
Program Phase Classification for Power Behavior Characterization
Chunling Hu John McCabe Daniel A. Jiménez Ulrich Kremer

Department of Computer Science
Rutgers University, Piscataway, NJ 08854

{chunling, jomccabe, djimenez, uli}@cs.rutgers.edu

Abstract

Power and energy optimizations include both reducing to-
tal energy consumption and improving time-dependent
power behavior. Fine-grained program power behav-
ior is useful in evaluating power optimizations and observ-
ing power optimization opportunities. In this paper, we
present a physical measurement-based infrastructure for pro-
gram time-dependent power behavior characterization
and optimization evaluation. This infrastructure does ba-
sic block profiling, a SimPoint-like phase classification,
and precise physical measurement for selected represen-
tative program execution slices. Our phase classification
method uses infrequently executed basic blocks to demar-
cate intervals and uses a user-specified interval size to
control the length of the resulting intervals. This parti-
tioning method incurs low instrumentation overhead for
dynamic identification of simpoints during program execu-
tion. This physical measurement infrastructure enables pre-
cise power measurement for any program execution. This
infrastructure is built on our Camino compiler, which sup-
ports static instrumentation on various levels. This in-
frastructure can be used to characterize detailed program
power behavior, as well as evaluate compiler and architec-
ture level power and energy optimizations.
We validate the feasibility of this phase classification method
in power behavior characterization through the physi-
cal measurement of 10 SPEC CPU2000 integer bench-
marks on a Pentium 4 machine. Experimental results
show that our method can also find representative slices
for power behavior estimation, and the physical measure-
ment with negligible instrumentation overhead enables us
to estimate detailed time-dependent program power behav-
ior.

1. Introduction
Research in power and energy optimizations focuses not

only on reducing overall program power consumption, but
also on improving time-dependent power behavior. Evalu-
ating such optimizations requires both accurate total energy
consumption estimation and precise detailed time-dependent
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power behavior. Simulators are often used for power and per-
formance evaluation, but detailed power simulation has very
high cost in terms of time and space. For instance, simulating
a benchmark with 300 billion or more instructions with Sim-
pleScalar [1] takes approximately 1 month of CPU time at a
simulation rate of 400 million instructions per hour [5]. In-
cluding power simulation will increase the simulation time
even more. While physical measurement is much faster,
fine-grained power measurement requires proper measure-
ment equipment and a large amount of space to store mea-
surement results.

1.1. Characterizing Phases with Representative
Slices

Program phase behavior shows that many program exe-
cution slices have similar behavior in several metrics, such as
instructions-per-cycle (IPC), cache miss rate, and branch mis-
prediction rate. Phase classification makes it easier to cap-
ture the fine-grained program behavior. Representative slices
from each phase instead of the whole program execution are
measured and analyzed, and then the whole program behav-
ior can be characterized based on the analysis result. If we
use this whole program behavior characterization method in
power behavior analysis, we can obtain fine-grained power
behavior with significant savings in both time and storage
space. Figure 1 shows the measured CPU current of bzip2
of SPEC2000. Figure 1(a) shows that the program execu-
tion can be roughly partitioned into 4 phases based on its
power behavior. One representative slice from each phase
can be measured to characterize the detailed power behav-
ior of the benchmark. Figure 1(b) is the measured power be-
havior of a small part of 0.5 second in the first phase with a
resolution that is 100 times higher than the one used for Fig-
ure 1(a). It shows that we can get finer phase classification
if we use smaller intervals. There is a repeated power behav-
ior period of 300 milliseconds. Figure 1(c) shows the detailed
power behavior of a piece of 0.05 second, from 0.1 second to
0.15 second in Figure 1(b). It presents repeated power be-
havior periods of less than 5 milliseconds, indicating possible
finer phase classification than Figure 1(b). With our infras-
tructure, we can get even finer power behavior.1.1
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 (b) A slice in phase 1 of (a)
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(c) Detailed CPU power behavior of a small slice from 0.10 second to 0.15 second in (b)

