State-Sensitive Points-to Analysis for the
Dynamic Behavior of JavaScript Objects

Shiyi Wei and Barbara G. Ryder

Department of Computer Science,
Virginia Tech, Blacksburg, VA, USA
{wei,ryder}@cs.vt.edu

Abstract. JavaScript object behavior is dynamic and adheres to
prototype-based inheritance. The behavior of a JavaScript object can be
changed by adding and removing properties at runtime. Points-to analy-
sis calculates the set of values a reference property or variable may have
during execution. We present a novel, partially flow-sensitive, context-
sensitive points-to algorithm that accurately models dynamic changes
in object behavior. The algorithm represents objects by their creation
sites and local property names; it tracks property updates via a new
control-flow graph representation. The calling context comprises the re-
ceiver object, its local properties and prototype chain. We compare the
new points-to algorithm with an existing JavaScript points-to algorithm
in terms of their respective performance and accuracy on a client appli-
cation. The experimental results on real JavaScript websites show that
the new points-to analysis significantly improves precision, uniquely re-
solving on average 11% more property lookup statements.

Keywords: JavaScript, program analysis, points-to analysis.

1 Introduction

Dynamic programming languages, including JavaScript, Ruby and PHP, are
widely used in developing sophisticated software systems, especially Web ap-
plications. These languages share several dynamic features, including dynamic
code generation and dynamic typing, used in real-world programs [20]. For ex-
ample, JavaScript code can be generated at runtime using eval and JavaScript
functions can be variadic (i.e., functions can be called with different numbers of
arguments). Despite the popularity of these dynamic languages, there is insuf-
ficient tool support for developing and testing programs because their dynamic
features render many traditional analyses, and tools which depend on them,
ineffective.

In addition, instead of class-based inheritance JavaScript supports prototype-
based inheritance [16,27] that results in a JavaScript object inheriting properties
from a chain of (at least one) prototype objects. The model also allows the
properties of a JavaScript object to be added, updated, or deleted at runtime.
This means that JavaScript objects can exhibit different behaviors at different

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 1-26, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

2 S. Wei and B.G. Ryder

times during execution. Moreover, object constructors may be polymorphic so
that objects created by the same constructor may have distinct properties. These
aspects of JavaScript further complicate tool building.

Some tools have been developed to support JavaScript software development
(e.g., [19,22]). Points-to analysis is the enabling analysis for such tools. Re-
searchers have proposed several points-to analyses that handle different features
of JavaScript (e.g., [8,17,26]). Nevertheless, there are opportunities to signifi-
cantly improve the precision of points-to analysis through better modeling of
object property set changes.

In this paper, we present a novel points-to algorithm that can accurately
model JavaScript objects. Changes to object properties are tracked more accu-
rately to reflect object run-time behavior at different program points. A new
graph decomposition for control-flow graphs is used to better track object prop-
erty changes. Prototype-based inheritance is more accurately modeled to locate
delegated properties. The analysis identifies objects by their creation site as
well as their local property names upon construction, more accurately than the
per-creation-site representation. To distinguish polymorphic constructors, this
analysis can incorporate dynamic information collected at runtime (see Section
3.6). Technically, the analysis is partially flow-sensitive (on our new control-
flow graph structure) and context-sensitive, using a new form of object sensitiv-
ity [18].! Rather than using the receiver object creation site as a calling context
in the analysis, we use an approximation of the receiver object and its properties
at the call site (i.e., obj-ref state).

In order to compare this algorithm with previous techniques, we instantiated
our new points-to analysis as the static component of the JavaScript Blended
Analysis Framework (JSBAF) [28]. Blended analysis collects run-time informa-
tion through instrumentation to define the calling structure used by a subse-
quent static analysis, and to capture dynamically generated code. It has been
demonstrated that blended analysis is practical and effective on JavaScript pro-
grams [28]. We measured the performance and accuracy of our new analysis on a
statement-level points-to client (REF analysis) that calculates how many objects
are returned by a property lookup (e.g., a read of z.p).

The major contributions of this work are:

— We have designed a novel state-sensitive points-to analysis that accurately
and safely handles dynamic changes in the behavior of JavaScript objects.
This algorithm presents a new program representation that enables par-
tially flow-sensitive analysis, a more accurate object representation, and an
expanded points-to graph that facilitates strong updates for the statements
changing object properties.

! Informally, a flow-sensitive analysis follows the execution order of statements in a
program; a flow-sensitive analysis can perform strong updates, but a flow-insensitive
one cannot. A context-sensitive analysis distinguishes between different calling con-
texts of a method, producing different analysis results for each context [21,24]. A
context-insensitive analysis calculates one solution per method.

State-Sensitive Points-to Analysis 3

— Experimental results from our new analysis compared to a recent points-to
analysis [26], both implemented in JSBAF, showed that state-sensitive anal-
ysis significantly improved precision. On average over all the benchmarks
(i.e., 12 popular websites), 48% of the property lookup statements were re-
solved to a single object by our new analysis, while the existing analysis [26]
uniquely resolved only 37% of these statements. Although our analysis in-
curred a 127% time overhead on average to achieve the increased precision,
it was able to analyze each of the programs in the benchmarks in under 5
minutes, attesting to its scalability in practice.

Overview. Section 2 defines the notion of obj-ref state and then uses an example
to illustrate the sources of imprecision in JavaScript points-to analysis. Section
3 describes our new points-to analysis algorithm and implementation. Section
4 presents the REF analysis and the experimental results. Section 5 discusses
related work, and Section 6 offers conclusions and future work.

2 Definitions and Motivating Example

In this section we define key concepts and use an example to illustrate the sources
of imprecision in current points-to analyses for JavaScript.

2.1 JavaScript Object-Reference State

JavaScript is a dynamically typed programming language whose object behavior
can change as object properties are added or deleted at runtime. In strongly
typed programming languages, the notion of type is used to abstract the possible
behavior of an object (e.g., the class of an object in Java) [23]; however, in
dynamically typed languages, the type of an object can change during execution.
In order to avoid confusion, we call the type of a JavaScript object its obj-ref
state.?

Definition 1. The obj-ref state at a program point denotes all of its
accessible properties and their non-primitive values.

The accessible properties of an object conform to the property lookup mech-
anism implemented in JavaScript. Every JavaScript object includes an internal
reference to its prototype object from which it inherits non-local properties. A
JavaScript object may have a sequence of prototype objects (i.e., a prototype
chain) whose properties it can inherit. When reading a property p of an object o,
the JavaScript runtime checks the local properties of o to see if 0 has a property
named p. If not, the JavaScript runtime checks to see if the prototype object of
o has a property named p, continuing to check along the prototype chain from
object to object until the property is found (or not) [7].

2 This general notion can be used for other dynamic languages and is related to struc-
tured typing for strongly typed languages [23].

4 S. Wei and B.G. Ryder

Definition 2. State-update statements are: (1) property write statement
(i.e., z.p = y or z['p'] = y), (2) property delete statement (i.e., delete x.p
or delete x['p']), and (3) an invocation that directly or indirectly results
in execution of (1) and/or (2).

The state-update statements are the set of statements in JavaScript that may
affect the obj-ref states. In Figure 1, we illustrate the obj-ref state with an ex-
ample that shows the objects connected to O; at a program point. The local
properties of object O; are named p; and ps and Oy is its prototype object.
O is visible from O; by accessing O;1.p4 while Og is not visible from O; by
accessing O1.p2 because a local property named ps exists for O;. To sum up,
the shaded nodes (i.e., Og and Og) are not accessible from O; and the unshaded
nodes constitute O;1’s reference state.

