible variation patterns between the peers of known
clone method pairs, and then further identifies method pairs
matching the patterns to report clones. CCLEARNER is the
first solely token-based clone detection approach using deep
learning.

With the BigCloneBench data, we conducted the first
systematic empirical study to compare deep learning-based
clone detection with other approaches that do not use deep
learning. Compared with existing token-based approaches,
CCLEARNER detected more diverse clones with high pre-
cision and recall. Compared with a tree-based approach,
CCLEARNER efficiently detected clones with high precision.

By investigating different parameter settings in DNN, we
explored how CCLEARNER’s effectiveness varies with the
number of hidden layers and the number of iterations. By
experimenting with different feature sets, we observed that
the similar usage of reserved words, markers, type identifiers,
and method identifiers were always good indicators of code
clones. However, exactly matching the other kinds of terms to
predict clones can cause false positives and/or false negatives,
because clones are more likely to use divergent operators,
literals, qualified names, and variable identifiers. We tried to
use an n-gram algorithm [46] (i.e., bigram) to fuzzily match
similar but different terms, but this slowed CCLEARNER down
significantly. In the future, we will investigate more advanced
ways to flexibly match similar terms without incurring too
much runtime overhead. We plan to experiment with other
machine learning techniques to explore whether deep learning
is the best technique to train a classifier for clone detection.
We also plan to investigate other ways to detect clones with
deep learning, such as relying on DNN to automatically extract
features from known code clones.

ACKNOWLEDGMENT

We thank anonymous reviewers for their thorough com-
ments on our earlier version of the paper. This work was
partially supported by NSF Grant No. CCF-1565827.

REFERENCES

[1] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
TSE, pp. 654–670, 2002.

[2] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: scalable
and accurate tree-based detection of code clones,” in ICSE, 2007, pp.
96–105. [Online]. Available: http://dx.doi.org/10.1109/ICSE.2007.30

[3] C. K. Roy and J. R. Cordy, “NICAD: accurate detection of
near-miss intentional clones using flexible pretty-printing and code
normalization,” in Program Comprehension, 2008. ICPC 2008. The
16th IEEE International Conference on, vol. 0. Los Alamitos,
CA, USA: IEEE, Jun. 2008, pp. 172–181. [Online]. Available:
http://dx.doi.org/10.1109/icpc.2008.41

[4] N. Göde and R. Koschke, “Incremental clone detection,” in Software
Maintenance and Reengineering, 2009. CSMR ’09. 13th European
Conference on, 2009.

[5] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“SourcererCC: Scaling code clone detection to big code,” CoRR, vol.
abs/1512.06448, 2015.

[6] T. Apiwattanapong, A. Orso, and M. J. Harrold, “A differencing algo-
rithm for object-oriented programs,” in Proceedings of the 19th IEEE
International Conference on Automated Software Engineering, 2004.

[7] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,”
in 30th IEEE International Conference on Software Maintenance and
Evolution, Victoria, BC, Canada, September 29 - October 3, 2014, 2014.

[8] B. S. Baker, “On finding duplication and near-duplication in large
software systems,” in Proceedings of the Second Working Conference on
Reverse Engineering, ser. WCRE ’95. Washington, DC, USA: IEEE
Computer Society, 1995.

[9] G. Antoniol, U. Villano, E. Merlo, and M. D. Penta, “Analyzing cloning
evolution in the linux kernel,” Information and Software Technology,
2002.

[10] R. Koschke and S. Bazrafshan, “Software-clone rates in open-source
programs written in c or c++,” in 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
vol. 3, March 2016, pp. 1–7.

[11] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Transactions on
Software Engineering, vol. 33, no. 9, pp. 577–591, Sept 2007.

[12] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2016.

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[14] “ANTLR,” http://www.antlr.org/.
[15] “Use JDT ASTParser to Parse Single .java files,”

http://www.programcreek.com/2011/11/use-jdt-astparser-to-parse-
java-file/.

[16] “Introduction to deep neural networks,”
https://deeplearning4j.org/neuralnet-overview.

[17] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford
University Press, Inc., 1995.

[18] K. Fukushima, “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,”
Biological Cybernetics, vol. 36, no. 4, pp. 193–202, 1980. [Online].
Available: http://dx.doi.org/10.1007/BF00344251

[19] “ASTVisitor,” http://help.eclipse.org/mars/index.jsp?topic=%2Forg.eclipse.-
jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2F-
dom%2FASTVisitor.html.

[20] “Deeplearning4j,” http://deeplearning4j.org/, accessed: 2016-06-26.
[21] Data Mining Techniques: For Marketing, Sales, and Customer Relation-

ship Management. Wiley Publishing, 2011.
[22] “BigCloneBench,” https://github.com/clonebench/BigCloneBench.
[23] “PostgreSQL: The world’s most advanced open source database,”

https://www.postgresql.org.
[24] J. Svajlenko and C. K. Roy, “Evaluating clone detection

tools with bigclonebench,” in Proceedings of the 2015 IEEE
International Conference on Software Maintenance and Evolution
(ICSME), ser. ICSME ’15. Washington, DC, USA: IEEE
Computer Society, 2015, pp. 131–140. [Online]. Available:
http://dx.doi.org/10.1109/ICSM.2015.7332459

[25] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming.
Morgan Kaufmann Publishers Inc., 2008.

[26] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” SCHOOL OF COMPUTING TR 2007-541, QUEEN’S UNI-
VERSITY, 2007.

[27] B. S. Baker, “A program for identifying duplicated code,” Computing
Science and Statistics, 1992.

[28] J. H. Johnson, “Identifying redundancy in source code using finger-
prints,” in Proceedings of the 1993 Conference of the Centre for
Advanced Studies on Collaborative Research: Software Engineering -
Volume 1, 1993.