Figure 1: Measured power behavior of bzip2 with different granularity.
1.2. Using Infrequent Basic Blocks to Reduce In-

strumentation Overhead
Research in performance optimization often concentrates

the optimization effort on frequently executed code. How-
ever, a large part of most programs is infrequently executed.
The execution of an infrequently executed basic block often
means a transition in program execution. It may be a transi-
tion from one phase to another, or a transition within the same
phase, but from one group of instructions to another group.
Using infrequently executed basic blocks to demarcate inter-
vals may help us get better phase classification. What is more
important is that through instrumenting these infrequently ex-
ecuted basic blocks, we can dynamically identify the begin-
ning and the end of an interval during program execution with
negligible overhead.

1.3. An Infrastructure for Characterizing Time-
Dependent Power Behavior

In this paper, we present our infrastructure for program
time-dependent power behavior characterization and op-
timization evaluation. This infrastructure is built on the
Camino compiler of our lab [8]. Camino statically instru-
ments the assembly code of a program for profiling and phys-
ical measurement. A SimPoint-like [19] idea is used for
phase classification. SimPoint identifies a few intervals, or
simpoints, of program execution that characterize the behav-
ior of the entire program execution. It is often used to speed
up simulation by simply simulating the simpoints and esti-
mating, for instance, IPC, by taking a weighted average of the

IPCs of each simpoint. Instead of using a fixed number of in-
structions as interval length, we use infrequently executed
basic blocks to demarcate intervals. This results in vari-
able interval length, but much lower instrumentation over-
head for physical power measurement of a representative
interval. We also use Basic Block Vector (BBV) as the finger-
print of each interval of the program execution, but the finally
selected simpoints are weighted based on the number of in-
structions in each phase, instead of number of intervals. We
do not claim that our phase classification method is bet-
ter than SimPoint. Rather, we show that this method can also
find the representative slices for program execution, and en-
ables us to do power measurement for simpoints with very
low instrumentation overhead. Unlike simulation, physi-
cal measurement is sensitive to the overhead for identification
of simpoints during program execution. So this low instru-
mentation overhead is very important. This infrastructure
can be used to evaluate optimizations for energy consump-
tion or time-dependent power behavior, for example, the
impact on power behavior of pipeline gating [16] or dy-
namic voltage/frequency scaling [6].

We evaluate our methodology by measuring 10 SPEC
CPU2000 integer benchmarks on a Pentium 4 machine, and
we present the error rates in whole program energy consump-
tion estimation based on the measurement result of the se-
lected simpoints. We also show the low instrumentation over-
head because of the use of infrequently executed basic blocks
for interval demarcation.

This paper has the following primary contributions: 1)1.2



We present a new phase classification method based on in-
frequently executed basic blocks, which has SimPoint’s abil-
ity to find representative intervals, but causes negligible in-
strumentation overhead in power measurement of simpoints.
2) We provide a compiler infrastructure that enables users to
do static instrumentation for profiling on various levels, from
procedure to instruction, as well as instrumentation for pre-
cise fine-grained power measurement. 3) We present a power
measurement infrastructure to implement precise measure-
ment of whole program execution and any selected program
execution slice in combination with our Camino compiler in-
frastructure. We demonstrate the feasibility of our new phase
classification method in efficient power behavior characteri-
zation through power measurement on a real system.

2. Related Work
Execution of a program tends to fall into repeating behav-

iors called phases. The behavior of a phase can be character-
ized by simulating or measuring a representative slice of this
phase. Various phase classification methods have been pro-
posed to identify phases. Program execution is partitioned
into intervals, which are classified into phases. Some of them
use control-flow information [18, 19, 17, 11, 13], such as the
executed instructions, basic blocks, loops, or functions, as the
fingerprint of program execution. This fingerprint depends on
the executed source code. Some methods depend on run-time
event counters or other metrics [3, 4, 20, 9], such as IPC,
power, cache misses rate and branch misprediction, to iden-
tify phases.