Fig. 1. obj-ref state for O,. (Unshaded nodes only)

2.2 Imprecision of Points-to Analysis

A flow-insensitive analysis may produce imprecise results when obj-ref state
changes, because it must safely approximate points-to relations and it cannot do
strong updates. Existing context-sensitive analyses may produce imprecise re-
sults because they lack the power to distinguish between different obj-ref states
for the same JavaScript object. In Figure 2, we present a JavaScript example
to illustrate the sources of imprecision of a flow-insensitive, context-insensitive
points-to analysis resulting from several dynamic features of JavaScript. We also
demonstrate that an existing context-sensitive analysis using the same object
representation as [18] is ineffective at distinguishing the function calls in the
example.

Lines 2-6 show a constructor function X (). Objects created by X () may or
may not have the local property named p or ¢ (lines 4 and 5) depending on
the value of its argument. The statement in line 12 updates the value of local
property p of an object pointed to by x if p exists; otherwise, the statement
adds the local property named p to the object. Figures 3(a) and 3(b) show the
points-to graphs that reflect the run-time behavior of this code. We use the line
number to represent the object created (e.g., the object created at line 7 (new
X) is O7). We focus on two program points in the execution, lines 10 and 15.
The nodes O7, O4, and O3 and Og constitute the obj-ref state of O7 at line 10
and the nodes O7, O12, O3 and O14 constitute the obj-ref state of O at line 15.

State-Sensitive Points-to Analysis 5

1 function P(){ this.p = new Y1(); }
2 function X(b){

3 this.__proto__ = new P();

4 if(b) { this.p = new Y2(); }

5 else this.q = new Y3();

6 }

7 wvar x = new X(true);

8 x.bar = function(v, z){ v.f = z; }
9 var zl = new Z();

10 x.bar(x.p, zl1);

11 ...

12 x.p = new AQ);

13 ...

14 var z2 = new ZQ);

15 x.bar(x.p,z2);

Fig. 2. JavaScript example

Note that Oy is not visible from O7 at lines 10 or 15 because of the existence of
the local property named p. The obj-ref state of object O is different at these
two program points.

Constructor polymorphism (lines 2-6), object property change (line 12) and
function invocations (lines 10 and 15) in the example make precise static points-
to analysis hard to achieve with current techniques. Figure 3(c) shows a points-to
graph for the example built by a flow- and context-insensitive points-to analysis.
Dashed nodes and edges are imprecise points-to relations that cannot exist at
runtime.

There are several sources of imprecision. Line 7 creates an object pointed to by
variable by invoking the polymorphic constructor X (). Not knowing the value
of b, static analysis conservatively builds all the points-to relations possible from
execution of X ().> When reading the property p of z (line 10), static analysis
returns objects O4 and O; because a conservative analysis cannot distinguish
whether or not Oy actually exists. Furthermore, because of the imprecise result
of the read of x.p, invoking the bar() function results in imprecise property
reference from O; to Og. Flow-insensitive points-to analysis simply adds Oj2 to
O7.p (line 12) because it cannot perform strong updates. Because the analysis
does not distinguish which objects v and z point to on different calls of bar(),
line 15 results in additional imprecision with respect to Oy.f and O1s.f.

Flow-sensitive analysis is not sufficient to resolve the imprecision in the exam-
ple without an appropriate context for call sites. First, indirect assignment state-
ments cannot be strongly updated in general. Second, assuming z.p is strongly
updated to point to O15 at line 12, a context-insensitive analysis does not remove
the imprecise edges (< Oy, f >, 014) and (< O12, f >, Og) because calls to bar()
(lines 10 and 15) are not distinguished by calling contexts. Object sensitivity [18]

3 In this short example, constant propagation of parameters would help static analysis
precision but clearly this is not always possible.

6 S. Wei and B.G. Ryder

Fig. 3. Imprecision of static points-to analysis. (a) Run-time points-to graph at line
10. (b) Run-time points-to graph at line 15. (c) Flow- and context-insensitive points-to
graph.

has been shown to perform better than call-string context sensitivity [24] for the
idioms used in object-oriented languages [15]. However, object-sensitive analy-
sis is not able to differentiate these two call sites because they have the same
receiver object Oz, which has two different obj-ref states at these call sites. Our
new points-to analysis is designed to handle these constructs more accurately and
to address the challenges raised by obj-ref state updating and prototype-based
inheritance.

3 State-Sensitive Points-to Analysis

In this section we will present our state-sensitive points-to analysis for JavaScript.
We will explain key ideas used in the analysis, including the intra-procedural
program representation (i.e., the block-sensitive decomposition of control-flow
graphs), the solution space (i.e., the annotated points-to graph with access path
edges and in-construction nodes), the transfer functions of the state-update
statements as well as the state-preserving statements, state sensitivity (i.e., a
form of context sensitivity based on object sensitivity that captures changes
in object behavior during execution) and block sensitivity (i.e., a partial flow
sensitivity performed on the transformed CFG). Finally, we will discuss the im-
plementation details of our algorithm.

State-Sensitive Points-to Analysis 7

3.1 State-Preserving Block Graph

A flow-insensitive analysis ignores the control flow of a program while a flow-
sensitive analysis typically uses an intra-procedural control-flow graph (CFG).
Our analysis aims to provide a better model of a JavaScript object whose ref-
erence state exhibits flow-sensitive characteristics (e.g., allowing addition and
deletion of object properties at any program point). Cognizant of the possible
overhead introduced by a fully flow-sensitive analysis, we designed a partially
flow-sensitive analysis that only performs strong updates when possible on state-
update statements using a transformed CFG, called the State-Preserving Block
Graph (SPBG). Recall that the state-update statements, including the property
write (i.e., add or update a property) and delete (i.e., remove a property), di-
rectly change the obj-ref state in JavaScript; all other statements (e.g., property
read) are state-preserving statements.

Figure 4 shows an example SPBG (Figure 4(b)) compared to its original CFG
(Figure 4(a)). An SPBQG is a transformed control-flow graph whose basic blocks
are aggregated into region nodes according to whether or not they contain a
state-update statement. The SPBG also contains state-update statements as
special singleton statement nodes (i.e., state-update nodes). An example of a
region node (i.e., state-preserving node) is 2-4-5-7 in Figure 4(b) whereas node z
= new A() is an example of a state-update node. Note that in creating singleton
nodes the algorithm breaks apart former basic blocks (e.g., 1 — {1’, z = new

A(), 17}).

oo

a:e te-
oo
o

(a) (b)

succ: a

succ: a, b

succ:a, b

Fig. 4. SPBG generation. (a) CFG. (b) SPBG.

We first split any basic blocks in the CFG that contain at least one state-
update statement (see Definition 2 in Section 2), obtaining a split-CFG. State-
update statements (1) and (2) can be detected syntactically and invocations that

8 S. Wei and B.G. Ryder

may result in an obj-ref state change (i.e., category (3)) are found by a linear
call graph traversal.* We then use a variant of the standard CFG construction
algorithm [1] to build the split-CFG. The header nodes used include the stan-
dard headers [1] plus (i) any state-update statement is a region header of a
state-update node containing only that statement, and (ii) any state-preserving
statement that immediately follows a state-update statement is a region header
of a state-preserving node.

