
feature

66	 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

Thus, a set of unit tests is a prerequisite for any
refactoring activity.3

Although most developers agree on the advan-
tages of having a solid test suite with good code
coverage, most also admit the difficulty of devel-
oping it. Implementing the “simplest thing that
could possibly work”4 ideally results in a test suite
that reveals any effect the added code has on exist-
ing functionalities. However, what if the test cov-
erage for the system’s unchanged parts is low and
the test suite returns a green bar, indicating all
tests passed? Because successful tests don’t show
the absence of faults, this green bar could leave
the developers feeling overconfident. Moreover,
they might not have implemented the simplest
thing that could possibly work, which implies ad-
ditional tests might be needed to validate the en-
tire program edit (in this context, the textual dif-
ference between two program versions). In both
cases, the developer has written his or her tests
“blindly”—that is, missing possible side effects or
being unable to verify that the edit caused no un-
expected alteration in system behavior.

Our approach to test development uses a spe-
cific change impact analysis5,6 to guide developers
in creating new unit tests. This analysis specifies
those developer-introduced changes not covered in

the current test suite, thereby indicating that some
tests are missing. It supports developers in test-
driven development by indicating whether their
newly added functionality was the simplest thing
that could possibly work and which additional
effects on system behavior the test suite doesn’t
cover. The developer can then choose to add or ex-
tend a test to cover every effect on existing code.
Even if the test suite covers all the changes and all
the tests pass, the system might still have faults, but
such coverage makes it more likely that new faults
haven’t been introduced and that all changes can
be committed safely into the shared repository. We
define a new metric—change coverage—that sup-
ports change-centric test development with our
tool JUnitMX. We also discuss a feasibility study
that shows the potential benefit of using our ap-
proach in current software development practice.

Change-Centric Test Development
When developing unit tests for improved or new
functionality, developers don’t always know
whether they’ve done a good job. Two challeng-
ing aspects of writing a good unit test suite are to
ensure that the suite can exercise the program ele-
ments involved and that the suite covers all effects
on other functionalities.

T esting increases confidence in software’s correctness, completeness, and qual-
ity.1 By executing a test on a program, developers can check the outcome
against the program’s specification to identify faults. Various testing lev-
els can serve different purposes during development—for example, unit and

integration testing let developers test an implementation and its effects on existing func-
tionality. In test-driven development, a unit test acts as a functionality specification be-
fore implementation, letting developers apply only the code necessary to pass the test.2

Applying change
impact analysis
to test-driven
development provides
software designers
quantitative feedback
they can use to meet
a coverage goal and
avoid unanticipated
change effects.

Jan Wloka, IBM Rational

Einar W. Høst, Norwegian Computing Center

Barbara G. Ryder, Virginia Tech

Tool Support for Change-
Centric Test Development

t e s t - dr iven deve l opm en t

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on June 01,2010 at 16:13:09 UTC from IEEE Xplore. Restrictions apply.

	 May/June 2010 I E E E S O F T W A R E 	 67

Applying Change Impact Analysis
Change impact analysis is a technique for predicting
the possible effects of a program edit on a code base
by computing an abstract representation of that edit
and subdividing it into a set of changes.7 This rep-
resentation enables a classification of different kinds
of changes and their dependences, making program
edits amenable to program analysis. The specific
change impact analysis we describe here consists of
decomposition of the edit, computation of change
dependences, and change classification.5,6,8

We can decompose an edit into a set of
atomic—or smallest possible—changes to a pro-
gram. Examples of atomic changes include adding
a method (AM), changing a method’s body (CM),
adding a field (AF), or deleting a field from a class
(DF). The element in the program that a change af-
fects is called the denoted program element. A com-
plete set of atomic changes and a full introduction
to change impact analysis appears elsewhere.5,6

After the decomposition of the edit, dependences
between atomic changes are computed. An atomic
change might depend on other atomic changes that
must also be applied for the resulting program to
compile.8 Other dependences stem from specific
atomic changes that indirectly impact program be-

havior—for example, changing a field initializer
might implicitly change the bodies of the construc-
tors for the class in which the field is declared.8

The Java program in Figure 1 illustrates change-
centric test development with a simple counter ap-
plication that can increase, store, and return a single
integer value. Let’s say a developer wants to extend
it to a multi-counter that manages several instances
of the original counter. Figure 1a shows the actual
program code; Figure 1b, the associated test suite.
Annotated boxes indicate program edits. The origi-
nal program, V1, consists of all the code, except
that shown in the boxes. Each of the four subse-
quent program versions have gray labels—for ex-
ample, we can construct V2 from V1 by applying
all changes whose boxes are within the label V2,
version V3 similarly from version V2, and so forth.