Lau et al. compare different architecture-independent
structures used for phase classification [14], including basic
blocks, loop branches, procedures, opcodes, register usage,
and memory address. They used cycle-per-instructions (CPI)
as a metric to evaluate their ability to create homogeneous
phases and the accuracy of using these structures to pick sim-
points. Basic block vectors perform almost the best among
the structures in terms of CPI coefficient of variation and cal-
culated CPI error. Our work in this paper identifies phases
based on the BBV of each interval, which is easy to obtain
using Camino. The low coefficient of variation is important
in power behavior characterization from the measured result
of selected intervals.

SimPoint [18, 19] partitions a program execution into in-
tervals with the same number of instructions and identifies
the phases based on the BBV of each interval. One interval,
called a simpoint, is selected as the representative of its phase.
These simpoints are simulated or executed to estimate the be-
havior of the whole program execution. Sherwood et al. pro-
posed an Off-line Phase Clustering Analysis and used it to
find simpoints [19]. They applied SimPoint to some SPEC
benchmarks to find their simpoints and estimated their pro-
gram IPC, cache miss rate, branch misprediction rate. The
error rates are very low and the simulation time saving is sig-
nificant.

Shen et al. proposed a data locality phase identification
method for run-time data locality phase prediction [17]. They
use variable distance sampling, wavelet filtering and optimal

phase partitioning in analyzing data accesses to identify local-
ity phases. A basic block that is always executed at the begin-
ning of a phase is identified as the marker block of this phase.
This results in variable interval lengths. They use phase hier-
archy to identify composite phases. We also use variable in-
terval lengths, but the basic block that marks a phase is not
necessary to uniquely mark the phase. It might be the mark
for other phases. The infrequent basic blocks are selected
first, and the intervals are demarcated by these basic blocks,
but limited by a pre-defined length. Phases are identified by
the execution times of the infrequent basic blocks that demar-
cate the intervals, such that we implement precise physical
measurement.

A new version of SimPoint supports variable length in-
tervals. Lau et al. [13] shows a hierarchy of phase behavior
in programs and the feasibility of variable length intervals in
program phase classification. They break up variable length
intervals based on procedure call and loop boundaries. We
use basic blocks that are infrequently executed to break up in-
tervals and at the same time use a pre-defined length to avoid
too long or too short intervals. This satisfies our requirement
for low-overhead instrumentation and accurate power behav-
ior measurement. Besides phase classification, we also gener-
ate statically instrumented executables for physical measure-
ment of simpoints.

Isci et al. [2] proposed a coordinated measurement ap-
proach to monitor runtime power behavior of a real archi-
tecture. They showed that program power behavior also fell
into phases. We proposed using SimPoint to find represen-
tative program execution slices to simplify power behavior
characterization, and we validated the feasibility of SimPoint
in power consumption estimation through power simulation
of some Mediabench benchmarks [7]. Isci et al. [10] com-
pared two techniques of phase characterization for power and
demonstrated that the event-counter-based technique offers
a lower average power phase classification errors of 1.9%
for SPEC benchmarks than the control-flow-based technique,
which offers an average classification error of 2.9% for SPEC
benchmarks. Our work is different from [10] because our ob-
jective is to characterize the time-dependent power behavior
of programs and map the observed behavior back to source
code. We want to measure the fine-grained power behav-
ior of the representative intervals, so the result is very sensi-
tive to instrumentation overhead. The new interval demarca-
tion method and the instrumentation and measurement infras-
tructure proposed in this paper causes negligible overhead for
identification of an interval during program execution, and the
measurement result is very close to the real time-dependent
power behavior of the interval.