In an SPBG, state-preserving region nodes are formed based on grouping
nodes in the split-CFG that share the same control-flow relations with respect
to state-update nodes. The possible control-flow relations of node nq and ns in
a split-CFG include: (1) n; is a successor of ng, (2) n; is a predecessor of ng, (3)
np is both a successor and a predecessor of ng (i.e., n; and ny exist in a loop)
and (4) ny and ne have no control-flow relation (e.g., n; and ng are present in
different branches). We label each node in a split-CFG with its relations to each
state-update node via depth-first searches. The set of labels form a signature
for that node. If nodes share the same signature it means that they have the
same control-flow relationship(s) to a (set of) state-update statement(s) so that
they can be collapsed to a state-preserving node in the SPBG. Figure 4(b) shows
the signatures of the state-preserving regions in the generated SPBG; a and b
represent the state-update statements x=new A() and delete z.p, respectively.
Basic blocks 2, 4, 5 and 7 are aggregated because they only appear as successors
of z=new A() and have no control-flow relation to delete x.p. The region node
2-4-5-7 is not further aggregated with basic block 9 because 9 is a successor of
delete x.p but 2-4-5-7 is not.

3.2 Points-to Graph Representation

Our points-to graph representation includes constructs that facilitate the han-
dling of strong updates by our analysis. Our algorithm design allows strong up-
dates when possible for state-update statements. In contrast, most flow-sensitive
Java analysis algorithms cannot perform strong updates for indirect assignment
statements (e.g., .p = y) and few analyses consider property delete statements,
which are uncommon in object-oriented languages. Two existing techniques help
to enable strong updates for such statements in JavaScript: recency abstraction
and access path maps.

Recency abstraction [2,11] associates two memory-regions with each alloca-
tion site. The most-recently-allocated block, a concrete memory-region, allows
strong updates and the not-most-recently-allocated block is a summary memory-
region. We adapt the idea of recency abstraction to enable strong updates during
analysis of constructor functions.

De et al. [6] performed strong updates at indirect assignments by computing
the map from access paths (i.e., a variable followed a sequence of property ac-
cesses) to sets of abstract objects. This work demonstrated the validity of using
access path maps to perform strong updates for indirect write statements in

4 Our analysis requires a pre-computed call graph as input. See Section 3.6 for details.

State-Sensitive Points-to Analysis 9

Table 1. Expanded points-to graph with annotations

variable
v
node abstract object @
N 0
in-construction
object @o
variable reference °
points-to (v, o)
h
grap edge property reference e B e
E (< ¢oi,p >, ¢o;)
¢ access path P Q
(<v,p>,¢0)
d
d annotation .'—>v P
annotation p? .
A * annotation o B e

p

Java. We adapt this approach to points-to analysis for JavaScript by expanding
the points-to graph representation instead of using separate maps.

Table 1 lists the nodes, edges and annotations in our points-to graph. In
addition to variable nodes v and abstract object nodes o, our points-to graph
contains in-construction object nodes @o.% Details of the in-construction objects
will be discussed in Section 3.3. For sake of simplicity, we use ¢o to represent
either kind of object node (i.e., o or @o).

There are three kinds of edges. Variable reference and property reference edges
exist in a traditional points-to graph. An access path edge, (< v, p >, $0), denotes
that the property p of variable v refers to object ¢o. < v, p > represents an access
path with length of 2 (i.e., a variable followed by one field access v.p).

Our analysis calculates may pointer information, meaning that a points-to
edge in the graph may or may not exist at runtime. To better approximate the
obj-ref states of JavaScript objects, we introduce annotations on property refer-
ence edges as well as access path edges. The annotations help to calculate must
exist information for object property names. In our analysis, the d annotation
on a property name p (i.e., p¢) denotes that the local property named p must
not exist. This annotation only applies to access path edges in our points-to
graph. The other annotation, %, applies to both property reference edges and

5 Similar to the recency abstraction, an in-construction object always describes exactly
one concrete object. In our analysis, it exists only during analysis of a constructor.
5 The length of an access path is one more than the number of field accesses [6].

10 S. Wei and B.G. Ryder

access path edges. p* denotes that the local property named p may not exist.
Property reference edges without annotation or access path edges without an-
notation represent must exist information for the property names. We use p? to
represent any kind of p?, p* or p edge. These annotated edges help us perform a
more accurate property lookup (see Section 3.3).

Pt(x) denotes the points-to set of and Pt(< ¢o,p >) denotes the points-to
set of the property p of ¢o. Pt(< v,p >) denotes the points-to set of access path
v.p. We also define the operation Alias(v) which returns the set of variables W
such that v and w € W point to the same object. apset(v) denotes the set of all
access path edges of v (i.e., apset(v) = Vq: {(< v,q® >, $0)}).

In addition to the points-to graph, we use a mapping data structure to store
intermediate information in the analysis. The map M is used to record the list
of property names when an object is constructed. An abstract object (e.g., o) is
the key in M whose value is the set of local property names that exist when the
constructor function of the abstract object returns (e.g., {pl, p2, p3}).

3.3 Points-to Analysis Transfer Functions

In this section we describe the data-flow transfer functions for the statements
shown in Table 2.

Object creation (z = new X(a1, asz, ..., a,)). In our analysis, an object cre-
ation statement (i.e., new statement) is modeled in three steps. z = new X
creates an in-construction object @o;. Then the invocation of the constructor
new X ((a1, ag, ..., an)) is modeled as a function call on @Qo;. Upon the return of
the constructor (i.e., retx), the analysis removes the in-construction object from
the points-to graph and redirects all points-to relations from @o; to an abstract
object (i.e., remove(G, Qo;)). If the local property set of the in-construction
object matches that of an existing abstract object with the same allocation site,
the in-construction object is merged into the abstract object; otherwise, a new
abstract object is created to replace the in-construction object. There is at most
one in-construction object for each creation site.”

The transfer function of the object creation statement ensures that abstract
objects are based on their allocation site as well as their constructed local prop-
erties (i.e., an approximation of actual obj-ref state); in other words, the objects
created at the same allocation site that contain the same set of local property
names share the same abstract object in our analysis. This object representation
is more precise than using one abstract object per creation site.

Property write (z.p = y). In general, strong updates cannot be performed on
the property write statement because an abstract object may summarize multiple

" Recursive constructor calls involve the creation of an in-construction object when
the in-construction object for the same allocation site already exists (before it re-
solves into an abstract object). In our analysis, the existing in-construction object
is resolved into a special abstract object whose set of properties upon construction is
unknown. A fixed point calculation is done using the special abstract object.

