
feature
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Thus, a set of unit tests is a prerequisite for any 
refactoring activity.3 

Although most developers agree on the advan-
tages of having a solid test suite with good code 
coverage, most also admit the difficulty of devel-
oping it. Implementing the “simplest thing that 
could possibly work”4 ideally results in a test suite 
that reveals any effect the added code has on exist-
ing functionalities. However, what if the test cov-
erage for the system’s unchanged parts is low and 
the test suite returns a green bar, indicating all 
tests passed? Because successful tests don’t show 
the absence of faults, this green bar could leave 
the developers feeling overconfident. Moreover, 
they might not have implemented the simplest 
thing that could possibly work, which implies ad-
ditional tests might be needed to validate the en-
tire program edit (in this context, the textual dif-
ference between two program versions). In both 
cases, the developer has written his or her tests 
“blindly”—that is, missing possible side effects or 
being unable to verify that the edit caused no un-
expected alteration in system behavior.

Our approach to test development uses a spe-
cific change impact analysis5,6 to guide developers 
in creating new unit tests. This analysis specifies 
those developer-introduced changes not covered in 

the current test suite, thereby indicating that some 
tests are missing. It supports developers in test-
driven development by indicating whether their 
newly added functionality was the simplest thing 
that could possibly work and which additional 
effects on system behavior the test suite doesn’t 
cover. The developer can then choose to add or ex-
tend a test to cover every effect on existing code. 
Even if the test suite covers all the changes and all 
the tests pass, the system might still have faults, but 
such coverage makes it more likely that new faults 
haven’t been introduced and that all changes can 
be committed safely into the shared repository. We 
define a new metric—change coverage—that sup-
ports change-centric test development with our 
tool JUnitMX. We also discuss a feasibility study 
that shows the potential benefit of using our ap-
proach in current software development practice.

Change-Centric Test Development
When developing unit tests for improved or new 
functionality, developers don’t always know 
whether they’ve done a good job. Two challeng-
ing aspects of writing a good unit test suite are to 
ensure that the suite can exercise the program ele-
ments involved and that the suite covers all effects 
on other functionalities. 

T esting increases confidence in software’s correctness, completeness, and qual-
ity.1 By executing a test on a program, developers can check the outcome 
against the program’s specification to identify faults. Various testing lev-
els can serve different purposes during development—for example, unit and 

integration testing let developers test an implementation and its effects on existing func-
tionality. In test-driven development, a unit test acts as a functionality specification be-
fore implementation, letting developers apply only the code necessary to pass the test.2 

Applying change 
impact analysis 
to test-driven 
development provides 
software designers 
quantitative feedback 
they can use to meet 
a coverage goal and 
avoid unanticipated 
change effects.

Jan Wloka, IBM Rational

Einar W. Høst, Norwegian Computing Center
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Tool Support for Change-
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Applying Change Impact Analysis
Change impact analysis is a technique for predicting 
the possible effects of a program edit on a code base 
by computing an abstract representation of that edit 
and subdividing it into a set of changes.7 This rep-
resentation enables a classification of different kinds 
of changes and their dependences, making program 
edits amenable to program analysis. The specific 
change impact analysis we describe here consists of 
decomposition of the edit, computation of change 
dependences, and change classification.5,6,8

We can decompose an edit into a set of 
atomic—or smallest possible—changes to a pro-
gram. Examples of atomic changes include adding 
a method (AM), changing a method’s body (CM), 
adding a field (AF), or deleting a field from a class 
(DF). The element in the program that a change af-
fects is called the denoted program element. A com-
plete set of atomic changes and a full introduction 
to change impact analysis appears elsewhere.5,6 

After the decomposition of the edit, dependences 
between atomic changes are computed. An atomic 
change might depend on other atomic changes that 
must also be applied for the resulting program to 
compile.8 Other dependences stem from specific 
atomic changes that indirectly impact program be-

havior—for example, changing a field initializer 
might implicitly change the bodies of the construc-
tors for the class in which the field is declared.8

The Java program in Figure 1 illustrates change-
centric test development with a simple counter ap-
plication that can increase, store, and return a single 
integer value. Let’s say a developer wants to extend 
it to a multi-counter that manages several instances 
of the original counter. Figure 1a shows the actual 
program code; Figure 1b, the associated test suite. 
Annotated boxes indicate program edits. The origi-
nal program, V1, consists of all the code, except 
that shown in the boxes. Each of the four subse-
quent program versions have gray labels—for ex-
ample, we can construct V2 from V1 by applying 
all changes whose boxes are within the label V2, 
version V3 similarly from version V2, and so forth.

