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ABSTRACT
JavaScript is widely used in Web applications because of
its flexibility and dynamic features. However, the latter
pose challenges to static analyses aimed at finding security
vulnerabilities, (e.g., taint analysis).

We present blended taint analysis, an instantiation of our
general-purpose analysis framework for JavaScript, to illus-
trate how a combined dynamic/static analysis approach can
deal with dynamic features by collecting generated code and
other information at runtime. In empirical comparisons with
two pure static taint analyses, we show blended taint analysis
to be both more scalable and precise on JavaScript bench-
mark codes extracted from 12 popular websites at alexa. Our
results show that blended taint analysis discovered 13 unique
violations in 6 of the websites. In contrast, each of the static
analyses identified less than half of these violations. More-
over, given a reasonable time budget of 10 minutes, both
static analyses encountered webpages they could not ana-
lyze, sometimes significantly many such pages. Case studies
demonstrate the quality of the blended taint analysis solution
in comparison to that of pure static analysis.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.3.4 [Programming languages]: Processors

General Terms
Languages, Security, Design

Keywords
JavaScript, program analysis, taint analysis

1. INTRODUCTION
In the age of SOA and cloud computing, JavaScript has

become the lingua franca of client-side applications. Web
browsers act as virtual machines for JavaScript programs
that provide flexible functionality through their dynamic
features. Recently, it was reported that 98 out of 100 of
the most popular websites (www.alexa.com) use JavaScript
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[8]. Many mobile devices – smart phones and tablets – use
JavaScript to provide platform-independent functionalities.
Unfortunately, the dynamism and flexibility of JavaScript
is a double-edged sword. Often dynamic constructs provide
opportunities for security exploits.

Recent studies [16, 19, 18] reveal that JavaScript programs
are full of dynamic features, and that the dynamic behav-
ior of actual websites confirms this fact. There are several
mechanisms in JavaScript whereby executable code can be
generated at runtime (e.g., eval). Richards et al. [18] show
that eval and its related language structures are widely used
in real Web applications. In JavaScript programs, a function
can be called without respecting the declared number of argu-
ments; that is, functions may have any degree of variadicity
so that it is hard to model them well statically. In Richards
et al. [19], variadic functions are shown to be common and
the occurrence of functions of high variadicity is confirmed.
JavaScript call sites and constructors are quite polymorphic.
These dynamic features make it hard to precisely reason stat-
ically about JavaScript applications. Existing static analysis
approaches cannot handle the most general uses of these
constructs (see Section 6).

Given the ubiquity of JavaScript, it is crucial to discover
security vulnerabilities possibly introduced by use of its
dynamic features. Websites usually contain both user in-
teraction and third party components. If these components
are untrusted, then they may be used to exploit vulnera-
bilities. For example, a malicious user (or package) might
inject a input string value that can be parsed into executable
JavaScript code which, if not properly sanitized, can cause a
cross-site scripting attack.

Many security problems can be formalized as information
flow problems [3] which seek to preserve the integrity of
data (i.e., not allow untrusted values to affect a sensitive
value or operation) and confidentiality of data (i.e., keep
sensitive values from being observed from outside the com-
putation). Taint analysis detects flows of data that violate
program integrity. Several important security vulnerabilities
can be identified using taint analysis (e.g., cross-site script-
ing, SQL injection) [8]. Some analysis approaches have been
proposed to detect and/or prevent such security vulnerabili-
ties in JavaScript [1, 2, 9, 15]. Nevertheless, there is room
for improvement in JavaScript taint analysis for real-world
applications.

We have built a new JavaScript Blended Analysis Frame-
work (JSBAF) to investigate how to design a practical anal-
ysis for a general-purpose scripting language while accommo-
dating its dynamic features. The framework is flexible in that



individual components are independent and substitutable.
Our JavaScript blended analysis captures rich information
about dynamic language features. These include dynamically
generated (or loaded) JavaScript code (e.g., through eval
functions or interpreted urls) and variadic function usage.
Because of the wide-spread usage of these dynamic features,
their capture is important. A pure static analysis [12] may
miss them (e.g., when an eval contains a JavaScript code
string which contains user input) or approximate them in
the worst case (e.g., treating all variadic functions with the
same signature as the same function because they cannot be
differentiated at compile time).

Other dynamic languages like PHP, Ruby, and Perl share
several dynamic features with JavaScript, (e.g., dynamic
types, run-time code generation). We believe our approach
can be applied to the analysis of these languages as well; we
will investigate that in future work.

The focus of this paper is our instantiation of JSBAF to
perform blended taint analysis for JavaScript. We present
an empirical comparison of our blended results with two
different pure static analysis approaches. The experimental
results demonstrate the practicality of our approach, and
its scalability and precision with respect to static analy-
sis on benchmark codes from 12 of the top 25 websites on
www.alexa.com. Less than half of the 13 true exploits found
by our blended analysis were identified by either of the static
analyses. Moreover, blended analysis reported only one false
positive vulnerability (i.e., false alarm). Additionally, the
static phase of our blended analysis ran to completion under
a limited time budget of 10 minutes whereas one pure static
analysis failed to complete on 41% of the webpages analyzed.

The major contributions of this paper are:
Blended Taint Analysis for JavaScript. A new prac-

tical and accurate blended taint analysis for JavaScript that
is an instance of JSBAF.

Empirical results. Our empirical results show the rel-
ative strength in scalability and precision of blended taint
analysis for JavaScript in comparison to a pure static taint
analysis built with a state-of-the-art points-to analysis [22]
and an alternative library-free pure static analysis. Case
studies are presented from actual website codes to illustrate
specific cases where the quality of blended analysis results
over pure static analysis results is demonstrated.

Overview. The rest of this paper is organized as fol-
lows: Section 2 uses an example to illustrate the dynamism
of JavaScript. Section 3 introduces blended analysis of
JavaScript and our framework, JSBAF. Section 4 describes
the instantiation of JSBAF for taint analysis and gives details
of the analysis components used in our implementation. Sec-
tion 5 presents our experimental results, Section 6 discusses
related work, and Section 7 offers conclusions and future
work.