3. Phase Classification Based on Infrequently
Executed Basic Blocks

Phase classification and power measurement of represen-
tative intervals for a benchmark is implemented as an au-
tomatic process. The threshold for infrequent basic blocks,
the minimum number of instructions in each interval, and the1.3



number of phases are the input to this process. The flowchart
in Figure 2 illustrates its steps. The implementation of each
step will be presented in the following sections.

3.1. Instrumentation Infrastructure for Profil-
ing and Measurement

All of the instrumentation for various profiling and physi-
cal measurement of selected program execution slices in this
paper are implemented using Camino, a compiler infrastruc-
ture [8] under development in our lab. It is a GCC post-
processor written in C++. The goal of Camino is to serve as
a testbed for various low-level optimizations. It is currently
used to study performance and power and energy optimiza-
tions.

Camino reads the assembly code generated by GCC and
the options selected by the user. It parses the assembly
code into three basic abstractions: procedures, basic blocks,
and lines(similar to instructions). It analyzes the control-
flow of the input assembly code and constructs control-flow
graph(CFG). Each basic block has a distinct reference value.
Camino performs various transformations on the input assem-
bly code according to user options, including branch align-
ment, static instrumentation for profiling, and pattern history
table partitioning [12]. The output of Camino is the trans-
formed assembly code that is compiled into an executable by
GCC to run later.

The distinct reference value is used as the identification
of a basic block. Instrumentation using Camino is simple.
Only two routines are required: an instrumentation routine
and an analysis routine. The former inserts a call to the anal-
ysis routine at proper positions in each basic block. The lat-
ter is implemented as a library function linked to the instru-
mented program at the last step of the compilation. This sort
of instrumentation is used to implement various types of pro-
filing as well as triggering power and energy measurement
performed by an external device.

3.2. Basic Block Execution Frequency Profiling and
Infrequent Basic Blocks Selection

Camino provides interfaces for basic block level instru-
mentation. At the entrance to each basic block, a call to a ex-
ecution frequency counting library function is inserted. The
distinct reference value of the basic block is passed to the
function that increments the frequency of this basic block.
Here we count the absolute execution frequency, that is, the
number of times that a basic block is executed. Counts for the
basic blocks are available after the instrumented program ex-
ecution.

Different program/input pairs execute different number of
basic blocks. It is hard, if not impossible, to choose an ab-
solute number as the best threshold for all programs to deter-
mine infrequent basic blocks. Instead of using an explicit fre-
quency as the threshold, we use a percentage to find relatively
infrequent basic blocks for each benchmark. This percentage
is the ratio of the total execution times of all infrequent ba-
sic blocks in that of all basic blocks. We sort the basic blocks

based on their execution frequencies in decreasing order, then
add up the numbers from the smallest one. When the sum is
larger than the specified threshold, for example, 5% of the to-
tal executions times of all basic blocks, this procedure stops
and the scanned basic blocks before the last one are selected
as infrequent basic blocks for this program/input pair. Intu-
ition tells us that when a low threshold is used, the selected in-
frequent basic blocks are distributed sparsely in program exe-
cution and the difference in size among the resulting intervals
is larger than when a higher threshold is used. We try 3 dif-
ferent threshold values, 0.1%, 1%, and 5%, to investigate the
trade-off between interval size variance and instrumentation
overhead.

3.3. BBV Profiling and Program Execution Parti-
tion

As in SimPoint 2.0, we use BBV of both frequent and in-
frequent basic blocks as the fingerprint of an interval. Al-
though infrequent basic blocks are used to demarcate inter-
vals, partitioning program execution just based on the number
of executed infrequent basic blocks may generate too small or
too large intervals depending on the distribution of the infre-
quent basic blocks. Too small intervals often result in too
many phases. Too large intervals are hard to measure with
high precision using our measurement equipment. So we use
a number of executed instructions to make the final interval
lengths as uniform as possible.