11

State-Sensitive Points-to Analysis

{(w ‘f)dnyoo) > py v (f)1d D 0d|(¥p ‘e ‘In *o¢ ‘py ‘H)oyoaur}() ((x)19sdp — D)
{(d*f)dnsyoo) 3 to|(< o ‘x >)} ((x)asdD — H)

{(B)1d > *0¢|(*og)} ((x)g05dD — D)

{(<dz>)g 3 r0¢ v # (d2)d v (z)soyy
3z|(fop < dz >)} —{(<d'z >Nd 3 0P v F# (dz)id v (T)souy 3 z|(fop ‘< dz >)} D (€7)

{(<d*op
>)id 3 fod v (2)1d 3 *09|(fop ‘< dtod >)} — {(< dod >)1d 3 fod v (z)1d 3 tog|(fog ‘< dod >)}N D (2°T)

{(mu < dz >N ({(< od'2 >)1d 3 '09|(fog < yd'z >)} — D) (1'2)
2 as1mL2y10 (g)

{(< 4d ‘20 >)1d 3 fod v (z)1d 3 'op|(‘09 ‘< 4d‘ton) >)} — 5
{(@)1d 2 todlo® 3 *0¢} puv 1 = |(2)1d]| f1 (1)

{(B)1d 3 109 v # (,d‘2)3d V (B)sv2Y 3 2|(fog ‘< d‘z >)}N D (£77)
{(A)1d 3 fop v (x)1d > *og|(fop ‘< d o >)}N D (5T)

{81 3 fop|(fop < d'z >IN ({(< d'T >)1d 3 '09|(*0d ‘< yd 'z >)} — D) (1°7)
1 959MU2Y30 (g)

{(A)1d > fog v (2)1d > *opl(fo ‘< dtop >)} ({(< 4d‘t0D >)id 3 fop Vv (2)1d 3 *op|(fop ‘< 4d*t0p >)} —H
H(@)1d 3 000D > tod} pup T = |(T)1d] f2

E
Qc@v,Uvm@eEwL“v&m;Amv
{(m0% 2010 05 x D)oyoaua})9+ (0 0 1))y mou (g)

(r0n @) (@)psdv — p) : x mou =z (1)

uornpouny Iajsuedy,

sjuemeje)s wrerdord jo suorjouny Isjsuel], *Z o[qel,

(¥p ¢ ‘ep)whfi = x

Aﬁﬁ ..

dfi=ux

d'x 979)2p

fi=dz

“epfIp)y mau = T :'s

IR

12 S. Wei and B.G. Ryder

run-time objects; however, use of in-construction objects and access path edges
enable strong updates in our analysis. In the points-to graph G, if x only refers
to one object and the object is an in-construction object, we know that x refers
to a specific concrete object. The analysis then performs strong updates on the
property reference edges by removing the points-to edges in G denoting Qo;.p
(if they exist) and adding the new edges implied by Pt(y). In other cases (i.e.,
the cardinality of Pt(z) is more than 1 or z refers to an abstract object), we
use access path edges to enable strong updates on property write statements.
First, the access path of z.p can be strongly updated by removing the access
path edges in G denoting z.p (if they exist) and adding the new edges (e.g.,
(< x,p >,05) where o; is referred to by y). Second, the object(s) « points to are
weakly updated (e.g., the edge (< 0;,p* >, 0;) is inserted if z points to o; and y
points to 0;). The property reference edges are inserted with the * annotation
because the property write statement may not affect all variables pointing to
the updated object. Last, the access path edges of the variables that have a may
alias relation to z need to be weakly updated. For example, (< z,p* >,0;) is
inserted to G if z may be an alias of x, and there exists at least an edge denoting
z.p (with or without annotation).

In Figure 5, we show an example of the effects of a property write statement
on the points-to graph. Figure 5(a) illustrates the input points-to graph for the
property write statement z.p = y. In Figure 5(b), our analysis performs a strong
update on the access path x.p (i.e., delete (< x,p >,04) and add (< x,p >, 0),
(< @,p >,03)) and inserts the edges (< O1,p* >,03), (< O1,p* >,03) (ie.,
weak updates). The updated points-graph shows that the property p must exist
on z, while either (< z,p >,03) or (< z,p >, O3) may exist.

Fig.5. Property write example. (a) Input points-to graph. (b) Updated points-to
graph.

Property delete (delete z.p). The transfer function of the delete statement
is similar to the property write statement. Our analysis strongly updates the
access path edges by removing the existing edges and adding a new edge (i.e.,
(< z,p? >,null)) that denotes & must not have a local access path z.p. When
performing weak updates on the property reference edges of an object o; that is
referred to by z, all existing edges denoting o;.p should be annotated by * because

State-Sensitive Points-to Analysis 13

the property named p may not exist locally for o;. The same rule applies when
updating the access path edges of the aliases of z.

Direct write (z = y). The effects of direct variable assignment on the points-
to graph are relatively straightforward. z = y creates points-to edges from z
to all objects pointed to by y. Note that we perform weak updates on direct
assignments. Although the analysis removes all the access path edges of z from
the points-to graph (i.e., G - apset(z)), soundness is ensured because lookups
through the abstract objects reflect less precise, yet safe approzimations (see
Procedure 1). Also, the access path edges of y cannot be copied to z because
access path edges can only be added via strong updates.

Property read (z = y.p). JavaScript enforces an asymmetry between reading
and writing property values. When writing the value of a property or deleting a
property, JavaScript always uses the local property, ignoring the prototype ob-
ject. When reading a property of a variable (e.g., z = y.p), recall that JavaScript
supports prototype-based inheritance. In some existing points-to analyses for
JavaScript, when reading property p of an object, the property lookup mecha-
nism is modeled by reporting all properties named p in the prototype chain of
the object to ensure analysis safety.

Procedure 1. Optimized object property lookup: lookup(v, p)
Output: accessible objects v.p: P
1: if Pt(<v,p>) # () then
PUPt(<v,p>)UPt(<v,p">)
3 return
4: else if Pt(< v,p* >) # 0 or Pt(< v,p? >) # 0 then
5. PUPt(<v,p*>)
6: for each object ¢o in lookup(v, proto) do
7.
8

S.push(¢o)
end for
9: else
10: for each object ¢o in Pt(v) do
11: S.push(¢o)
12: end for
13: end if

14: while S is not empty do
15: ¢o; « S.pop()
16: P U Pt(< ¢oi,p >) U Pt(< ¢oi,p* >)

17: if |Pt(< ¢oi,p >)| = 0 and (Pt(< ¢o;, proto >) # null or Pt(<
¢oi, proto * >) # null) then

18: for each object ¢o; in Pt(< ¢o;, proto >)U Pt(< ¢o;, proto * >) do

19: S.push(¢o;)

20: end for

21: end if

22: end while

14 S. Wei and B.G. Ryder

Procedure 1 illustrates our potentially more precise property lookup proce-
dure enabled by our edge types and their annotations. This worklist algorithm
iterates through all the accessible objects in the points-to graph when property p
of variable v is read. Intuitively, it favors the use of access path edges in property
lookup because they reflect the results of strong updates, before examining prop-
erty reference edges. Lines 1 to 12 initialize the algorithm upon three conditions.
(1) If there exist access path edges for v.p without annotation (i.e., property
p must exist locally), the objects in the Pit(< v,p >) and Pt(< v,p* >) are
considered to be accessible properties (line 2) and the algorithm returns (line 3).
(2) If there exist access path edges for v.p with either annotation, the algorithm
needs to lookup objects in the prototype chain. In this case, the objects in the
Pt(< v,p* >) (if v.p* exists) are considered to be accessible properties (line
5) and the algorithm pushes all the immediate prototype objects of v onto the
worklist (lines 6 to 8). (3) Otherwise (i.e., no access path edge for v.p exists),
only the abstract objects are used for looking up so that all the objects in the
Pt(v) are pushed onto the worklist (lines 10 to 12). Lines 14 to 22 iterate the
worklist. All the objects in Pt(< ¢o,p >) and Pt(< ¢o,p* >) are considered
to be accessible properties by our analysis (Line 16). Since an edge annotated
with * means that the property may not exist locally, the algorithm will con-
tinue looking up the prototype chain, until it reaches at least one points-to edge
named p without annotation or the end of the prototype chain (Line 17 to 21).
Thus, instead of finding all the properties named p in the prototype chain (i.e.,
lookup all(v, p)), our algorithm can stop when it finds an existing property p
(i.e., a property named p without annotation).