2. MOTIVATING EXAMPLE
In this section, we present a sample HTML webpage con-

taining a JavaScript program to illustrate the challenges of
analyzing dynamic languages. The program in Figure 1 incor-
porates Web/JavaScript features such as function variadicity,
an asynchronous HTTP request, eval and path-dependent
dynamic dispatch. The purpose of this example is to give
intuition as to how blended analysis works.

In Figure 1, the JavaScript code within the <script> tags
is loaded when the HTML page opens. A form named frm

1 <html><body>
2 <script>
3 function foo(){
4 var pwd = document.forms["frm"]["pwd"];
5 if (pwd == "")
6 goo(document.forms["frm"]["usr"]);
7 else goo(document.forms["frm"]["usr"], pwd);}
8 function goo(){
9 if(arguments.length == 1)

10 var data = "signin:" + arguments[0];
11 else
12 data ="singup: "+arguments[0]+" "+arguments[1];
13 var xmlhttp = new XMLHttpRequest();
14 xmlhttp.onreadystatechange=function(){
15 if (xmlhttp.readyState==4){
16 if(eval(xmlhttp.responseText) == "sign-in")
17 document.getElementById("div1").innerHTML
18 =xmlhttp.responseText;
19 else document.write(xmlhttp.responseText);
20 }}
21 xmlhttp.open("POST", url ,true);
22 xmlhttp.send(data);}
23 </script>
24 <form name="frm" onsubmit="foo">
25 <input type="text" name="usr">
26 <input type="text" name="pwd">
27 <input type="submit" value="Submit"></form>
28 <div id="div1"></div>
29 </body><html>

Figure 1: A login/signup procedure webpage

(lines 24–27) contains two text <input> elements designed
to receive the values username (usr) and password (pwd) for
the login/signup procedure.

The function foo (lines 3–7) will be called when the submit
button in the HTML form (line 27) is clicked (i.e., the
onsubmit event is triggered (line 24)). foo performs a check
(line 5) to call function goo with either one (when pwd is
empty) or two arguments.

The function signature of goo (line 8) is written with
no argument; however, goo is designed to be called with
different numbers of arguments. In lines 9–12, the two
branches of the if statement assign different values to the
variable data depending on the length of argument list (i.e.,
arguments.length). An asynchronous HTTP request to the
server is generated (lines 13–22). The client data is sent to
the server (line 22) via. the POST method. In lines 14–20,
the responseText of the request changes the HTML Doc-
ument Object Model (DOM) through either innerHTML
of the div1 element (lines 17–18) or the document.write
function (line 19). The predicate in line 16 involves an in-
vocation to eval which generates and evaluates the code in
xmlhttp.responseText at runtime. The eval is needed here
because the responseText is a string of code received from
the server. We observed cases using eval in the same pattern
(e.g., in www.bing.com).

Consider the example in Figure 1 in the context of finding
security violations. We focus our paper on security vulnera-
bilities of JavaScript programs in client-side Web applications.
User inputs are not trusted by the program because there
could be attackers that act like legitimate users. Hence, user
inputs should be not allowed to be stored on the server or
to modify sensitive properties of the DOM, unless they are
properly sanitized. The user inputs in the example are the



values of elements usr and pwd. To illustrate the complexity
of an analysis to detect security violations, assume that the
value of usr is sanitized, which leaves the value of pwd as the
only tainted source. foo can invoke goo at two call sites (lines
6-7), one of which uses the tainted source as a parameter
(line 7). It is hard for a static analysis, (e.g., object-sensitive
analysis [14]), to distinguish these variadic function calls.
In goo, only one branch generates the data variable that is
tainted (line 12) and sends it to the server (line 22).

It is also difficult for a static analysis to analyze the state-
ment in line 16 because the dynamic code generated by
xmlhttp.responseText cannot be seen by a pure static anal-
ysis. This generated code may propagate tainted sources
to affect sensitive sinks in the program; thus, it must be
analyzed. Also, this program contains implicit semantic
relations between the branches of the if statements in goo
at lines 9 and 16 (e.g., if pwd is empty, only div1 will be
modified; otherwise, the document will be written by the
response text). Discovering these relations requires a path
sensitive analysis, which may be too costly. A static analysis
will merge the solutions on those branches; thus imprecisely
will report security violations (e.g., div1 will be reported as
containing sensitive data).

Blended analysis offers an approach to handle these is-
sues. Dynamically generated code is observed by blended
analysis so that the eval(xmlhttp.responseText) is captured
as the actual code executed. A dynamic call tree also is
captured providing the number of arguments at each call
site executed. Blended analysis separately analyzes function
instances called with different numbers of arguments. For
example, the call sites in lines 6 and 7 are distinguished in
blended analysis because the same function goo is called with
1 and 2 arguments, respectively. By retaining some execution
path information, blended analysis prunes away some of the
unexecuted program (see Section 3). For example, if pwd is
empty then the else branches of all the three conditionals
will not be executed. Blended analysis prunes these branches
and thereby eliminates the imprecise approximation that the
tainted source pwd can flow into div1.

3. BLENDED ANALYSIS OF JAVASCRIPT
In previous work, we designed a blended analysis for per-

formance diagnosis of framework-intensive Java programs.
This analysis dynamically collected a problematic Java exe-
cution and performed a static escape analysis on its calling
structure [4, 5]. Java features such as reflective calls and
dynamically loaded classes were recorded by the dynamic
analysis, allowing more precise modeling than by pure static
analysis (i.e., an analysis based on monotone data-flow frame-
works [12]). Intuitively, Java blended analysis focused a static
analysis on a dynamic calling structure collected at runtime,
and further refined the static analysis using additional infor-
mation collected by a lightweight dynamic analysis.

Pruning was an optimization technique applied in Java
blended analysis to each executed method’s control flow
graph in order to approximate a specialized version of the
code executed during a particular call. Pruning was very
effective in removing approximately 30% of the statements
from Java functions [5]. Essentially, using run-time infor-
mation we removed unexecuted statements in functions by
noticing which function calls and object creation sites were
not recorded and by using control dependence information.