Instrumentation for BBV profiling is similar to that for ba-
sic block execution frequency profiling, except that a differ-
ent library function is called. All basic blocks are instru-
mented, so that we can get the complete fingerprint of the
basic blocks in an interval. An interval size of 10 million in-
structions is used to avoid too large or too small intervals. The
library function counts both the number of executed instruc-
tions for each basic block and the total number of executed in-
structions for the current interval. When an infrequent basic
block is encountered, if the current total number of instruc-
tions is larger than or equal to 10 million, this basic block in-
dicates the end of the current interval and it is the first basic
block of the next interval. Figure 3 illustrates the interval par-
tition using the combination of infrequent basic block and in-
terval size. Here A, B, C, and D are basic blocks. C and D
are infrequent and used to demarcate intervals. The lengths
of the intervals can vary significantly and depend on the dis-
tribution of infrequently executed basic blocks across the pro-
gram execution. Only the occurrences of C and D in shadow
mark intervals. Other occurrences do not mark intervals be-
cause the interval size is smaller than 10 million when they
are encountered. We get intervals of similar size by using this
method. An execution frequency counter of C and D can be
used to identify the exact execution of an interval. For exam-
ple, the fourth interval starts when the counter is 5 and ends
when the counter is 8.1.4
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Figure 2: Infrequent basic block-based phase classification and power measurement of simpoints.
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Figure 3: Interval partitioning using infrequent basic blocks and interval length.
3.4. A SimPoint-like Method for Phase Classifica-

tion
Since the intervals are demarcated by infrequently exe-

cuted basic blocks, they may have variable number of in-
structions. K-Means clustering is used for phase classifica-
tion based on the BBVs collected in Section 3.3. As in Sim-
Point, the BBV of each interval is projected to a vector with
much smaller dimension. Then k initial cluster centers are se-
lected. The distance between a vector and each center is cal-
culated and each vector is classified into the cluster with the
shortest distance. A cluster center is changed to the average
of the current cluster members after each iteration. The itera-
tion stops after the number of vectors in each cluster is stable.
The simpoint of a phase is the one that is closest to the cen-
ter of the cluster.

Weighting a simpoint with just the number of intervals in
its phase cannot reflect the real proportion of this phase in
whole program execution. We changed the weighting method
such that each simpoint has two weights. The first weight is
based on the percentage of the number of executed instruc-
tions of the corresponding phase in that of the whole pro-
gram. Since we also profile the number of executed instruc-
tions for each interval in Section 3.3, it is easy to get this value
and use it in the process of K-Means clustering. This weight
is used to estimated the behavior of the whole program. The
second weight is based on the number of intervals in the cor-
responding phase as in [19]. It tells us the number of occur-
rences of each simpoint in behavior estimation for the whole
program execution.

The calculation of BIC (Bayesian Information Criterion)
score is also changed to take variable interval lengths into
account. We use the weights based on the number of exe-
cuted instructions in each phase to calculate the log likeli-

hood, such that phases with longer intervals have larger influ-
ence. It is similar to the calculation used in SimPoint 3.1 [13],
but instead of using weight of each interval, we use the weight
of each phase, which is simple since there are usually much
fewer simpoints than intervals, and the weights based on vari-
able interval lengths are already calculated.

Clustering is performed for different number of clusters
and different cluster seeds. BIC scores from different cluster-
ing are compared and the one with the best trade-off between
BIC score and number of phases is selected as the final clus-
tering model. Intervals are clustered based on this model, and
the simpoints and weights are calculated. The distinct refer-
ence values of the two infrequent basic blocks that demarcate
each simpoint are recorded. These basic blocks are the final
infrequent basic blocks that are instrumented for power mea-
surement.