In Figure 1, the developer adds a constructor to 
class MultiCounter as part of the edit that leads to V2. 
This addition is expressed as two atomic changes: 
AM(5), CM(6), as shown in the shaded box label. 
The constructor is the denoted program element 
of these two changes—note that the developer 
can’t apply CM(6) without AM(5), which makes it  
dependent on AM(5). Similarly, CM(6) requires the 
added field counters (AF(4)). 

V2

V4

V5

V3

V2

public class Counter {
  protected int sum;
  public Counter() {  sum = 0; }
  public int getSum() { return sum ; }
  public void  inc() { ++sum ; }
}

public class  MultiCounter extends  Counter {

private  Counter[] counters;

public  MultiCounter(Counter[] cs) {
this .counters = cs;
}

public void inc() {
for (int i = 0; i < counters.length; i++) {
    counters[i].inc();
  }
}

public int  getSum() {
  int result = 0;
  for (int  i = 0; i < counters.length; i++) {
    result += counters[i].getSum();
  }
  return result;
}

public class Tests  extends TestCase {
  public void test1() {
    Counter c = new Counter();
    int n = c.getSum();
    c.inc();
    assertTrue(c.getSum() > n);
}

public void  test2() {
  Counter[] cs = new Counter[] {
      new Counter(), new Counter() };
  MultiCounter m = new MultiCounter(cs);
  m.inc();
  assertEquals(1, cs[0].getSum());
  assertEquals(1, cs[1].getSum());
  }

public void test3() {
  Counter[] cs = new Counter[] {
      new Counter(), new Counter() };
  Counter m = new MultiCounter(cs);
  m.inc();
  assertEquals(2, m.getSum());
  }

(a) (b)

AF(4)

AM(5), CM(6)

AM(7), CM(8), LC(9), LC(10)

AM(14), CM(15), LC(16), LC(17)

AM(1), CM(2), LC(3)

Lookup Changes
LC(3):  <Tests, Tests, Tests.test2()>
LC(9):  <MultiCounter, Counter, MultiCounter.inc()>
LC(10):<MultiCounter, MultiCounter, MultiCounter.inc()>
LC(13):<Tests, Tests,Tests.test3()>
LC(16):<MultiCounter, Counter, MultiCounter.getSum()>
LC(17):<MultiCounter, MultiCounter, MultiCounter.getSum()>

AM(11), CM(12), LC(13)

  

Figure 1. Change-
centric test 
development. 
Annotated boxes show 
program changes 
from (a) the original 
and edited version of 
the example program. 
The original program 
consists of all program 
fragments except those 
shown in the boxes. 
The edited program is 
obtained by adding all 
boxed code fragments. 
(b) Tests associated 
with the example 
program and lookup 
changes (LC) describe 
the effects via dynamic 
dispatch.
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Many kinds of edits can alter a Java program’s 
existing dynamic dispatch behavior, such as add-
ing an overriding method in a subclass or changing 
visibility from private to public. A lookup change 
(LC) represents an edit’s effect on dynamic dis-
patch. For example, the addition of method inc() to 
class MultiCounter results in two LC changes: LC(10) 
corresponds to the newly possible dispatch of Mul-
tiCounter objects to the new method inc(), and LC(9) 
corresponds to the redirected dispatch of MultiCounter 
objects referred to by a Counter reference in a call of 
inc(), which post-edit, will be directed to MultiCounter.
inc() rather than to Counter.inc(). All the LCs cor-
responding to the edits in Figure 1 appear in the 
shaded box in the figure’s right-hand corner. (The 
first element in each LC is the receiver object’s in-
stance type, the second element is the method in-
vocation’s static or compile-time type, and the 
third is the actual target method.)

After the dependences have been computed, 
the test suite is run on the edited program and 
profiles are collected to obtain each test’s calling 
structure (for example, a call graph). By mapping 
method-level atomic changes to a test’s calling 
structure, the analysis computes the set of affected 
tests (those whose behavior might differ after the 
edit).5 In Figure 1, when the program transitions 
from V2 to V3, test2 is affected, but test1 isn’t. Intui-
tively, this is because test2 calls MultiCounter.inc() after 
the edit, whereas it called Counter.inc() in V2. By con-
trast, test1 calls the same set of (unchanged) meth-
ods before and after the edit.5

For each affected test, the analysis can isolate 
those parts of the edit that might have affected it—
its affecting changes—the parts of the edit that can 
be mapped to the test’s calling structure. Consider-
ing the edit from V2 to V3 in Figure 1, for exam-
ple, {AM(7), CM(8)} are affecting changes for test2 
because after the edit, test2 will call MultiCounter.inc(). 