The blended algorithm paradigm of tightly coupled dy-
namic and static analyses is the basis of our analysis for
JavaScript. We analyze multiple executions rather than a
single one, but the overall algorithm workflow and pruning
are both utilized, albeit to handle a more general set of dy-
namic language features in JavaScript. We have designed a
general-purpose blended analysis framework for JavaScript,
JSBAF, shown in Figure 2. In this section we present an
overview of this flexible framework and explain how it ad-
dresses several challenges of analyzing JavaScript programs.
We also discuss the dynamic features of JavaScript which
can be accommodated by JSBAF.

3.1 JSBAF
JSBAF was designed to judiciously combine dynamic and

static analyses in a practical but unsafe [12] analysis of
JavaScript, to account for the effects of dynamic features
not seen by pure static analysis, while retaining sufficient
accuracy to be useful.
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Figure 2: JavaScript Blended Analysis Framework

As shown in Figure 2, JSBAF can be applied in the follow-
ing software testing scenario for a JavaScript program. We
assume the presence of a good test suite providing program
coverage information along with each test, which is usually
available in enterprise software. The Test Selector chooses a
subset of the tests that offer good method coverage of the
program to obtain a good analysis solution at lower cost than
using all the tests.1 The Execution Collector gathers run-time
information by executing each selected test, (e.g., method
calls, dynamically generated code). The Static Infrastructure
analyzes the program represented by the observed calling
structure. The Solution Integrator combines dataflow solu-
tions from different test traces into a program solution, and
decides if there are more traces to analyze.

By design, JSBAF performs static analysis on each dy-
namic trace and combines the results. An alternative design
would be to combine the dynamic information from all the
executions and then apply static analysis once to the com-
bined executions. While this alternative approach may save
the cost of multiple static analyses, we believe it also may
lose precision by introducing possibly infeasible interpro-
ceural paths. Our experimental results (see Section 5.2.2)
demonstrate the high accuracy of our blended analysis which
analyzes traces individually.

JSBAF has a flexible workflow in which individual com-
ponents can be substituted. For example, by changing the

1Note: in Section 4 we present a blended taint analysis
that does not require an existing test suite with coverage
information. In this context, we are still able to provide
useful analysis results at practical cost via. a slight variation
of the framework.



instrumentation heuristics of the Execution Collector, we can
collect different dynamic information. By replacing the Static
Infrastructure, we can change the specific analysis applied to
the JavaScript program.

3.2 Dynamic Features in JavaScript

3.2.1 eval
Pure static analysis can analyze JavaScript source code

that is statically visible; however at runtime, invocations of re-
flective constructs such as eval may generate new JavaScript
code. This generated code may be difficult to model stat-
ically because eval parameters may contain values set at
runtime. Dynamic code generation mechanisms make static
analysis unsafe when analyzing JavaScript programs. Re-
cently, Jensen et al. presented a static analysis technique to
extract and transform JavaScript code from eval at compile
time, thus enabling its static analysis [10]. However, as we
show in one of our case studies, there are inevitably cases
where this approach cannot transform some calls to eval.

1 for (n = 1; n < 20; n++) {
2 xe = "s.prop" + n + "=myUe(s.prop" + n + ")";
3 ex = "s.eVar" + n
4 + "=myCp(s.prop" + n + ",’D=c”+ n + ”’)";
5 to = "typeof(s.prop" + n + ")";
6 if (eval(to) != "undefined") {
7 eval(xe);
8 eval(ex)
9 }

10 }

Figure 3: JavaScript eval example

Figure 3 shows an example of eval functions from xing.com,
whose complex code contains eval calls that cannot be an-
alyzed by the approach in [10]. In JSBAF, eval calls are
monitored by the Execution Collector which gathers any code
generated thusly, making it available during analysis of the
dynamic calling structure. The Static Infrastructure analyzes
the JavaScript program including the effects of evals. In ad-
dition to eval, there are other mechanisms in JavaScript such
as Function object and SetInterval function that also can
generate code at runtime [18]; these also are collected and an-
alyzed by blended analysis. Blended analysis for JavaScript
includes the effects of dynamically generated code whose
run-time behavior is captured by the Execution Collector.

3.2.2 Function Variadicity
Function variadicity occurs when a function can be called

with an arbitrary number of arguments, regardless of its
declaration. If fewer arguments are provided than in the
declaration, the values of the rest of the declared arguments
are set to be undefined. If more arguments are provided than
in the declaration, the arguments can be accessed through an
associated arguments array. Sometimes, branch conditions
within a function can be differentiated by its number of
arguments as in the goo function of Figure 1.

Figure 4 shows a real use of variadic function. The code is
extracted from www.linkedin.com. The arguments calling J
vary depending on the number of arguments provided when
this function is called, (i.e., evt:null & L:arguments[0] if one
argument is provided; evt:arguments[0] & L:arguments[1]
if two arguments are provided). This suggests the function

1 function(){
2 if(arguments.length===1){
3 evt=null;
4 L=arguments[0]
5 }else{
6 evt=arguments[0];
7 L=arguments[1]
8 }
9 J(evt,L)

10 }

Figure 4: JavaScript variadic function example

behavior of J varies based on the arguments.length. Ex-
isting pure static analyses for JavaScript normally ignore
this feature because sometimes the actual number of ar-
guments provided during the call can only be known at
runtime (e.g., the calls to a variadic function f may be
written as f.apply(thisArg, argsArrary[]) using an argument
array argsArray whose length is not knowable statically). In
contrast, the Execution Collector can capture the actual num-
ber of arguments for each call so that the calling structure
can contain separate nodes for instances of the same signa-
ture function called with different numbers of arguments,
introducing some context sensitivity [21]. In addition, prun-
ing provides a more precise model of the code in variadic
functions, differentiating between invocations with different
numbers of arguments (see Section 4.2).

3.2.3 Other Features
In addition to the two important dynamic features we

handled in JSBAF, there are other features in JavaScript
that require special treatment. Some features, (e.g., proto-
types, object creations, reflective property access and lexical
scoping), were modeled by the static analysis in [8], but the
precision of these static models can be improved.