3.5. Low-overhead Instrumentation for Power Mea-
surement

We use physical power measurement to verify that the se-
lected simpoints are representative in energy consumption es-
timation. Instrumentation is needed to identify the data points
for each simpoint in the final measurement result. We choose
static instrumentation instead of using a dynamic instrumen-
tation tool such as Pin [15] used in [10] because we want to
instrument the program on basic block level, and at the same
time lower the interference to the measured program as much
as possible. We use Camino to instrument a program stati-
cally to generate special signals at the beginning and at the
end of a simpoint, so that we can get a measurement result in
high resolution and as close as possible to the real power be-
havior of each simpoint.1.5



To identify a simpoint, we use the execution frequency of
each infrequent basic block profiled in Section 3.3 and the
final infrequent basic blocks recorded in Section 3.4. Our
infrastructure supports two power measurement methods for
any selected intervals.

One method is to measure the intervals, here the simpoints,
in one program execution. By counting the execution times
of the final infrequent basic blocks in all of the intervals, we
get the number of execution times of the final infrequent ba-
sic blocks before each simpoint, and the number of execution
times of these basic blocks in each simpoint. This informa-
tion is put into a file for future reference by a library func-
tion to mark the beginning and the end of each simpoint. All
of the final infrequent basic blocks are instrumented to call
this library function, which counts up the execution times
of these basic blocks and generates special signal to trigger
the power measurement device when the counter reaches the
recorded number of execution times before the beginning or
to mark the end of a simpoint. To reduce comparison time, the
simpoints are sorted in the order of their occurrence in pro-
gram execution and the corresponding numbers are read into
a linked list at the beginning of the program execution. A
pointer to the node for the current simpoint moves one step af-
ter a simpoint is finished, such that we avoid searching for the
fast-forwarding information. Off-line data analysis identifies
each simpoint in the continuous measurement result based on
the signals before and after the simpoint. The instrumenta-
tion overhead of this method is discussed in the next section.

The other method is to generate one executable for each
simpoint for power measurement. Infrequent intervals that
demarcate different simpoints are usually different, so this
method has even lower instrumentation overhead than the first
one. For a simpoint, only the final infrequent basic blocks
that demarcate this simpoint are instrumented to call a library
function, which increments a counter and generates special
signals. The numbers of executed basic blocks for each sim-
point are put into a separate file and are read into two vari-
ables at the beginning of program execution. This method
separates the measurement of the simpoints into independent
tasks. Users may choose to measure only the simpoints that
represent long phases. It provides more detailed power be-
havior of the measured simpoints using our power measure-
ment infrastructure, but the program is executed one time for
each measurement, although the execution stops immediately
after the measured simpoint.

4. CPU Power Measurement
All of the profiled and measured benchmarks in this pa-

per run on a Pentium 4 machine running Linux 2.6.9, GCC
3.4.2 and GCC 2.95.4. Benchmarks are from the members
of SPEC CPU2000 INT that can be compiled by Camino
successfully, shown in Table 1. gzip, vpr, mcf, parser and
twolf are compiled with GCC 3.4.2. The other benchmarks
are compiled with GCC 2.95.4 because the combination of
Camino and GCC 3.4.2 fails in compiling these benchmarks
correctly. Pentium 4 has a separate power cable for the CPU,
and its voltage is 12V. We measure the current on this ca-
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Figure 5: The window of the oscilloscope after the execution
of a simpoint. The dotted line is the trigger signal. The power
curve for the measured simpoint is surrounded by the trigger
signal.
ble using a Tektronix TCP202 DC current probe, which is
connected to a Tektronix TDS3014 oscilloscope. The exper-
iment setup is shown in Figure 4. The data acquisition ma-
chine is a Pentium 4 Linux machine that reads data from the
oscilloscope when benchmark execution time is larger than
the window size of the oscilloscope and the measurement
for the whole benchmark execution is needed. Simultane-
ous benchmark execution and power data acquisition on dif-
ferent machines eliminates the interference to the measured
benchmark. The picture on the right of Figure 4 is our exper-
imental setup, data acquisition machine is not shown in the
picture.