In Figure 1, the developer adds a constructor to
class MultiCounter as part of the edit that leads to V2.
This addition is expressed as two atomic changes:
AM(5), CM(6), as shown in the shaded box label.
The constructor is the denoted program element
of these two changes—note that the developer
can’t apply CM(6) without AM(5), which makes it
dependent on AM(5). Similarly, CM(6) requires the
added field counters (AF(4)).

V2

V4

V5

V3

V2

public class Counter {
 protected int sum;
 public Counter() { sum = 0; }
 public int getSum() { return sum ; }
 public void inc() { ++sum ; }
}

public class MultiCounter extends Counter {

private Counter[] counters;

public MultiCounter(Counter[] cs) {
this .counters = cs;
}

public void inc() {
for (int i = 0; i < counters.length; i++) {
 counters[i].inc();
 }
}

public int getSum() {
 int result = 0;
 for (int i = 0; i < counters.length; i++) {
 result += counters[i].getSum();
 }
 return result;
}

public class Tests extends TestCase {
 public void test1() {
 Counter c = new Counter();
 int n = c.getSum();
 c.inc();
 assertTrue(c.getSum() > n);
}

public void test2() {
 Counter[] cs = new Counter[] {
 new Counter(), new Counter() };
 MultiCounter m = new MultiCounter(cs);
 m.inc();
 assertEquals(1, cs[0].getSum());
 assertEquals(1, cs[1].getSum());
 }

public void test3() {
 Counter[] cs = new Counter[] {
 new Counter(), new Counter() };
 Counter m = new MultiCounter(cs);
 m.inc();
 assertEquals(2, m.getSum());
 }

(a) (b)

AF(4)

AM(5), CM(6)

AM(7), CM(8), LC(9), LC(10)

AM(14), CM(15), LC(16), LC(17)

AM(1), CM(2), LC(3)

Lookup Changes
LC(3): <Tests, Tests, Tests.test2()>
LC(9): <MultiCounter, Counter, MultiCounter.inc()>
LC(10):<MultiCounter, MultiCounter, MultiCounter.inc()>
LC(13):<Tests, Tests,Tests.test3()>
LC(16):<MultiCounter, Counter, MultiCounter.getSum()>
LC(17):<MultiCounter, MultiCounter, MultiCounter.getSum()>

AM(11), CM(12), LC(13)

Figure 1. Change-
centric test
development.
Annotated boxes show
program changes
from (a) the original
and edited version of
the example program.
The original program
consists of all program
fragments except those
shown in the boxes.
The edited program is
obtained by adding all
boxed code fragments.
(b) Tests associated
with the example
program and lookup
changes (LC) describe
the effects via dynamic
dispatch.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on June 01,2010 at 16:13:09 UTC from IEEE Xplore. Restrictions apply.

68	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

Many kinds of edits can alter a Java program’s
existing dynamic dispatch behavior, such as add-
ing an overriding method in a subclass or changing
visibility from private to public. A lookup change
(LC) represents an edit’s effect on dynamic dis-
patch. For example, the addition of method inc() to
class MultiCounter results in two LC changes: LC(10)
corresponds to the newly possible dispatch of Mul-
tiCounter objects to the new method inc(), and LC(9)
corresponds to the redirected dispatch of MultiCounter
objects referred to by a Counter reference in a call of
inc(), which post-edit, will be directed to MultiCounter.
inc() rather than to Counter.inc(). All the LCs cor-
responding to the edits in Figure 1 appear in the
shaded box in the figure’s right-hand corner. (The
first element in each LC is the receiver object’s in-
stance type, the second element is the method in-
vocation’s static or compile-time type, and the
third is the actual target method.)