Testing Approach
In test-driven development, failing tests require pro-
gram edits to correctly implement the functionality 
they define, and newly created tests represent new 
specifications that might require edits as well. Ide-
ally, unit tests should encode every feature request, 
fault fix, or other improvement. The developer 
must modify the program to fulfill these encoded 
specifications. Work on such a task manifests it-
self as an edit to the program. When the test suite 
runs after an edit, some tests might exercise modi-
fied program elements denoted by atomic changes 
(for example, “invoke a modified method”). Ev-
ery atomic change that affects a test—as well as 
all the changes on which it transitively depends—

are considered covered changes. Conversely, the 
phrase changes not covered refers to changes in 
an edit that don’t affect any test of the suite. We 
can group the changes not covered by correspond-
ing program elements (because each atomic change 
denotes some program element) and speak of those 
elements as additions, changes, or deletions. 

Newly added tests that cover changes not 
yet covered elsewhere are called effective tests, 
whether they ran before or after the developer ed-
ited the program (that is, as in test-first or test-last 
methodologies). An effective test renders unex-
pected side effects from the edit much less likely. If 
newly added tests don’t cover any changes, they’re 
called unrelated tests; such tests are still useful in 
a global sense because they can reveal or protect 
against faults in other parts of the program not 
caused by the ongoing edit. 

Traditionally, test coverage is taken to mean 
“a measure of the proportion of a program ex-
ercised by a test suite” (http://encyclopedia2. 
thefreedictionary.com/Test+coverage), but this 
definition is too broad to be of much guidance 
to developers. Writing tests can quickly become 
daunting; 100 percent test coverage for an en-
tire application is often an unattainable goal, and 
there’s no way to claim that a sufficient number 
of tests has been written. By contrast, change cov-
erage is a measure of the proportion of atomic 
changes comprising the difference between two 
program versions exercised by a test suite. The 
greatest benefit of change coverage is that it gives 
quantitative estimation of full coverage. Develop-
ers can justifiably claim to have finished their job 
when they’ve implemented the desired functional-
ity and all their changes are covered via tests. The 
use of change coverage in test-driven development 
is called change-centric test development, as illus-
trated by the example in Figure 1. Developers using 
change-centric test development can adopt a com-
pletion condition that indicates not only whether 
the implemented functionality fulfills the require-
ments specified in the tests but also that the test 
suite covers all of an edit’s effects. Moreover, devel-
opers can use the change-centric testing method-
ology in a test-last development process in which 
they must create specific tests to cover the edit. 

Figure 2 depicts two possible development cy-
cles, along with individual activities and decisions. 
After developers accept tasks, they must write 
tests and apply various changes to the program 
to implement the described improvements. Dur-
ing this activity, developers can run the test suite 
several times and correct any failures that occur. 
Even when all tests pass, the tasks are only con-

Ideally, unit 
tests should 

encode every 
feature 

request, fault 
fix, or other 

improvement. 
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sidered completed if the tests cover all changes. If 
some changes aren’t covered, developers explore 
them and the denoted program elements—specifi-
cally, additions and changes—that the new tests 
will have to exercise. (Deletions aren’t coverable by 
any tests and are thus ignored.) Then, developers 
create new tests and run the test suite again. This 
process repeats until all changes are covered and 
the task can be declared completed.

Tool Support
To support change-centric test development as de-
picted in Figure 2, a tool must augment the feed-
back the developer receives to flag any changes not 
covered. This is necessary to establish the bound-
ary condition that tells developers when they’ve 
done a good job in providing tests that protect 
against unexpected side effects.

Standard tools for unit testing communicate 
the test outcome with a simple metaphor: a red bar 
when a test fails or crashes and a green bar when 
all existing tests pass. Our tool, JUnitMX, extends 
this concept by introducing a new possible result, 
a yellow bar. This bar appears if all the tests pass 
but change impact analysis reveals changes not 
covered by the tests. The green bar appears only 
when all tests pass and the test suite covers every 
developer-applied change. The red bar holds the 
same meaning. With this simple extension, our 
tool confirms that the test suite passes and that no 
unexpected effects due to the edit have occurred.

Hands-On Scenario
To illustrate how JUnitMX supports change-cen-
tric test development, consider a hypothetical sce-
nario, using the example in Figure 1. Assume that 
a developer is working on the code from the run-
ning example inside the Eclipse Java Development 
Tooling (www.eclipse.org/jdt) and wants to extend 
it to count multiple values. She synchronizes the 
code with the version control system to ensure that 
she’s working on the latest version of the exam-
ple—say, V1. The developer uses a single passing 
test, test1, which consists of two classes, Counter and 
MultiCounter, where MultiCounter is a subclass of Counter. 