1 if (b) {
2 x = new A();
3 else
4 x = new B();
5 }
6 x.bar();

Figure 5: JavaScript type-based dynamic dispatch exam-
ple

JavaScript is a dynamically typed programming language;
hence, statically reasoning about object types is a big chal-
lenge. Figure 5 illustrates an example of dynamic dispatch
based on the object type. Because of the nature of dynamic
typing, the variable x can point to objects whose types are
unrelated by inheritance (e.g., the objects created by con-
structors A and B). The actual function being called in
line 6 depends on the type of x, which is determined by
the value of b in line 1. In JSBAF, the Execution Collector
collects the functions that are called and constructors that
are used to create JavaScript objects. We use pruning to
eliminate the code that was not executed to preserve the
dynamic information. In case of Figure 5, one of the branch
(e.g., line 4) will be pruned if x is created only by A so that
the blended analysis knows the actual type of x in line 6.
Thus blended analysis achieves some context sensitivity in



analyzing a dynamic trace. In contrast, static analysis must
assume that either branch can be taken, and thus make a
conservative approximation that x can be either an A or B
type object, making the target in line 6 ambiguous. Static
analysis effectively merges the two paths to obtain a less
precise solution.

4. BLENDED TAINT ANALYSIS
We have defined blended taint analysis to identify security

vulnerabilities due to data integrity violations in JavaScript
codes in websites. Figure 6 presents the workflow of our
blended taint analysis, an instantiation of JSBAF (Figure
2). The work of the dynamic and static phases of blended
taint analysis is patterned directly after the work of these
phases in JSBAF. In the Dynamic Phase, a web tester in-
teracts with a website using a browser that instruments
JavaScript operations. Traces of each webpage consisting of
recorded method calls, types (represented by the construc-
tors) of created objects, and dynamically generated/loaded
code that is not statically visible, are gathered by the Exe-
cution Collector. The Trace Selector selects a subset of the
page traces that cover the behavior of the program well (see
Section 4.1). In the Static Phase, the Code Collector identi-
fies the JavaScript code that was executed, including both
statically visible and invisible code. The Call Graph Builder
creates a call graph from the recorded calls and stores other
collected method-specific information as node annotations.
Static Taint Analysis is applied to the program represented
by the call graph. The Solution Integrator combines solutions
from different page traces into a single solution for that web-
page. The final solution of a blended taint analysis is a set
of source-sink pairs reported on the webpages of the website
being analyzed; these represent untrusted data (i.e., sources)
which can reach sensitive object properties (i.e., sinks) (see
Section 4.2).

4.1 Dynamic Phase
Our Execution Collector relies on a specialized version of

TracingSafari, an instrumented version of WebKit2 JavaScript
engine developed for characterizing the dynamic behavior
of JavaScript programs [19]. This tool records operations
performed by the JavaScript interpreter in Safari including
reads, writes, field deletes, field adds, calls, etc. It also col-
lects events such as source file loads. Since the dynamic phase
of blended taint analysis involves programmer interaction,
the instrumentation should degrade browser performance as
little as possible. We modified TracingSafari to collect only
the information required by our taint analysis.

To assure the security of a website, the web tester explores
webpages from the same domain. Execution of a website may
involve code on several different webpages. The sequence
of JavaScript instructions collected during an execution is
decomposed into page traces; each trace is a consecutive
sequence of JavaScript instructions from the same webpage
(i.e., url). There is at least one trace generated for each page
executed containing JavaScript code. An interactive webpage
with complicated functionality is usually executed more than
once in a test session, so that it is analyzed on the basis of
several traces. A page trace consists of a dynamic call tree,
recorded object creations, compile-time visible JavaScript
source code and dynamically generated/loaded code including

2webkit.org

any executed library code. The only instructions recorded
are calls and object allocations. The Execution Collector also
captures the actual number of arguments for each call to
precisely model variadic functions (Section 3.2.2). The Trace
Extractor builds the set of page traces corresponding to each
webpage collected from a set of recorded website executions.

There may be traces of the same page that are redundant
on a large portion of their call trees; that is, even though the
web tester tries to examine different components of a webpage,
these components may vary little in terms of the JavaScript
code executed. Blended taint analysis should avoid checking
very similar traces since this will greatly increase the analysis
cost for little benefit. To avoid this situation, we implemented
the Trace Selector which tries to minimize the number of
traces analyzed, while covering as much program behavior
as possible. The Trace Selector calculates the information
of each page trace and chooses traces that contribute the
most to (1) dynamically loaded/generated code coverage, (2)
method coverage and (3) created object type coverage. We
developed metrics for each of these coverages and designed
a heuristic combining them in a weighted average to select
traces in order of greatest coverage with values above certain
threshold. The straightforward selection process can be
applied to other dynamic programming languages. (Please
refer to [24] for details.) In future work, we want to implement
an alternative Trace Selector that can generate traces on-the-
fly and determine when enough traces have been explored.

4.2 Static Phase
The static infrastructure of our blended taint analysis for

JavaScript was built on the IBM T.J. Watson Libraries
for Analysis (WALA) open-source static analysis frame-
work3 that includes a JavaScript front-end. WALA parses
JavaScript source code from a webpage producing an ab-
stract syntax tree (AST) and translates the AST into the
WALA intermediate form. Several challenges of analyzing
JavaScript, including prototype-chain property lookups and
reflective property accesses, are addressed in WALA [8].

Our Call Graph Builder builds the call graph of each page
trace as a WALA data structure with pruned source code
for each node. Since the source code of some executed,
dynamically generated/loaded functions is not available to
WALA, we implemented the Code Collector to obtain this
code from the page trace.

In addition, in WALA JavaScript functions are identified
through source code declarations so that variadic functions
cannot be distinguished statically. In our implementation,
a WALA call graph node is extended to include a context,
the number of arguments (i.e., arguments.length). Therefore,
variadic functions have duplicate nodes in our WALA call
graph, but each node context is different.

The Call Graph Builder applies pruning to the code of
all functions. When branches of a variadic function are
determined by the value of arguments.length, that value can
be used to prune the statements on unexecuted branches to
provide a more accurate approximation of the code in the
function variant.

4.2.1 Static Taint Algorithm
The static taint algorithm we implemented to detect in-

tegrity violations consists of four steps.