After the dependences have been computed,
the test suite is run on the edited program and
profiles are collected to obtain each test’s calling
structure (for example, a call graph). By mapping
method-level atomic changes to a test’s calling
structure, the analysis computes the set of affected
tests (those whose behavior might differ after the
edit).5 In Figure 1, when the program transitions
from V2 to V3, test2 is affected, but test1 isn’t. Intui-
tively, this is because test2 calls MultiCounter.inc() after
the edit, whereas it called Counter.inc() in V2. By con-
trast, test1 calls the same set of (unchanged) meth-
ods before and after the edit.5

For each affected test, the analysis can isolate
those parts of the edit that might have affected it—
its affecting changes—the parts of the edit that can
be mapped to the test’s calling structure. Consider-
ing the edit from V2 to V3 in Figure 1, for exam-
ple, {AM(7), CM(8)} are affecting changes for test2
because after the edit, test2 will call MultiCounter.inc().

Testing Approach
In test-driven development, failing tests require pro-
gram edits to correctly implement the functionality
they define, and newly created tests represent new
specifications that might require edits as well. Ide-
ally, unit tests should encode every feature request,
fault fix, or other improvement. The developer
must modify the program to fulfill these encoded
specifications. Work on such a task manifests it-
self as an edit to the program. When the test suite
runs after an edit, some tests might exercise modi-
fied program elements denoted by atomic changes
(for example, “invoke a modified method”). Ev-
ery atomic change that affects a test—as well as
all the changes on which it transitively depends—

are considered covered changes. Conversely, the
phrase changes not covered refers to changes in
an edit that don’t affect any test of the suite. We
can group the changes not covered by correspond-
ing program elements (because each atomic change
denotes some program element) and speak of those
elements as additions, changes, or deletions.

Newly added tests that cover changes not
yet covered elsewhere are called effective tests,
whether they ran before or after the developer ed-
ited the program (that is, as in test-first or test-last
methodologies). An effective test renders unex-
pected side effects from the edit much less likely. If
newly added tests don’t cover any changes, they’re
called unrelated tests; such tests are still useful in
a global sense because they can reveal or protect
against faults in other parts of the program not
caused by the ongoing edit.

Traditionally, test coverage is taken to mean
“a measure of the proportion of a program ex-
ercised by a test suite” (http://encyclopedia2.
thefreedictionary.com/Test+coverage), but this
definition is too broad to be of much guidance
to developers. Writing tests can quickly become
daunting; 100 percent test coverage for an en-
tire application is often an unattainable goal, and
there’s no way to claim that a sufficient number
of tests has been written. By contrast, change cov-
erage is a measure of the proportion of atomic
changes comprising the difference between two
program versions exercised by a test suite. The
greatest benefit of change coverage is that it gives
quantitative estimation of full coverage. Develop-
ers can justifiably claim to have finished their job
when they’ve implemented the desired functional-
ity and all their changes are covered via tests. The
use of change coverage in test-driven development
is called change-centric test development, as illus-
trated by the example in Figure 1. Developers using
change-centric test development can adopt a com-
pletion condition that indicates not only whether
the implemented functionality fulfills the require-
ments specified in the tests but also that the test
suite covers all of an edit’s effects. Moreover, devel-
opers can use the change-centric testing method-
ology in a test-last development process in which
they must create specific tests to cover the edit.

Figure 2 depicts two possible development cy-
cles, along with individual activities and decisions.
After developers accept tasks, they must write
tests and apply various changes to the program
to implement the described improvements. Dur-
ing this activity, developers can run the test suite
several times and correct any failures that occur.
Even when all tests pass, the tasks are only con-

Ideally, unit
tests should

encode every
feature

request, fault
fix, or other

improvement.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on June 01,2010 at 16:13:09 UTC from IEEE Xplore. Restrictions apply.

	 May/June 2010 I E E E S O F T W A R E 	 69

sidered completed if the tests cover all changes. If
some changes aren’t covered, developers explore
them and the denoted program elements—specifi-
cally, additions and changes—that the new tests
will have to exercise. (Deletions aren’t coverable by
any tests and are thus ignored.) Then, developers
create new tests and run the test suite again. This
process repeats until all changes are covered and
the task can be declared completed.

Tool Support
To support change-centric test development as de-
picted in Figure 2, a tool must augment the feed-
back the developer receives to flag any changes not
covered. This is necessary to establish the bound-
ary condition that tells developers when they’ve
done a good job in providing tests that protect
against unexpected side effects.