This new property lookup algorithm lookup(v, p) mimics the run-time prop-
erty lookup mechanism of JavaScript while still assuring the safety of our anal-
ysis. For the example in Figure 5(b), lookup(z, p) results in Os and Oz through
the access path while lookup(z, p) results in Oz, Oz, O4 and Os through the
abstract object O;7. In Table 2, the transfer function of the property read state-
ments refers to this optimized object property lookup algorithm. Because we
perform weak updates on the property read statements, similar to direct writes,
the analysis removes all the access path edges of z from the points-to graph to
ensure safety.

Method invocation (z = y.m(a1, as, ..., a,)). The method invocation (e.g.,
x = y.m(a1, az, ..., a,)) resolves for every receiver object pointed to by .
The invoked methods are determined by reading the property y.m through our
optimized lookup algorithm. Upon the return of method invocation, x is weakly
updated by removing all its access path edges from G.

3.4 State Sensitivity

State sensitivity for JavaScript is a new form of context sensitivity derived
from the notion of object sensitivity for languages such as Java [18]. In ob-
ject sensitivity, each method is analyzed separately for each object on which it
may be invoked. For strongly typed languages like Java, often object sensitivity

State-Sensitive Points-to Analysis 15

identifies objects in the analysis by their creation sites. Calls of a method using
two different receiver objects (i.e., created at different sites) will result in two
separate analyses of the method, even if the calls originated from the same call
site. However, this is insufficient for JavaScript analysis, because object behavior
may change dynamically at any program point during execution.

Fig. 6. Approximate obj-ref state as a context. (a) obj-ref state of O1. (b) Approximate
obj-ref state of O1.

Ideally, state sensitivity would analyze each method separately for each obj-ref
state on which it may be invoked. However, the graph representation of obj-ref
state may contain many edges and nodes both locally and along prototype chains
(e.g., obj-ref state of O1 in Figure 6(a)), which would be prohibitively expensive
to use as a context. Therefore, we use an approximation of the obj-ref state of
the receiver object to differentiate calls that will be analyzed separately. Our
approximation consists of the object, its local properties and their object values
plus its chain of prototype objects. In Figure 6(b) we show the approximation
corresponding to the obj-ref state of object Oy in Figure 6(a). Note that the edges
with the same local property name (annotated and not annotated) in the points-
to graph are merged in the approximate obj-ref state (e.g., (< O1,p1 >,02) and
(< O1,p5 >,03) in Figure 6(a)). An object-sensitive analysis groups the calls
using a receiver object created at the same allocation site and our state-sensitive
analysis more accurately groups the calls where receiver objects have the same
approximate obj-ref state. We intend to study the effects of using different obj-ref
state approximations as calling contexts in future work.

3.5 Block-Sensitive Analysis

Our new points-to analysis algorithm is a fixed point calculation on the call
graph, initialized with an empty points-to graph on entry to the JavaScript pro-
gram, in which every constitutent SPBG is traversed in a flow-sensitive manner.
Essentially, we have designed the points-to algorithm to emphasize precision for
the obj-ref state information in the points-to graph and the SPBG to hide control
flow not relevant to reference state updates.

16 S. Wei and B.G. Ryder

Table 3. Union rules. (a) Access path edges union rules. (b) Property reference edges
union rules.

(a) (b)

U 0 ¢t up v.p U 0 0.p* 0.p

0 0 0) 0 0 0 op* o.p*
v.p? 0 vp? wpt wp* op® op* op" op*
v.p* 1] v.p* vp* wvp* o.p 0.p” o.p* o.p
v.p 0 v.p* vp” v.p

More specifically, our analysis solves for the points-to graph on exit of each
SPBG node. The transfer function for a node in the SPBG is one of two kinds:
(1) for a state-update node perform strong update of the changed property,
if possible (as in Table 2), or (2) for a state-preserving node perform a flow-
insensitive analysis of the statements in that node, using an initial points-to
graph (IN) and storing the fixed point reached in points-to graph OUT.

Normally in a points-to analysis, we would form IN as a union of the OUT
points-to graphs of predecessors of a node. In our algorithm, we need to maintain
the invariant of our annotated property edges, namely that a property name
without an annotation means that property exists and a property name with
the d annotation means that property must not exist.

Table 3 shows the union rules for the access path edges and property reference
edges when two points-to graphs are unioned. For the access path edges: (1) if
access path v.p® does not exist in at least one predecessor, then v.p® does not
exist after union; (2) if v.p? or v.p exists in both predecessors, then v.p? or v.p
respectively exists after union; (3) otherwise, v.p* exists after union. For the
property reference edges: (1) if o.p exists in both predecessors, then o.p exists
after union; (2) otherwise, if 0.p or o.p* exists in at least one predecessor, then
o.p* exists after union. These rules ensure analysis safety when property lookup
is performed.

3.6 Implementation of State-Sensitive Analysis in JSBAF

Our new points-to analysis was implemented with a client as the static compo-
nent of the JavaScript Blended Analysis Framework (JSBAF), a general-purpose
analysis framework for JavaScript [28]. This framework was designed to strongly
couple dynamic and static analyses to account for the effects of the dynamic
features of JavaScript. We chose this implementation platform because blended
analysis has been demonstrated to be more efficient and effective in analyzing
real JavaScript programs.®

JSBAF can be applied to analyze a JavaScript program (i.e., JavaScript code
on a webpage) automatically in the presence of a good test suite. The dynamic
phase gathers run-time information by executing tests. A trace of each test

8 A static analysis was not able to finish analyzing most webpages in [28].

State-Sensitive Points-to Analysis 17

is collected, including call statements, object creations, variadic function calls
with parameters, and dynamically created code. The implementation separates
each trace into its constituent page traces. Each subtrace on a page is analyzed
separately in the static phase. Data-flow solutions from different page subtraces
are combined into a entire solution for that page.

Blended analysis uses only the observed calling structure as a basis to model
the JavaScript program. Knowledge of unexecuted calls or object creations can
be used to prune other unexecuted code sharing the same control dependence.
For example, knowing Y'3() is not called at line 5 in Figure 2, blended analysis
prunes this unexecuted statement so that the imprecise node Oy and its con-
nected edges will not be created. Thus, blended analysis is unsafe because not
all executions are explored, but sound on the observed executions.

Our points-to algorithm was implemented on the IBM T.J. Watson Libraries
for Analysis (WALA) open-source static analysis framework® which contains
several existing static points-to analysis algorithms. WALA has been extended
to enable blended analysis by providing dynamic information (i.e., a run-time
collected call graph, dynamically generated code, object creation sites) [28].

Our algorithm takes as inputs the run-time collected calling structure (i.e., call
graph!®) and source code including dynamically generated code. Code pruning
was performed on function bodies so that the code in polymorphic constructors
and variadic functions was specialized. Hence, constructor polymorphism was
handled by our improved object representation combined with dynamic infor-
mation (i.e., objects created at the same allocation site with different sets of
property names are represented as separate abstract objects).

Fig. 7. Blended state-sensitive points-to analysis. (a) points-to graph at line 10. (b)
points-to graph at line 15.