3http://wala.sourceforge.net/
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Figure 6: Blended Taint Analysis for JavaScript Web Applications

1. A state-of-the-art points-to analysis for JavaScript [22]
is performed to obtain aliases of objects in the program.
We modified the implementation by substituting use of our
dynamic call graph for the on-the-fly construction.

2. Sources and sinks are predefined and automatically
identified in the program:

(i) A data source is called tainted (or untrusted) when
the user or an untrusted third party has control of its value.
JavaScript event handlers that take user inputs as parameters
or contain variables from user inputs are considered to be
sources; their user input arguments and variables are marked
as tainted. JavaScript functions from untrusted third party
code are also considered to be sources; the variables created
in these functions or whose values are returned by calling
these functions are marked as tainted.

(ii) We consider two sets of objects to be sensitive. Fields
of objects that hold important browser/user information
are sensitive. In the implementation, we used the same
set of data fields as in [15]. Every variable in a statement
that writes those fields is marked as a sink. A persistent
security vulnerability can happen if untrusted data is saved
by the server. Therefore, parameters of functions which
are sent to the server are sensitive (e.g, the parameter of
xmlhttprequest.send()). These parameters are marked as
sinks.

3. A call graph reachability analysis is executed to filter
out any node that is not on a direct call path from a method
containing tainted source(s) to a method containing sink(s);
the remaining nodes are called candidates.

4. Taint propagation. An interprocedural traversal of the
call graph is performed from each source through candidate
nodes to any reachable sink. At each encountered candi-
date method, an intraprocedural data dependence analysis
is applied to track the tainted variables into candidate calls.
The possible effects of calls to non-candidate methods are
approximated: if one argument of the call is tainted, we
assume all the arguments are tainted as an optimization to
avoid analysis of these methods. Call cycles are handled by
fixed point iteration.

5. EVALUATION
We conducted experiments comparing the effectiveness of

blended taint analysis with two pure static taint analyses.
We present results from testing our analysis on JavaScript
programs from popular websites and illustrate the advantages
of blended taint analysis through case studies.

5.1 Experiment Design

5.1.1 Pure Static Taint Analyses
To compare with blended taint analysis, we implemented

a pure static taint analysis in WALA that performs the four-
step algorithm presented in Section 4.2.1. Instead of using
the dynamically collected call graph, the pure static taint

analysis takes a statically visible JavaScript program as input
and builds the call graph on-the-fly during points-to analysis
[22].

The current static infrastructure in WALA does not model
the semantics of eval. To increase the capability of pure static
taint analysis, we added a naive model of eval. JavaScript
variables that are visible from eval parameters are collected
and treated as accessible in the eval calls. In pure static
taint analysis, the eval functions are conservatively marked
as additional sinks because static analysis does not know
their execution behavior.

In the experiment, we ran pure static taint analysis in
two configurations. JavaScript libraries are usually loaded
as provided by static urls in webpage source code. The
first configuration, Static Taint+, analyzes the code directly
extracted from the webpages and any reachable library func-
tions. The second configuration, Static Taint−, analyzes only
the JavaScript code extracted from the webpages. Because
some JavaScript libraries are too large to analyze in lim-
ited time [22] and taint violations may originate solely from
application code, we believed that Static Taint− would be
capable of discovering some vulnerabilities without analyzing
libraries.
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Figure 7: Relation between solutions obtained through
pure static analysis vs. blended analysis

To understand our analysis comparison results, we describe
the general relationship between a pure static analysis solu-
tion and a blended analysis solution for the same JavaScript
program. For JavaScript, both static and blended analyses
are unsafe. In Figure 7, part 1 shows that there may be a
set of results reported by pure static analysis that blended
analysis does not calculate because it does not explore every
executable path in the program. Some of these results may
be false positives introduced by over-approximation that may
be avoided by the more precise call graph and/or pruning
of blended analysis. Part 2 shows that the blended analysis
solution may contain results missed by a pure static analysis
because of the difficulty of modeling dynamic constructs in
JavaScript. It also may contain false positives because of the
approximation in analysis of dynamic code. Part 3 of the
diagram shows results reported by both analyses. The goal
of blended analysis is to retain the true positives found by
a pure static analysis while eliminating some false positives,
and to find more true positives by analyzing the dynamic
code.



Table 1: Benchmarks. Each benchmark is formed from a
web tester’s interaction with a website. A profiled inter-
action consists of individual traces, each containing a se-
quence of JavaScript instructions from a single webpage.
The set of traces corresponding to the same webpage
comprises a JavaScript program for our analysis.

Rank Website Page count Trace count
1 facebook.com 27 62
2 google.com 22 55
3 youtube.com 15 30
4 yahoo.com 30 69
6 wikipedia.org 27 65
8 amazon.com 9 13
10 twitter.com 32 53
12 blogspot.com 9 17
14 linkedin.com 32 54
18 msn.com 13 21
19 ebay.com 40 72
21 bing.com 7 14

totals 263 525

5.1.2 Hypotheses
Our comparison experiments explore the following hypothe-

ses:
Hypothesis 1: Blended taint analysis can scale to real-

world JavaScript programs.
Hypothesis 2: Blended taint analysis is more accurate

than pure static taint analysis, capable of discovering more
security violations and eliminating some false alarms.

5.1.3 Benchmarks
The experiments were conducted with two sets of bench-

marks. The first set of benchmarks was produced by an
undergraduate researcher working as a web tester, who
had no knowledge of blended taint analysis. She tested
12 websites that are among the top 25 most popular sites
on www.alexa.com using modified TracingSafari. She was
instructed to explore different functionalities on webpages.
Statistics for these benchmarks are given in Table 14. Page
count is the number of webpages executed at each website
and then analyzed. Trace count is the total number of page
traces collected for each website.

The experimental results were obtained on a 2.53 GHz
Intel Core 2 Duo MacBook Pro with 4 GB memory running
the Mac OS X 10.5 operating system.

The second set of benchmarks was a collection of JavaScript
programs extracted from real websites consisting of eval in-
vocations [10]. The JavaScript code in the second set of
benchmarks was simplified for the purpose of eval transfor-
mation. Only a small portion of the real application was
included and important pieces of code, (e.g., invocations
from the DOM to event handlers), were removed. These
benchmarks were only used to illustrate the capability of
blended analysis in handling the eval construct shown in the
case studies (Section 5.3).