Standard tools for unit testing communicate
the test outcome with a simple metaphor: a red bar
when a test fails or crashes and a green bar when
all existing tests pass. Our tool, JUnitMX, extends
this concept by introducing a new possible result,
a yellow bar. This bar appears if all the tests pass
but change impact analysis reveals changes not
covered by the tests. The green bar appears only
when all tests pass and the test suite covers every
developer-applied change. The red bar holds the
same meaning. With this simple extension, our
tool confirms that the test suite passes and that no
unexpected effects due to the edit have occurred.

Hands-On Scenario
To illustrate how JUnitMX supports change-cen-
tric test development, consider a hypothetical sce-
nario, using the example in Figure 1. Assume that
a developer is working on the code from the run-
ning example inside the Eclipse Java Development
Tooling (www.eclipse.org/jdt) and wants to extend
it to count multiple values. She synchronizes the
code with the version control system to ensure that
she’s working on the latest version of the exam-
ple—say, V1. The developer uses a single passing
test, test1, which consists of two classes, Counter and
MultiCounter, where MultiCounter is a subclass of Counter.

Working in a test-first manner, the developer
adds a new test, test2 (AM(1), CM(2), LC(3)), to
class Tests, to drive the development’s desired func-
tionality. The new test asserts that each Counter
is increased when a program calls method inc()
on a MultiCounter. To compile test2, the developer
must define a constructor of MultiCounter (AM(5),
CM(6)) that accepts an array of Counter objects to
manipulate and add a new field counter (AF(4)) to
store them. The code then compiles, yielding V2,

which, when run, results in the expected failure
of test2. Satisfying test2 requires the developer to
redefine method inc() in class MultiCounter (AM(7),
CM(8), LC(9), LC(10)), so that all counters in-
crease. The change results in V3 of the code.

Although test2 now passes, the result of running
the test suite is a yellow bar, not a green one. Ap-
parently, the current test suite doesn’t cover some
of the atomic changes, so additional tests must
cover the denoted program elements. Indeed, a
lookup change (LC(9)) associated with program
element MultiCounter.inc() isn’t yet covered by any test,
as shown in Figure 3.

In the JUnitMX user interface, the developer
can view the changes not covered by clicking on
the Untested Changes tab, where changes are or-
ganized by type. The developer can inspect each
change further by single-clicking to compare the
denoted program element’s current version with
its previous one. The lower pane in Figure 3 acts
as a comparison view, showing the previous ver-
sion on the left and the current version on the
right. Because the developer added the method,
the left half is empty and the current version’s
source code appears on the right. Double-clicking
on the change opens an editor for the source file in
question, specific to the denoted program element.

After inspecting the changes not covered, the
developer proceeds to write test3 (AM(11), CM(12),
LC(13)) to cover lookup change LC(9), yielding V4
of the code. The new test exercises method inc() on
a MultiCounter object referred to by the declared type
Counter and specifies how the interplay between inc()
and getSum() should work.

The benefit of targeted tests is evident because
the newly added test fails. Running the test suite
now results in a red bar—the test has exposed a
fault in the logic. Indeed, the newly covered lookup
change points to a place where the code edit had
side effects that produced the wrong result.

In response to the failing test, the developer pro-
ceeds to fix the exposed fault. In V5, she introduces

Green

Implement
tests

Implement
functionality

Test
resultsRun tests

Yellow

Red

Figure 2. Change-
centric development
cycle. The solid arrow
emanating from the
start circle (on the left)
shows the test-driven
development process;
the dashed arrow
from the start circle
shows the test-last
development process.
Red indicates test
failures; yellow, tests
missing; and green, all
tests pass.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on June 01,2010 at 16:13:09 UTC from IEEE Xplore. Restrictions apply.

70	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

a redefinition of method getSum() in the class Multi-
Counter (AM(14), CM(15), LC(16), LC(17)), estab-
lishing the correct interplay between inc() and get-
Sum(). Now, all the tests succeed; moreover, the test
suite covers all the changes, and the bar finally
turns green. The developer can feel confident that
her code is free from any unanticipated effects.