Example. In comparison to the inaccurate points-to solution of a flow- and
context-insensitive analysis for the JavaScript code in Figure 2, we now

 http://wala.sourceforge.net/
10 Bach node in the call graph is associated with the object creations observed during
its execution.

http://wala.sourceforge.net/

18 S. Wei and B.G. Ryder

demonstrate the results of our state-sensitive points-to analysis in the context
of blended analysis. Figures 7(a) and 7(b) show the points-to graphs obtained
at lines 10 and 15, respectively. Because blended analysis executes the program
and does not observe an object created by the constructor Y3, the code at line 5
is pruned so that our analysis does not generate the inaccurate node Oy nor the
edge (< O7,q >,05). For the call statement at line 10, our points-to analysis
calculates the obj-ref state approximation of O7, namely C1: {Oz, p:Oy4, proto :
Os}. Also, when looking up x.p at line 10, our algorithm returns O, because
there is no annotation on the property reference edge so that further lookup
through the prototype chain is not necessary. Note that the points-to graph in
Figure 7(a) is as precise as the run-time points-to graph (Figure 3(a)).

At line 12, z.p is strongly updated via the access path edge (< x,p >, O12).
For the call statement at line 15, our points-to analysis calculates the obj-ref
state approximation of Oz, C2: {O7, p:[O4,O12], proto : Os}. Our points-to
algorithm distinguishes this call site from line 10 because O7 has a different obj-
ref state here. The lookup of z.p at line 15 follows the access path edge so that
the node O3 is returned. Thus, in this example our analysis results in none of
the inaccurate edges in the flow- and context-insensitive analysis (Figure 3(c))
and reflects the actual run-time behavior of JavaScript objects (Figure 3(b)).

4 Evaluation

In this section, we present experiments using JSBAF with our state-sensitive
points-to analysis compared to an existing points-to analysis [26], evaluating
both with a REF client.

4.1 Experimental Design

REF Analysis. To evaluate the precision and performance of our points-to
analysis, we implemented a JavaScript reference analysis (REF). The REF client
calculates the set of objects returned by property lookup at a property read
statement (i.e., z = y.p) or call statement (i.e., z = y.p(...)).!! For each of
these statements s in a function being analyzed in calling context ¢, we compute
REF (s, c), the set of objects returned by a property lookup for each o.p where
o is pointed to by y. The cardinality of the REF set depends on the precision
of the points-to graph and the property lookup operation; the smaller the set
returned, the more useful for program understanding, for example.
In Figure 2, assume we add the function property

x.foo = function(){var a = this.p; return a;}

Effectively, foo() returns the property lookup result for this.p. If . foo() is called
at line 11 before the property update statement z.p=new A(), it will return Oy.

1 All source code instances of property lookups (e.g., return y.p) occur as one of

these two statements in the WALA intermediate code.

State-Sensitive Points-to Analysis 19

If z.foo() is called at line 13 after z.p=new A(), it will return O13. For an
analysis that is flow-insensitive or that cannot distinguish these call sites by
calling context, the return value of each of these function calls will contain at
least two objects (i.e., O4 and O13).

Comparison with Points-to Analysis in [26]. We use the term Corr to refer
to a blended version of correlation-tracking points-to analysis [26] (see Section
5 for more details) and its REF client. To demonstrate the additional precision
of our analysis over Corr, we applied the correlation extraction transformation
to our JavaScript benchmarks before performing our points-to analysis. We use
the term CorrBSSS to refer to a blended version of this augmented new points-
to analysis and its REF client. For each algorithm, an object property lookup
returns a REF set whose cardinality |[REF(s,c)| is calculated. For Corr, the
lookup all() approximate algorithm described in Section 3.3 is used. For CorrB-
5SS, we use our optimized lookup algorithm lookup() in Procedure 1.

Benchmarks. We conducted the experiments with the benchmarks collected
from 12 websites among the top 25 most popular sites on alexa, reusing website
traces originally used in [28]. The results in [28] showed that the collected traces
covered a large portion of the executable JavaScript code in those websites,
including dynamically generated code. Although the benchmarks we used cover
the most popular websites, it will require further investigation to determine how
representative these benchmarks are of other websites. The experimental results
were obtained on a 2.53GHz Intel Core 2 Duo MacBook Pro with 4GB memory
running the Mac OS X 10.5 operating system.

4.2 Experimental Results

Improved REF Precision. Table 4 shows the REF client results for the 12
websites. Columns 2-4 present the results for Corr and columns 5-7 present the
results for CorrBSSS. For each website, columns 2 & 5, 3 & 6, and 4 & 7 in
Table 4 correspond to the percentage of property lookup statements that return
1 object, 2-4 objects, and more than 4 objects, respectively. The result shown
for each website is averaged over the corresponding percentage numbers for all
the webpages in that domain; for example, the 38% entry for facebook.com in
column 2 is the average for Corr over the 27 webpages analyzed of the percentage
of property lookup statements returning only 1 object.

Comparing columns 2-4 with 5-7 in Table 4 for each website, we see the relative
precision improvement of CorrBSSS over Corr. For REF analysis, the best result
is that the lookup returns only one object and the property lookup is more precise
if the number of objects returned is smaller. On average over all the websites,
Corr reported 37% of the property lookup statements were resolved to a single
object, while CorrBSSS improved this metric to 48%, a significant improvement.
In addition, REF analysis results may become too approximate to be useful if
too many objects are returned. Although 15% of the statements on average
returned more than 4 objects for Corr, CorrBSSS reduced that number to 7%.

20 S. Wei and B.G. Ryder

Table 4. REF analysis precision

Website Corr CorrBSSS

1 24 >5 1 24 >5

facebook.com 3B8% 52% 10% 50% 47% 3%
google.com 2% 51% 1% 53% 42% 5%
youtube.com 41% 4% 12% 54% 41% 5%
yahoo.com 48% 46% 6% 52% 45% 3%
wikipedia.org 29% 45% 26% 43% 39% 18%
amazon.com 45% 52% 3% 46% 51% 3%
twitter.com 32% 53% 15% 39% 49% 12%
blogspot.com 3% 34% 31% 53% 36% 11%
linkedin.com 34% 49% 1% 44% 50% 6%

msn.com 40% 36% 24% 48% 3% 15%
ebay.com 30% 40% 30% @ 46% 40% 14%
bing.com 41% 34% 25% 54% 3% 9%

Geom. Mean 37% 44% 15% 48% 43% 7%

Table 5. REF analysis cost (in seconds) on average per webpage

Website Corr CorrBSSS overhead
facebook 174 45.9 163%
google 13.0 304 134%
youtube 31.2 75.3 141%
yahoo 28.5 54.1 90%
wiki 16.0 40.1 151%
amazon 15.1 24.2 61%
twitter 38.1 94.5 148%
blog 15.9 42.4 137%
linkedin 27.8 62.0 167%
msn 34.4 57.9 68%
ebay 8.3 27.2 227%
bing 22.1 50.4 128%
Geom. Mean 20.4 46.7 127%

These improved precision results indicate the potential for greater practical use
of state-sensitive points-to information by client analyses.

We also investigated the average number of objects returned by a property
lookup statement. For each website, we calculated the number of objects per
statement on average over all its webpages. Over all the benchmarks, Corr pro-
duced on average 2.8 objects and CorrBSSS only reported on average 2.3 ob-
jects. Intuitively, this means that on average fewer objects at each property
lookup statement must be examined to gain better understanding of the code.

State-Sensitive Points-to Analysis 21

REF Performance. An analysis approach is practical if it scales to real-world
programs, such as JavaScript code from actual websites. Because CorrBSSS
is partially flow-sensitive and context-sensitive, it is important to demonstrate
that this analysis is scalable. Table 5 shows the time performance of Corr versus
CorrBSSS.1? Columns 2 and 3 present the average webpage analysis time for each
website, averaging over all of its webpages. Both Corr and CorrBSSS completely
analyzed all the benchmark programs. On average over all the websites, Corr
completely analyzed a webpage in 20.4 seconds, while CorrBSSS did so in 46.7
seconds, incurring an 127% average time overhead per webpage, acceptable for
a research prototype implementation which has not been optimized.