[29] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: finding copy-paste
and related bugs in large-scale software code,” IEEE Transactions on
Software Engineering, 2006.

[30] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proceedings of the International
Conference on Software Maintenance, 1998.

[31] F. E. Allen, “Control flow analysis,” in Proceedings of a Symposium on
Compiler Optimization, 1970.

[32] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Trans. Program. Lang. Syst.,
1987.

[33] R. Komondoor and S. Horwitz, “Using slicing to identify duplication
in source code,” in Proceedings of the 8th International Symposium on
Static Analysis, 2001.

[34] J. Krinke, “Identifying similar code with program dependence graphs,”
in Proceedings of the Eighth Working Conference on Reverse Engineer-
ing (WCRE’01), 2001.

[35] C. Liu, C. Chen, J. Han, and P. S. Yu, “GPLAG: detection of software
plagiarism by program dependence graph analysis,” in Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2006.

[36] K. A. Kontogiannis, R. Demori, E. Merlo, M. Galler, and M. Bern-
stein, “Pattern matching for clone and concept detection,” in Reverse
Engineering. Kluwer Academic Publishers, 1996.

[37] J. Mayrand, C. Leblanc, and E. M. Merlo, “Experiment on the automatic
detection of function clones in a software system using metrics,” in
International Conference on Software Maintenance, 1996.

[38] T. Wang, M. Harman, Y. Jia, and J. Krinke, “Searching for better
configurations: A rigorous approach to clone evaluation,” in Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2013. New York, NY, USA: ACM, 2013, pp. 455–465.
[Online]. Available: http://doi.acm.org/10.1145/2491411.2491420

[39] C. Ragkhitwetsagul, M. Paixao, M. Adham, S. Busari, J. Krinke, and
J. H. Drake, Searching for Configurations in Clone Evaluation – A
Replication Study. Cham: Springer International Publishing, 2016,
pp. 250–256. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-
47106-8

[40] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Combining
deep learning with information retrieval to localize buggy files for
bug reports (n),” in 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2015.

[41] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic features
for defect prediction,” in Proceedings of the 38th International Confer-
ence on Software Engineering, 2016.

[42] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API learning,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016.

[43] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Comput., 2006.

[44] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur,
“Recurrent neural network based language model,” in INTERSPEECH,
2010.

[45] C. Goller and A. Kuchler, “Learning task-dependent distributed repre-
sentations by backpropagation through structure,” in IEEE International
Conference on Neural Networks, 1996.

[46] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, “Syntactic
clustering of the web,” in Selected Papers from the Sixth International
Conference on World Wide Web, 1997.

Running CCLEARNER with BigCloneBench

I. SYSTEM REQUIREMENTS

CCLEARNER could be deployed and executed on Ubuntu
at present. We tested the tool in both our lab server and virtual
machine. There is no special requirement except for Java 8.
The VirtualBox image with CCLEARNER installed is available
at https://goo.gl/k6rjDn. Below are our system configurations
for the VirtualBox image:

• OS: Ubuntu 14.04 LTS (64-bit),
• Java Version: 1.8.0_131,
• CPU: Intel Core i7-4980HQ @2.80GHz × 2,
• Harddisk: 60GB, and
• Memory: 4GB.

II. BIGCLONEBENCH PREPARATION

We leveraged the BigCloneBench dataset to train and
test the classifier in CCLEARNER. The dataset consists of
a Java codebase, and a database that contains information
of true and false clone pairs in the codebase. Both tar.gz
files (codebase and database) can be downloaded from https:
//github.com/clonebench/BigCloneBench. After extracting the
above two files in the BigCloneBench folder, we utilized
PostgreSQL (https://www.postgresql.org/) to load the database
file. The SQL file contains two hidden roles: postgresql and
bigclonebench, which need to be manually created to ensure
a successful SQL file dumping. There are 9 tables in the
database and CCLEARNER uses 3 of them: clones, tool, and
tools_clones. The clones table stores the true clone infor-
mation; tool registers clone detection tools; and tools_clones
records the clone detection results by each registered tool.
CCLEARNER must be registered in the tool table by setting
the ID value as 1. We chose to use pgAdmin (https://www.
pgadmin.org/) as the PostgreSQL client.

III. CCLEARNER DOWNLOAD AND CUSTOMIZATION

CCLEARNER can be downloaded from https://github.com/
liuqingli/CCLearner. Each folder with the prefix CCLearner
contains the source code for a particular stage. The depen-
dencies and executable jar files are in the Run folder. The
Recall_Query folder contains predefined recall queries. The
CCLearner.conf file is used to specify or tune parameters,
including file paths, database settings, training models and
testing folders. Figure 1 shows a fragment of the configuration
file.

IV. EXECUTION

To evaluate CCLEARNER, we strongly recommend to
execute the tool following the instructions on the project
website. Run the three jar files (i.e., CCLearner_Feature.jar,
CCLearner_Train.jar, CCLearner_Test.jar) in sequence to ex-
tract features, train the classifier, and detect clones. Figure 2
shows the screenshot of running CCLearner_Feature.jar to

extract features, while Figure 3 presents the screenshot for
executing CCLearner_Test.jar to detect clones.

Fig. 1: CCLearner.conf

Fig. 2: Execute CCLearner_Feature.jar

Fig. 3: Execute CCLearner_Test.jar

V. EVALUATION

To evaluate CCLEARNER’s clone detection effective-
ness, truncate the tools_clones table first, and then import
CCLEARNER’s clone detection results—a CSV file—into the
table. Figure 4 shows the data import screenshot. Open the
Recall_Query folder, and execute the predefined recall queries
with pgAdmin to calculate the recall rates.

Fig. 4: Import a CSV File to the tools_clones table