Behind the Scenes
We built JUnitMX as an extension of the JUnit
Eclipse plug-in, a tool with which many developers
are already familiar. The JUnitMX user interface
differs slightly by displaying the kinds and num-
bers of changes not covered and provides an extra
tree view to browse them. Given this information,
a developer can focus on where to start creating
the needed tests. A click on any of the changes
opens the source code editor and leads the devel-
oper directly to the denoted program element.

JUnitMX (http://prolangs.cs.vt.edu/projects.
php) hooks into the execution of a JUnit test suite
by adding pre- and postprocessing phases—spe-
cifically, it combines the results from two mod-
ules developed at Rutgers University, Chianti
and Dila, with those from JUnit to compute the
change coverage information. Chianti is a tool for
change impact analysis that computes the atomic
changes comprising an edit. Classes are instru-
mented as they’re loaded by a custom class loader
provided by Dila, a library that uses bytecode util-
ities from the WALA project (http://sourceforge.
net/projects/wala). This simple mechanism allows
for an efficient building of dynamic application

call graphs. Each JUnit test run constructs its call
graph and produces its outcome. In a postprocess-
ing phase, Chianti performs the actual change im-
pact analysis, and Dila calculates the change cov-
erage and test suite effectiveness.

A Case for Change-Centric
Test Development
To investigate our hypotheses that developers write
too few tests to sufficiently cover their edits and
that these tests are sometimes unrelated to the edit,
we compared development activities over multiple
releases of JUnit3. The results of our study not only
support our hypotheses but also suggest the inad-
equacy of solely using branch coverage—a practi-
cal and popular coverage metric—as an achievable
boundary for creating a quality test suite.

The popular unit testing framework JUnit3 is a
nontrivial program with multiple years of develop-
ment history in a publicly accessible repository, in-
cluding a suite of unit tests. Its creators developed
JUnit3 in bursts, starting from 2001 over multiple
years. We defined successive program versions
of JUnit3 using two-week intervals over several
years; we considered only those versions with more
than 20 atomic changes, resulting in 13 valid ver-
sion pairs. We ran corresponding test suites with
JUnitMX to capture the following data:

 ■ Size versus changes. We calculated each ver-
sion’s program size by using the aggregate
number of fields, methods, and classes. Atomic
changes correspond to program elements, so
these two measures are comparable. Our goal
was to compare program size with the number
of coverable changes to illustrate that the extent
of an edit isn’t correlated with program size.
Note that we counted constructors as methods.

 ■ Coverage. We compared the percentages of
achieved branch and change coverage to illus-
trate the differences in their ability to measure
the adequacy of testing an edit.

 ■ Effectiveness. We compared the test suites’
growth over time to test effectiveness (that is,
what percentage of newly added tests cover
changes not already covered by existing tests).
Our goal was to show that newly added tests
don’t necessarily cover the developer’s edit
adequately.

Note that we couldn’t capture deleted static or
nonstatic class initializers because no edge in the
edited program’s call graphs can witness their de-
letion. Thus, we didn’t include them in the set of
potentially coverable changes.

Figure 3. JUnitMX
screenshot. Changes
not covered by any test
appear in a tree view.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on June 01,2010 at 16:13:09 UTC from IEEE Xplore. Restrictions apply.

	 May/June 2010 I E E E S O F T W A R E 	 71

Our feasibility experiment results yielded in-
teresting and surprising insights. Three of the 13
versions experienced significantly large edits, with
many changes (for example, more than 3,400,
roughly 1,400, and roughly 800) but no signifi-
cant change in program size. Indeed, program
size remained fairly constant (approximately 750
program elements) over all version pairs exam-
ined. This indicates that several existing features of
JUnit3 changed, rather than an increase in over-
all functionality. Although the number of applied
changes varied greatly across all versions, our re-
sults demonstrate that program size isn’t correlated
with the extent of a program edit.

In comparing branch coverage with change
coverage across these program versions, we found
that branch coverage barely varied (28 to 34 per-
cent), whereas the change coverage ranged from 0
to 68 percent. Thus, for this benchmark, branch
coverage appears not to provide much guidance
for the development of tests that reduce the like-
lihood of an edit introducing faults into the pro-
gram. Conversely, change coverage indicates how
much of the edit has been covered by tests, yielding
a direct measure of additional tests necessary to
validate edit effects. Moreover, 100 percent change
coverage for this benchmark seems achievable with
a reasonable amount of work. This ability to guide
developer actions toward a highly desirable goal
is a major strength of the change coverage metric.
In comparing change coverage with the size of the
edit for the same program version, we found no
correlation between measures—that is, we found
large and small edits with many covered changes
and others with no covered changes.