We will be posting the traces we used for our blended
analysis and code for our blended taint analysis of JavaScript

4There are webpages cannot be parsed by WALA. Table 1
lists the benchmarks used in the experiment that are analyz-
able by WALA.

online at our PROLANGS@VT website5 by the end of Febru-
ary 2013.

5.2 Blended Taint Analysis Results

5.2.1 Analysis Time
Table 2 presents the time performance of the static phase of

blended taint analysis, Static Taint+, and Static Taint− each
run under a limited time budget of 10 minutes suggested in
[22].6 Columns 2 and 5 present the number of webpages that
could not be analyzed within 10 minutes by Static Taint+ and
Static Taint−, respectively. Static Taint+ only was able to
fully analyze two websites, linkedin.com and bing.com. For
some sites, Static Taint+ did not scale on all/most webpages,
(e.g., yahoo.com and amazon.com). Static Taint−, which
does not analyze library code, was capable of analyzing most
JavaScript code from pages on the websites. To sum up,
Static Taint+ timed out on 108 out of 263 webpages and
Static Taint− timed out on 12 out of 263 webpages. Blended
taint analysis, on the other hand, was able to finish analyzing
all selected page traces within the time limit.

Columns 4, 7 and 8 show the analysis time of each website
averaged over those webpages that were not timed out for
Static Taint+, Static Taint− and blended taint, respectively.
The time cost of the static phase of blended taint analysis is
the total time of multiple static taint algorithm applications
to each trace on a webpage. In Table 2, the average page anal-
ysis time of blended analysis exceeds that of Static Taint−

on all websites but google.com. This is mainly caused by the
fact that Static Taint− only analyzes JavaScript application
code.

In [24], we ran both our modified instrumented Safari and
an original Safari on JSBench [17], a JavaScript benchmark
generated from real websites, to observe the instrumentation
overhead. Our instrumented Safari ran 42.7% slower than
the original. Since we are using a research prototype not
optimized for performance, we believe this factor can be
greatly reduced.

In conclusion, Static Taint+, analyzing code including large
libraries (e.g., jquery), could not complete analysis of 41%
of the webpages we examined. Static Taint−, only analyzing
application code, could not complete analysis on 4.6% of
the webpages. Blended analysis, on the other hand, did not
use some of the costly models applied in the WALA static
infrastructure, (e.g., apply and call) and ran to completion
on all websites, demonstrating the focusing power of dynamic
information and pruning. Thus, if we assume that an efficient
instrumented version of a browser can be constructed, then
given our timings for these analyses, we have support for
Hypothesis 1.

5.2.2 Taint Analysis Results
Table 3 shows the results of the blended and the pure static

taint analyses. Six of the 12 websites we tested contained
security vulnerabilities. We report the number of unique
alarms for each website. Duplicate alarms originated from the
same cloned JavaScript code contained in different webpages.
Each alarm was checked manually to determine if it was a
true positive (i.e., there actually exists at least one flow from

5http://prolangs.cs.vt.edu/
6We extended the static analyses time limits to 15 minutes
with few observed differences in solutions. New work [6] pre-
sented an unsafe static analysis that improved performance.



Table 2: Taint analysis time

Website Static Taint+ Static Taint− Static phase
of blended taint

# pages # pages Average time # pages # pages Average time Average time
timed out analyzed (sec.) timed out analyzed (sec.) (sec.)

facebook.com 14 13 28.5 0 27 19.2 29.4
google.com 13 9 39.2 1 21 22.4 14.2

youtube.com 10 5 57.3 2 13 13.9 37.4
yahoo.com 24 6 33.0 3 27 12.1 48.3

wikipedia.org 2 25 18.1 2 25 18.1 23.0
amazon.com 9 0 - 0 9 7.7 32.9
twitter.com 5 27 42.8 1 31 14.0 62.3

blogspot.com 6 3 27.3 0 9 14.8 18.8
linkedin.com 0 32 28.8 0 32 21.7 39.4

msn.com 10 3 38.0 1 12 25.3 42.4
ebay.com 15 25 21.1 2 38 12.7 18.5
bing.com 0 7 16.5 0 7 16.5 27.4

Table 3: Taint analysis results (Results in Static Taint− columns marked ∗ mean the same alarms were reported by
Static Taint+)

Website Static Taint+ Static Taint− Blended Taint
true positive false positive true positive false positive true positive false positive

youtube.com 1 1 1 - 4 -
twitter.com 1 - 1∗ - 3 -
linkedin.com 1 1 1∗ 1∗ 1 1

msn.com - - - - 2 -
ebay.com 2 - - - 3 -
bing.com - 1 - 1∗ - -
totals 5 3 3 2 13 1

a source to a sink) or not (i.e., false alarm or false positive).
For the sink-source pairs that flowed into an eval invocation
reported for Static Taint+ or Static Taint−, we manually
checked if there actually was a taint violation. Blended
taint analysis reported 14 unique source-sink pairs from the
6 websites; only one of them was a false positive. Static
Taint+ reported 8 unique source-sink pairs from 5 websites;
3 of them were false positives. Static Taint− reported 5
unique source-sink pairs from 4 websites; 2 of them were false
positives.

Although Static Taint+ timed out on many webpages, it
was able to discover 5 true positives, 3 of which were not
discovered by Static Taint−. This suggests that JavaScript
library code can be involved in a source to sink flow so that
the libraries should be analyzed or modeled as precisely as
possible. Static Taint− was able to locate only one differ-
ent true positive from Static Taint+ on www.youtube.com,
although it analyzed many more webpages.

The blended taint analysis results in columns 6 and 7 in
Table 3 support Hypothesis 2:

• Blended taint analysis discovered all the true positives
that Static Taint+ or Static Taint− reported.

• Blended taint analysis found 8 additional true positives
that Static Taint+ did not report and 10 additional
true positives that Static Taint− did not report.