Working in a test-first manner, the developer 
adds a new test, test2 (AM(1), CM(2), LC(3)), to 
class Tests, to drive the development’s desired func-
tionality. The new test asserts that each Counter 
is increased when a program calls method inc() 
on a MultiCounter. To compile test2, the developer 
must define a constructor of MultiCounter (AM(5), 
CM(6)) that accepts an array of Counter objects to 
manipulate and add a new field counter (AF(4)) to 
store them. The code then compiles, yielding V2, 

which, when run, results in the expected failure 
of test2. Satisfying test2 requires the developer to 
redefine method inc() in class MultiCounter (AM(7), 
CM(8), LC(9), LC(10)), so that all counters in-
crease. The change results in V3 of the code.

Although test2 now passes, the result of running 
the test suite is a yellow bar, not a green one. Ap-
parently, the current test suite doesn’t cover some 
of the atomic changes, so additional tests must 
cover the denoted program elements. Indeed, a 
lookup change (LC(9)) associated with program 
element MultiCounter.inc() isn’t yet covered by any test, 
as shown in Figure 3.

In the JUnitMX user interface, the developer 
can view the changes not covered by clicking on 
the Untested Changes tab, where changes are or-
ganized by type. The developer can inspect each 
change further by single-clicking to compare the 
denoted program element’s current version with 
its previous one. The lower pane in Figure 3 acts 
as a comparison view, showing the previous ver-
sion on the left and the current version on the 
right. Because the developer added the method, 
the left half is empty and the current version’s 
source code appears on the right. Double-clicking 
on the change opens an editor for the source file in 
question, specific to the denoted program element.

After inspecting the changes not covered, the 
developer proceeds to write test3 (AM(11), CM(12), 
LC(13)) to cover lookup change LC(9), yielding V4 
of the code. The new test exercises method inc() on 
a MultiCounter object referred to by the declared type 
Counter and specifies how the interplay between inc() 
and getSum() should work.

The benefit of targeted tests is evident because 
the newly added test fails. Running the test suite 
now results in a red bar—the test has exposed a 
fault in the logic. Indeed, the newly covered lookup 
change points to a place where the code edit had 
side effects that produced the wrong result.

In response to the failing test, the developer pro-
ceeds to fix the exposed fault. In V5, she introduces 

Green

Implement
tests

Implement
functionality

Test
resultsRun tests

Yellow

Red

Figure 2. Change-
centric development 
cycle. The solid arrow 
emanating from the 
start circle (on the left) 
shows the test-driven 
development process; 
the dashed arrow 
from the start circle 
shows the test-last 
development process. 
Red indicates test 
failures; yellow, tests 
missing; and green, all 
tests pass. 
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a redefinition of method getSum() in the class Multi-
Counter (AM(14), CM(15), LC(16), LC(17)), estab-
lishing the correct interplay between inc() and get-
Sum(). Now, all the tests succeed; moreover, the test 
suite covers all the changes, and the bar finally 
turns green. The developer can feel confident that 
her code is free from any unanticipated effects.

Behind the Scenes
We built JUnitMX as an extension of the JUnit 
Eclipse plug-in, a tool with which many developers 
are already familiar. The JUnitMX user interface 
differs slightly by displaying the kinds and num-
bers of changes not covered and provides an extra 
tree view to browse them. Given this information, 
a developer can focus on where to start creating 
the needed tests. A click on any of the changes 
opens the source code editor and leads the devel-
oper directly to the denoted program element.

JUnitMX (http://prolangs.cs.vt.edu/projects.
php) hooks into the execution of a JUnit test suite 
by adding pre- and postprocessing phases—spe-
cifically, it combines the results from two mod-
ules developed at Rutgers University, Chianti 
and Dila, with those from JUnit to compute the 
change coverage information. Chianti is a tool for 
change impact analysis that computes the atomic 
changes comprising an edit. Classes are instru-
mented as they’re loaded by a custom class loader 
provided by Dila, a library that uses bytecode util-
ities from the WALA project (http://sourceforge.
net/projects/wala). This simple mechanism allows 
for an efficient building of dynamic application 

call graphs. Each JUnit test run constructs its call 
graph and produces its outcome. In a postprocess-
ing phase, Chianti performs the actual change im-
pact analysis, and Dila calculates the change cov-
erage and test suite effectiveness.