Finally, we compared the test suite’s growth
with the effectiveness of newly added tests. We
measured both metrics as percentages, so the
more that the newly added tests covered additional
changes, the higher the effectiveness. Of the 13 ver-
sion pairs, four achieved 100 percent test effective-
ness (that is, all added tests covered changes not al-
ready covered by existing tests), three had partial
effectiveness (that is, 42 percent, 60 percent, and
92 percent), and six had no test suite growth. How-
ever, even the 100 percent effective test suites only
achieved 12 to 68 percent change coverage, which
ultimately supported our original hypotheses.

A lthough our study doesn’t prove that
all developers write tests blindly, we’ve
shown that it’s difficult to predict and

test an edit’s effects. We’ve also shown that change
coverage provides a reasonable—and achievable—

goal to motivate the development of effective tests.
For test-driven development, our change cover-

age metric can serve as an upper boundary, indicat-
ing whether a developer did the simplest thing that
could possibly work. Changes not covered indicate
that an implementation provides more functional-
ity than specified by the tests or a weak test suite
that incompletely specifies functionality. Using our
change coverage metric and attaining a green bar
in JUnitMX shows a developer that he or she did
a good job in protecting the program against inad-
vertent side effects caused by an edit.

References
 1. L. Copeland, A Practitioner’s Guide to Software Test

Design, Artech House, 2004.
 2. K. Beck, “Aim, Fire,” IEEE Software, vol. 18, no. 5,

2001, pp. 87–89.
 3. M. Fowler et al., Refactoring: Improving the Design of

Existing Code, Addison-Wesley, 1999.
 4. P. McBreen, Questioning Extreme Programming,

Addison-Wesley Professional, 2002.
 5. X. Ren et al., “Chianti: A Tool for Practical Change Im-

pact Analysis of Java Programs,” Proc. ACM SIGPLAN
Conf. Object-Oriented Programming, Systems and Ap-
plications (OOPSLA), ACM Press, 2004, pp. 432–448.

 6. B.G. Ryder and F. Tip, “Change Impact Analysis
for Object-Oriented Programs,” Proc. 2001 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, ACM Press, 2001,
pp. 46–53.

 7. R. Arnold and S. Bohner, Software Change Impact
Analysis, Wiley-IEEE CS Press, 1996.

 8. X. Ren, O. Chesley, and B.G. Ryder, “Crisp, A Debug-
ging Tool for Java Programs,” IEEE Trans. Software
Eng., vol. 32, no. 9, 2006, pp. 1–16.

About the Authors
Jan Wloka is a former postdoctoral researcher in the Programming Languages Re-
search Group (PROLANGS) at Rutgers University, currently working as a software engineer
at the IBM Rational Zurich Lab. His research interests include change-aware development
tools and advanced refactoring techniques, aiming for practical applications of change
impact analysis for tool-supporting software evolution. Wloka has a PhD in computer science
from the Technical University of Berlin. He’s a member of ACM SigSoft. Contact him at
jan_wloka@ch.ibm.com.

Einar W. Høst is a former PhD fellow at the Norwegian Computing Center, currently
working as a senior knowledge engineer at Computas AS. His research interests include the
formal and informal semantics of computer programs. Høst has a MSc in computer science
from the University of Oslo. Contact him at einar.host@computas.com.

Barbara Ryder is the J. Byron Maupin Professor of Engineering and head of the
Department of Computer Science at Virginia Tech. Her research interests include design and
evaluation of static and dynamic program analyses for object-oriented systems for use in
practical software tools. Ryder has a PhD in computer science from Rutgers University. She is
an ACM Fellow and former member of the Editorial Board of IEEE Transactions on Software
Engineering. Contact her at ryder@cs.vt.edu.

Authorized licensed use limited to: to IEEExplore provided by Virginia Tech Libraries. Downloaded on June 01,2010 at 16:13:09 UTC from IEEE Xplore. Restrictions apply.