Discussion. We collected data characterizing benchmark program structure and
complexity to relate these characteristics to observed analysis precision and per-
formance. The entries in Table 6 all represent averages per webpage that are
averaged over an entire website. Column 2 shows the average number of func-
tions in a JavaScript program. Column 3 shows the percentage of functions
containing at least one state-update statement. Column 4 shows the percentage
of statements that are state-update statements. Column 5 shows the number of
contexts produced by CorrBSSS as a multiplier for column 2. On average over
all the websites, 9% of the functions contained local state-update statement(s);
these averages ranged from 4% for yahoo.com to 18% for msn.com. This sug-
gests that the state-update statements are localized in a relatively small portion
of the JavaScript program (e.g., in constructor functions). Manual inspection of
several websites (i.e., facebook, google and youtube) revealed there were significant
object behavior changes in JavaScript code outside of constructors. On average
over all the websites, 8% of the statements were identified as state-update state-
ments. The relatively small number of state-update statements means that our
SPBG contained many fewer nodes than the corresponding CFGs; therefore the
flow-sensitive analysis was more practical in cost on the SPBGs.

Now we compare the analysis precision observed in Table 4 with the number
of contexts generated on average per function per page (column 5 in Table 6) to
observe the effect of state sensitivity. google, blog, and ebay were the websites for
which CorrBSSS improved precision the most, whereas amazon, yahooo, twit-
ter, and msn were the websites for which CorrBSSS produced similar results to
Corr. For the former websites, CorrBSSS generated the greatest number of con-
texts per function per webpage. For the latter websites, CorrBSSS generated the
fewest. We observe strong correlation between the precision gain and the number
of contexts generated by CorrBSSS, demonstrating that state sensitivity signif-
icantly increased analysis precision on these benchmarks, and suggesting that
state sensitivity will be an effective form of context sensitivity for JavaScript
analysis.

12 The time cost in Table 5 reflects the performance of the static phase of blended
analysis. In the experiments, the dynamic phase of Corr and CorrBSSS is the same
for both analyses. The work in [28] has demonstrated that the static phase dominates
the blended analysis cost.

22 S. Wei and B.G. Ryder

Table 6. Benchmark and context statistics. (Total contexts per website is approxi-
mately column 2 times column 5.)

Website No. of % of functions % of state- No. of

functions w/ update(s) update stmt contexts
facebook 2123 9% 8% 4.0
google 1002 17% 6% 6.7
youtube 1329 7% 6% 3.9
yahoo 3810 4% 4% 2.4
wiki 270 10% 19% 4.8
amazon 729 6% 6% 1.9
twitter 618 15% 5% 3.4
blog 583 14% 14% 6.1
linkedin 920 8% 11% 3.6
msn 1537 8% 8% 2.8
ebay 581 18% 13% 7.5
bing 1131 7% 11% 4.9
Geom. Mean 972 9% 8% 4.0

As shown in Table 5, the CorrBSSS time overhead differed significantly for dif-
ferent websites, from 61% (amazon.com) to 227%(ebay.com). We investigate sev-
eral program characteristics to reason about such differences. First, the SPBGs
created by CorrBSSS determine the efficiency of the flow-sensitive analysis. On
average over all the websites, an SPBG was comprised of about 6 nodes, explain-
ing why CorrBSSS scaled on real websites. Functions with large numbers of nodes
in their SPBG usually contained multiple state-update statements and complex
control flow. The largest number of nodes for an SPBG was 23 in linkedin.
Second, the websites with the least performance overhead from CorrBSSS were
amazon, msn and yahoo. These websites contained a relatively small percentage
of update statements (i.e., all below average) and CorrBSSS generated the low-
est number of contexts for them. The website that incurred the most overhead
(i.e., ebay) contained 13% update statements, (i.e., the third highest percentage
in our benchmarks), and the greatest number of contexts per function (i.e., 7.5)
generated by CorrBSSS. These results support the reasoning that more complex
block structure and more context comparisons contribute to the higher overhead

for CorrBSSS.

5 Related Work

Due to space limitations, we present only the work most closely related to our
state-sensitive points-to algorithm.

Related Analyses of JavaScript. Several approaches were proposed to an-
alyze JavaScript programs. Sridharan et al. presented a points-to analysis for
JavaScript that focused on handling correlated dynamic property accesses [26].

State-Sensitive Points-to Analysis 23

Correlated property accesses were identified and then extracted into a func-
tion. Using the property name as the calling context, points-to analysis tracking
correlation was shown to be more precise and efficient than a field-sensitive An-
dersen’s points-to analysis. In our experiments, CorrBSSS was augmented by
correlation analysis (i.e., Corr) demonstrating a significant improvement in the
analysis precision.

Jensen et al. presented a static analysis that can precisely model prototype
chains [12]. In their analysis, the absent set indicated potentially missing prop-
erties. The property edges annotated with * play a similar role in our analy-
sis. Jensen’s analysis is context-sensitive similar to 1-object-sensitivity used in
Java [18]. The static flow-sensitive analysis presented in [12] was not scalable on
large JavaScript programs, whereas our experiments showed the CorrBSSS was
practical for blended analysis of real-world websites.

Several points-to analyses were proposed to handle other important challenges
introduced by JavaScript. Guarnieri and Livshits designed a points-to analysis
to detect security and reliability issues in JavaScript widgets [8]. They used a
subset of JavaScript language, JavaScriptsarg, that can be statically approx-
imated. Guarnieri et al. presented a static taint analysis based on a points-to
analysis finding security vulnerabilities in real-world websites [10]. The points-to
algorithm focused on addressing features of JavaScript including object creations
and accesses through constructed property names. In these analyses, prototyp-
ing was modeled as lookup all rather than our more accurate property lookup
algorithm lookup. The points-to analysis in [10] and our algorithm are both im-
plemented in WALA.

A hybrid analysis (i.e., a combination of static and dynamic analyses) is at-
tractive when analyzing JavaScript programs. Chugh et al. presented a staged
information flow analysis for JavaScript [4]. The approach analyzed the static
code and incrementally analyzed the dynamically generated code. A similar ap-
proach was proposed by Guarnieri and Livshits [9]; their experiments studied
the performance of the incremental analysis. In addition to collecting the dy-
namically generated/loaded code, blended analysis uses run-time information to
make the analysis more precise (e.g., polymorphic constructors are distinguished
via object initialization and some unexecuted code is pruned).

Several type-based points-to techniques have been proposed for JavaScript
that support dynamic features such as prototype-based inheritance (e.g., [3,5,14]).
It is difficult to compare our analysis with them as to practicality, because no
empirical evidence on large JavaScript programs was presented.

Software tools supporting large JavaScript software including libraries are de-
sirable. Schafer et al. provided an IDE support for JavaScript programming [22].
Points-to analysis was used to calculate code completion suggestions. Points-to
analysis precision is crucial to determine the effectiveness of the tool. Madsen
et al. presented a static analysis of JavaScript focusing on frameworks and li-
braries [17]. A novel use analysis was proposed to analyze libraries precisely
and a points-to analysis was used to find aliases in the program. Our work is

24 S. Wei and B.G. Ryder

complementary to these techniques, in that more precise points-to results would
make them more practical.