A Case for Change-Centric  
Test Development
To investigate our hypotheses that developers write 
too few tests to sufficiently cover their edits and 
that these tests are sometimes unrelated to the edit, 
we compared development activities over multiple 
releases of JUnit3. The results of our study not only 
support our hypotheses but also suggest the inad-
equacy of solely using branch coverage—a practi-
cal and popular coverage metric—as an achievable 
boundary for creating a quality test suite.

The popular unit testing framework JUnit3 is a 
nontrivial program with multiple years of develop-
ment history in a publicly accessible repository, in-
cluding a suite of unit tests. Its creators developed 
JUnit3 in bursts, starting from 2001 over multiple 
years. We defined successive program versions 
of JUnit3 using two-week intervals over several 
years; we considered only those versions with more 
than 20 atomic changes, resulting in 13 valid ver-
sion pairs. We ran corresponding test suites with  
JUnitMX to capture the following data:

 ■ Size versus changes. We calculated each ver-
sion’s program size by using the aggregate 
number of fields, methods, and classes. Atomic 
changes correspond to program elements, so 
these two measures are comparable. Our goal 
was to compare program size with the number 
of coverable changes to illustrate that the extent 
of an edit isn’t correlated with program size. 
Note that we counted constructors as methods.

 ■ Coverage. We compared the percentages of 
achieved branch and change coverage to illus-
trate the differences in their ability to measure 
the adequacy of testing an edit.

 ■ Effectiveness. We compared the test suites’ 
growth over time to test effectiveness (that is, 
what percentage of newly added tests cover 
changes not already covered by existing tests). 
Our goal was to show that newly added tests 
don’t necessarily cover the developer’s edit 
adequately.

Note that we couldn’t capture deleted static or 
nonstatic class initializers because no edge in the 
edited program’s call graphs can witness their de-
letion. Thus, we didn’t include them in the set of 
potentially coverable changes.

Figure 3. JUnitMX 
screenshot. Changes 
not covered by any test 
appear in a tree view.
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Our feasibility experiment results yielded in-
teresting and surprising insights. Three of the 13 
versions experienced significantly large edits, with 
many changes (for example, more than 3,400, 
roughly 1,400, and roughly 800) but no signifi-
cant change in program size. Indeed, program 
size remained fairly constant (approximately 750 
program elements) over all version pairs exam-
ined. This indicates that several existing features of 
JUnit3 changed, rather than an increase in over-
all functionality. Although the number of applied 
changes varied greatly across all versions, our re-
sults demonstrate that program size isn’t correlated 
with the extent of a program edit.

In comparing branch coverage with change 
coverage across these program versions, we found 
that branch coverage barely varied (28 to 34 per-
cent), whereas the change coverage ranged from 0 
to 68 percent. Thus, for this benchmark, branch 
coverage appears not to provide much guidance 
for the development of tests that reduce the like-
lihood of an edit introducing faults into the pro-
gram. Conversely, change coverage indicates how 
much of the edit has been covered by tests, yielding 
a direct measure of additional tests necessary to 
validate edit effects. Moreover, 100 percent change 
coverage for this benchmark seems achievable with 
a reasonable amount of work. This ability to guide 
developer actions toward a highly desirable goal 
is a major strength of the change coverage metric. 
In comparing change coverage with the size of the 
edit for the same program version, we found no 
correlation between measures—that is, we found 
large and small edits with many covered changes 
and others with no covered changes.

Finally, we compared the test suite’s growth 
with the effectiveness of newly added tests. We 
measured both metrics as percentages, so the 
more that the newly added tests covered additional 
changes, the higher the effectiveness. Of the 13 ver-
sion pairs, four achieved 100 percent test effective-
ness (that is, all added tests covered changes not al-
ready covered by existing tests), three had partial 
effectiveness (that is, 42 percent, 60 percent, and 
92 percent), and six had no test suite growth. How-
ever, even the 100 percent effective test suites only 
achieved 12 to 68 percent change coverage, which 
ultimately supported our original hypotheses.

A lthough our study doesn’t prove that 
all developers write tests blindly, we’ve 
shown that it’s difficult to predict and 

test an edit’s effects. We’ve also shown that change 
coverage provides a reasonable—and achievable—

goal to motivate the development of effective tests. 
For test-driven development, our change cover-

age metric can serve as an upper boundary, indicat-
ing whether a developer did the simplest thing that 
could possibly work. Changes not covered indicate 
that an implementation provides more functional-
ity than specified by the tests or a weak test suite 
that incompletely specifies functionality. Using our 
change coverage metric and attaining a green bar 
in JUnitMX shows a developer that he or she did 
a good job in protecting the program against inad-
vertent side effects caused by an edit.
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