• For the 7 true positives detected by blended analysis,
but not by either static analysis, 4 of them came from
dynamic constructs the static analyses could not handle,

while 3 of them may have been found statically with
more time.

• Blended analysis eliminated 2 false positives reported
by Static Taint+ and 1 false positive reported by Static
Taint−, leaving only one false positive reported in com-
mon with the two static analyses.

5.3 Case Studies
In this section, we use some of the taint analysis results

from section 5.2.2 as examples to illustrate the benefits of
blended analysis. We also test the capability of blended
analysis of monitoring eval on the second set of benchmarks
to compare with static eval transformations [10].

5.3.1 Static Analysis False Positive from bing.com
In the JavaScript source from www.bing.com, there is an

eval invocation that simply evaluates the value of a property
of some object:

eval(n.responseText)

Both Static Taint+ and Static Taint− report an alarm from
an user input to this eval site through the variable n. We
found n is an alias of the XMLHttpRequest object whose
fields are sensitive. The input variable did flow into the
XMLHttpRequest object through other properties so that
n is tainted. However, the program does not contain an in-
tegrity violation if the sensitive methods of XMLHttpRequest
object are not called. Pure static taint analyses are incapable
of knowing that the code in eval does not flow into any of



the sensitive fields (i.e., sinks) so that the report is actually
a false positive. Blended taint analysis observed the code
generated from the eval of n.responseText is not sensitive;
hence, no security violation was reported.

5.3.2 Static Analysis False Negatives
There are several cases where blended taint analysis dis-

covered true positives while the pure static analyses did not.
Because blended taint analysis is more scalable than Static
Taint+, analyzes much more JavaScript code than Static
Taint−, and captures dynamic constructs that both pure
static analyses do not, it produces more solutions from the
code not analyzed by the static analyses. An interesting
case from www.ebay.com demonstrates the origin of a static
analysis false negative. We observed that when ebay.com
was executed, a third party JavaScript code from the domain
bluekai.com was loaded. It is usual for websites to include
JavaScript code from other places; however, this code exhibits
malicious behavior.

1 setTimeout("bkObj.clearDiv(’bk pl 520’)",1001);
2
3 var bkObj = {
4 clearDiv: function(divId) {
5 var divRef = document.getElementById(divId);
6 divRef.innerHTML=’’; }
7 };
8 }

Figure 8: Taint violation example from ebay.com

In JavaScript, window.setT imeout and window.setInterval
functions are other ways to include strings that will generate
dynamic code. The executable code

bkObj.clearDiv”(′bkpl520′)”

was observed by blended taint analysis and should be treated
as a source because it comes from untrusted code. The
tainted variable divRef flows into a sink that rewrites the
innerHTML property of a DOM element. Static Taint+ and
Static Taint− did not report this true positive because the
tainted source was called by run-time generated code which
was not analyzed.

5.3.3 Blended vs. Static eval Transformation
Jensen et al. developed a static approach that was capable

of transforming some eval calls into other language constructs
to expand the applicability of static analysis [10]. We tested
on the second set of benchmarks to check if blended analysis
was able to monitor eval calls that were not successfully
analyzed in [10].

For the example in Figure 3, blended analysis observed 19
calls to eval(to) with the actual code recorded as

typeof(s.propX)

where X is substituted by each number between 1 and 19.
Blended analysis also observed 2 calls to eval(xe) and eval(ex)
with the actual code

s.propY = myUe(s.propY )

and

s.eV arY = myCp(s.propY,′D = cY ′)

respectively where Y is either 1 or 2. This collected code
was represented as three call graph nodes in the dynamic
call graph (each node contained the set of code observed for
each eval call site). These nodes then could be analyzed by
a blended analysis.

5.4 Threats to Validity
There are several aspects of our experiments which might

threaten the validity of our conclusions: (i) The accuracy of
our implemented framework is determined by limitations of
the WALA interpretation of JavaScript. We found that there
were some parsing problems with some JavaScript code in
the websites, and some structures of JavaScript were ignored.
(ii) Because the executions of websites were collected by one
undergraduate student, we may have introduced a bias in
terms of the pages explored. To avoid this as much as possible,
the undergraduate researcher collected executions without
knowledge of the JavaScript website code or our analyses. (iii)
Although we used websites listed at alexa as most popular,
we cannot know how representative our input is of normal
website usage. (iv) Although these initial experiment results
are promising, more empirical investigation will be necessary
for a stronger validation of our hypotheses.

6. RELATED WORK
In this section, we present work related to our JavaScript

blended analysis. Due to space limitations, we focus only on
the most relevant research: (i) blended analysis of Java; (ii)
studies and analyses of some dynamic language features of
JavaScript; (iii) security analyses for JavaScript.

Blended analysis of Java. Blended analyses for Java [4,
5] and for JavaScript both apply a dynamic analysis followed
by a static analysis on the collected calling structure and both
use pruning based on dynamic information. However, Java
blended analysis focuses on one problematic execution, while
JavaScript blended analysis analyzes a set of appropriate
executions for a client problem. The complexity of dynamic
analysis for JavaScript far exceeds that of the Java analysis.
The latter merely records all calls, including reflective ones.
The former captures dynamically generated/loaded code and
records all calls therein, a more difficult task especially with
nested reflective constructs (e.g., evals). Blended analysis
for both Java and JavaScript use calls and object creations
observed for pruning unexecuted code; for JavaScript the
number of arguments of a variadic function is also used for
pruning. Thus, while the blended algorithms are related as
to overall high-level structure, there are many differences
between them and the dynamic language constructs analyzed
are very different.

Studies and analyses of dynamic features. The dy-
namic behavior of JavaScript applications reflects the actual
uses of dynamic features. Richards, et al. conducted an
empirical experiment on real-world JavaScript applications,
(i.e., websites), to study their dynamic behavior [19]. The
behaviors studied include call site dynamism, function vari-
adicity, prototype-chain property changes, etc. The authors
concluded that common static analysis assumptions about
the dynamic behavior of JavaScript are not valid. Our work
is motivated by their study. Ratanaworabhan, et al. also
presented a related study on comparing the behavior of
JavaScript benchmarks, (e.g., SunSpider and V8), with real
Web applications [16]. Their results showed numerous differ-
ences in program size, complexity and behavior which suggest



that these benchmarks are not representative of JavaScript
usage. This study motivated us to evaluate our blended
analysis on website codes.