Context-Sensitive Analysis. Our state-sensitive analysis is inspired by object
sensitivity. Milanova et al. first introduced object sensitivity and implemented
an object-sensitive points-to analysis for Java using a receiver object represented
by its creation site as the calling context [18]. The experiments in [15] showed
object sensitivity is the better choice as a calling context when analyzing an
object-oriented language. Changes to object properties in JavaScript render ob-
ject creation sites insufficient to represent object behavior, whereas state sensi-
tivity captures object behavior changes better.

Smaragdakis et al. formalized object sensitivity, summarizing its variations
[25]. They introduced type sensitivity where object type was used as the
calling context. For dynamically-typed languages like JavaScript, type is a run-
time notion, encapsulated in the idea of obj-ref state used as a calling con-
text. Kastrinis et al. presented a hybrid context-sensitive analysis that combined
object-sensitivity and call-site-sensitivity [13]. Hybrid context-sensitive analysis
for JavaScript is planned for our future work.

6 Conclusion

JavaScript object behavior is difficult to analyze well because of prototype-based
inheritance and allowed changes to object properties during execution. In this
paper, we introduced a state-sensitive points-to analysis that models object be-
havior changes accurately by using a hierarchical program representation em-
phasizing state-update statements, by defining state sensitivity, a better context
sensitivity mechanism for a dynamic language, and by enhancing the points-to
graph representation for improving object property lookups. We implemented
our new points-to algorithm as the static phase of a blended analysis in JSBAF.
Experimental results on a REF client showed our analysis, CorrBSSS, signifi-
cantly improved the precision of a previous good JavaScript points-to analysis
Corr [26]. For example, 48% of property lookups were resolved to a single object
by our analysis versus 37% by Corr. Although our research prototype implemen-
tation incurred on average 127% overhead versus Corr on the popular website
benchmarks used, further optimization will improve the performance, which is
in the practical range.

In future work, we intend to investigate variations of state sensitivity, to study
the effects of different obj-ref state approximations on analyzing JavaScript pro-
grams. We are interested in exploring the capability of state-sensitive analysis
to support program understanding. We also plan to generalize the proposed
techniques to other dynamic programming languages.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools.
Addison Wesley (1986)

®

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

State-Sensitive Points-to Analysis 25

Balakrishnan, G., Reps, T.: Recency-abstraction for heap-allocated storage. In: Yi,
K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221-239. Springer, Heidelberg (2006)
Chugh, R., Herman, D., Jhala, R.: Dependent types for JavaScript. In: Proceedings
of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications, pp. 587-606 (2012)

Chugh, R., Meister, J.A., Jhala, R., Lerner, S.: Staged information flow for
JavaScript. In: Proceedings of the 2009 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 50-62 (2009)

Chugh, R., Rondon, P.M., Jhala, R.: Nested refinements: a logic for duck typ-
ing. In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 231-244 (2012)

De, A., D’Souza, D.: Scalable flow-sensitive pointer analysis for Java with strong
updates. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 665-687. Springer,
Heidelberg (2012)

Flanagan, D.: JavaScript: The Definitive Guide. O’Reilly Media, Inc. (2006)
Guarnieri, S., Livshits, B.: Gatekeeper: mostly static enforcement of security and
reliability policies for JavaScript code. In: Proceedings of the 18th Conference on
USENIX Security Symposium, pp. 151-168 (2009)

Guarnieri, S., Livshits, B.: Gulfstream: staged static analysis for streaming
JavaScript applications. In: Proceedings of the 2010 USENIX Conference on Web
Application Development, p. 6 (2010)

Guarnieri, S., Pistoia, M., Tripp, O., Dolby, J., Teilhet, S., Berg, R.: Saving the
world wide web from vulnerable JavaScript. In: Proceedings of the 2011 Interna-
tional Symposium on Software Testing and Analysis, pp. 177-187 (2011)
Heidegger, P., Thiemann, P.: Recency types for analyzing scripting languages. In:
D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 200-224. Springer, Heidel-
berg (2010)

Jensen, S.H., Mgller, A., Thiemann, P.: Type analysis for javaScript. In: Palsberg,
J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238-255. Springer, Heidelberg
(2009)

Kastrinis, G., Smaragdakis, Y.: Hybrid context-sensitivity for points-to analysis.
In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 423-434 (2013)

Lerner, B.S., Joe Gibbs, P., Guha, A., Shriram, K.: TeJaS: Retrofitting type sys-
tems for JavaScript. In: Proceedings of the 9th Symposium on Dynamic Languages
(2013)

Lhoték, O., Hendren, L.: Context-sensitive points-to analysis: Is it worth it? In:
Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 47-64. Springer,
Heidelberg (2006)

Lieberman, H.: Using prototypical objects to implement shared behavior in object-
oriented systems. In: Conference proceedings on Object-Oriented Programming
Systems, Languages and Applications, pp. 214-223 (1986)

Madsen, M., Livshits, B., Fanning, M.: Practical static analysis of JavaScript ap-
plications in the presence of frameworks and libraries. In: Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering, pp. 499-509 (2013)
Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for Java. ACM TOSEM 14(1), 1-41 (2005)

Orion, http://www.eclipse.org/orion/

Richards, G., Lebresne, S., Burg, B., Vitek, J.: An analysis of the dynamic behavior
of JavaScript programs. In: Proceedings of the 2010 ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 1-12 (2010)

http://www.eclipse.org/orion/

26

21.

22.

23.

24.

25.

26.

27.

28.

S. Wei and B.G. Ryder

Ryder, B.G.: Dimensions of precision in reference analysis of object-oriented pro-
gramming languages. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 126-137.
Springer, Heidelberg (2003)

Schafer, M., Sridharan, M., Dolby, J., Tip, F.: Effective smart completion for
JavaScript. Technical Report RC25359, IBM (2013)

Sethi, R.: Programming Languages, Concepts & Constructs, 2nd edn. Addison
Wesley (1996)

Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis: Theory and Applications, pp. 189-234 (1981)
Smaragdakis, Y., Bravenboer, M., Lhotdk, O.: Pick your contexts well: under-
standing object-sensitivity. In: Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 17-30 (2011)
Sridharan, M., Dolby, J., Chandra, S., Schafer, M., Tip, F.: Correlation tracking for
points-to analysis of JavaScript. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313,
pp. 435-458. Springer, Heidelberg (2012)

Wegner, P.: Dimensions of object-based language design. In: Conference Proceed-
ings on Object-Oriented Programming Systems, Languages and Applications, pp.
168-182 (1987)

Wei, S., Ryder, B.G.: Practical blended taint analysis for JavaScript. In: Proceed-
ings of the 2013 International Symposium on Software Testing and Analysis, pp.
336-346 (2013)

	State-Sensitive Points-to Analysis for the Dynamic Behavior of JavaScript Objects
	1 Introduction
	2 Definitions and Motivating Example
	2.1 JavaScript Object-Reference State
	2.2 Imprecision of Points-to Analysis

	3 State-Sensitive Points-to Analysis
	3.1 State-Preserving Block Graph
	3.2 Points-to Graph Representation
	3.3 Points-to Analysis Transfer Functions
	3.4 State Sensitivity
	3.5 Block-Sensitive Analysis
	3.6 Implementation of State-Sensitive Analysis in

	4 Evaluation
	4.1 Experimental Design
	4.2 Experimental Results

	5 Related Work
	6 Conclusion
	References