Studies of eval use in JavaScript applications [18] show
that the eval construct, which can generate code at runtime,
is widely used; therefore, we focussed on eval in blended
analysis. Based on these observations, Meawad, et al. [13]
presented Evalorizer to remove eval from real-world website
codes. The approach matches the eval calls to patterns that
can be transformed to easier-to-analyze JavaScript idioms.
The removal of eval is semi-automated because it requires
programmers to validate the transformed code. Jensen, et
al. [10] applied static analysis to automatically transform
some eval calls into other language constructs. The results
show that their approach is able to eliminate typical uses of
nontrivial eval, although there are cases where the technique
has to give up. Both of these transformation techniques seek
to enable static analysis of dynamic features, a goal shared
by blended analysis. However, blended analysis expands the
applicability of static analysis by recording the actual code
generated in the Dynamic Phase.

Security analysis for JavaScript. Various analysis ap-
proaches have been applied to JavaScript security. Guarnieri,
et al. [8] presented ACTARUS, a pure static taint analysis for
JavaScript. Language constructs, including object creations,
reflective property accesses, and prototype-chain property
lookups were modeled, but reflective calls like eval were not
modeled. Our Static Infrastructure of blended taint analysis
also uses the WALA infrastructure so that we share some
models for JavaScript constructs in common with this work.

Guarnieri and Livshits presented another static points-to
analysis to detect security and reliability issues and exper-
iment with JavaScript widgets [7]. JavaScriptSAFE is a
subset of JavaScript that static analysis can safely approx-
imate, even with reflective calls such as Function.call and
Function.apply. Other dynamic constructs such as eval are
not handled. None of the above JavaScript static analyses
can model all of the language’s dynamic features, (e.g., eval),
whereas our analysis framework can handle the more common
dynamic features used by real websites.

Guha, et al. presented a static analysis to extract a model
of expected client behavior to prevent attacks [9]. Their
approach obtained dynamically loaded JavaScript code from
developers, to avoid generating an incorrect or incomplete
model of program behavior. Blended analysis automatically
collects the dynamic code.

Maffeis, et al. [11] presented techniques to ensure JavaScript
safety through filters, rewriting and wrappers. Filtering
is a one-time static analysis to reject untrusted code if it
does not conform to certain criteria. Rewriting inserts run-
time checks to prevent undesirable actions. Wrapping uses
run-time checks to ensure that the trusted environment is
not used maliciously by untrusted code. This approach was
studied on a subset of JavaScript, Facebook FBJS. Similarly,
Yu, et al. [25] also implemented a set of JavaScript security
policies through rewriting (i.e., run-time checking). These
are dynamic online approaches to security checking. Blended
taint analysis is an offline technique to identify data integrity
violations.

Barth, et al. identified a class of vulnerabilities, cross-
origin JavaScript capability leaks [1]. The points-to relation
of the program is dynamically recorded via. an instrumented
browser and then used to detect these vulnerabilities. The

problem also can be cast as information flow. The approach
collects all explicit and implicit pointers. Blended taint
analysis differs from this approach because our lightweight
Execution Collector only collects a limited set of operations
to focus and refine the subsequent static analysis.

Saxena, et al. [20] applied a symbolic execution technique
to find client-side code injection vulnerabilities. The ap-
proach is combined with automatic GUI exploration to build
the end-to-end system, Kudzu. Kudzu takes the URL of a
Web application as input and generates a high-coverage test
suite. The test suite generated by this approach may be
useable as input to JSBAF.

Chugh, et al. [2] presented an information flow analysis
for JavaScript. The staged approach analyzes the statically
visible code first and then incrementally analyzes the dynam-
ically generated code. JavaScript blended analysis differs
from this approach in two ways. Blended analysis collects
dynamically generated/loaded code during profiling rather
than doing this incrementally. Blended analysis also facil-
itates potentially more precise modeling of other dynamic
features whose semantics depend on run-time information.

Tripp, et al. [23] combined black-box testing and static
analysis to detect JavaScript security vulnerabilities. A web
crawler was applied to retrieve webpages and the dynamically
loaded/generated code was analyzed statically. Blended
analysis provided more dynamic information (e.g., calls) to
specialize the static phase. The web crawler can be used in
the dynamic phase to ensure good coverage of the website.

Vogt, et al. presented a hybrid approach to prevent cross-
site scripting [15]. In this work, dynamic taint analysis tracks
data dependencies precisely and static analysis is triggered
to track control dependencies if necessary. Blended analysis
combines dynamic and static analyses differently.

7. CONCLUSION
Analyzing JavaScript programs statically is difficult be-

cause its dynamic features cannot be precisely modeled. JS-
BAF was designed to address this challenge. We instantiated
JSBAF to perform blended taint analysis for JavaScript and
experimented with our implementation on websites chosen
from the top 25 reported by alexa.com. Comparison to two
pure static taint analyses (i.e., Static Taint+, Static Taint−)
showed that:

• while Static Taint+ could not finish analysis of approx-
imately 41% of the pages from these websites within
10 minutes, the static phase of our blended taint analy-
sis ran to completion on all webpages. Static Taint−

was more capable than Static Taint+ in terms of the
number of pages analyzed;

• blended taint analysis discovered 13 unique security
violations on 6 of the 12 websites analyzed, reporting
only 1 false alarm. In contrast Static Taint+ found 5
violations and 3 false alarms and Static Taint− found
3 violations and 2 false alarms;

• case studies of actual JavaScript website code illus-
trated how blended taint analysis was more successful
than either of the two static taint analyses.

Thus, blended taint analysis had significantly better per-
formance and accuracy than the static techniques. These
investigations attest to the promise of blended analysis of
JavaScript for useful client problems.



In future work, we plan to explore more clients for JavaScript
blended analysis, including aiding program understanding of
evolving website code. We are interested in providing more
precise models for prototype-chain property changes and
using these results in analysis. We also want to investigate
the applicability of our analysis technique for other dynamic
programming languages.
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