4.1. Precise Power Measurement
The oscilloscope has a TDS3TRG advanced trigger mod-

ule. When it is in trigger mode, it accepts trigger signals from
one of its four channels. We use its edge trigger. It starts mea-
surement only after the voltage or current on the trigger chan-
nel increases to some predefined threshold and stops when its
window fills to its capacity of 10,000 data points. The data
points stay in the buffer until the next trigger signal comes.
We generate the trigger signal through controlling the num-
lock LED on the keyboard. A voltage probe is connected to
the circuit of the keyboard to measure the voltage on the led,
as shown in Figure 4. The voltage difference between when
the light is on and off is more than 3.0V, which is big enough
to trigger the oscilloscope.

The voltage on the trigger channel is set to high to trigger
the oscilloscope at the beginning of the program slice to mea-
sure. This voltage is consistently high until when it is set to
low at the end of this slice. Figure 5 shows the measurement
result using trigger signals. It is easy to identify the power be-
havior of the measured slice.

4.2. Measuring Whole Program Energy Consump-
tion

The execution time of a benchmark is often much longer
than the maximum measurement record size in trigger mode
of the oscilloscope, which is 100 seconds. We cannot cover
the power curve of the benchmark using trigger mode, so we
use its auto mode to measure the power behavior of the whole
benchmark execution and still identify the exact power data1.6



164.gzip Data compression using Lempel-Ziv coding (LZ77)
175.vpr Integrated circuit placement and routing in FPGAs)
176.gcc C compiler for Motorola 88100 based on gcc 2.7.2.2
181.mcf Combinatorial optimization/Single-depot vehicle scheduling
197.parser Syntactic parser that does grammar analysis for English text
253.perlbmk Cut-down version of Perl v5.005 03
254.gap Language and library designed for group-theoretic computation
255.vortex Single-user object-oriented database transaction
256.bzip2 Block-sorting compression
300.twolf Transistors placement and global connections

Table 1: SPEC CPU2000 INT benchmarks

Mesured
System

Keyboard

Data
Acquisition

Machine

Oscilloscope

CPU current

trigger

Power data

Figure 4: The physical measurement infrastructure used in the experiments.
points for the benchmark by setting the voltage on the trig-
ger channel to high and low before and after the execution of
each benchmark. But no instrumentation is needed to gener-
ate signals during program execution. In auto mode, the oscil-
loscope records power data points continuously, the data ac-
quisition program is adjusted to read the data in each window
without losing data points or reading duplicated data points,
due to too long or too short data reading period respectively.
This is validated through the comparison of the real bench-
mark execution time and the one obtained from the measure-
ment result.

The original 10 SPEC CPU2000 integer benchmarks with-
out any instrumentation are measured to obtain their CPU
energy consumption. To show the low overhead of our in-
strumentation method, we also measure the CPU energy con-
sumption with instrumentation on all final infrequent basic
blocks obtained in Section 3.5. We control another LED in-
stead of numlock in this instrumentation, so that there is no
impact on the signal on the trigger channel, and the energy
consumption is almost the same. Only the instrumentation
overhead for the first method in Section 3.5 is measured here.
The second method has even lower overhead since fewer ba-
sic blocks are instrumented. Figure 6 shows the overhead
of the instrumentation using different thresholds. It is nor-
malized to the measured energy consumption of the uninstru-
mented benchmarks. A positive value means the measured
energy consumption for this configuration is larger than that
of the uninstrumented one. A negative value means the op-
posite. The measured energy consumption for any threshold
is almost the same as that of the uninstrumented ones. For

some benchmarks, for example, perlbmk and bzip2, the en-
ergy consumption of the instrumented program is even lower
than the uninstrumented program. One possible reason is that
inserting instructions somewhere might accidentally improve
the performance or power consumption, possibly due to a re-
duction in conflict misses in the cache because of different
code placement. We notice that the four values are almost the
same for mcf. The reason is that the all the frequently exe-
cuted basic blocks are in 4 of the 30 identified phases when
SimPoint is used. The final instrumented basic blocks for
the large phases are mostly infrequent. SimPoint has a very
high overhead for most benchmarks because the basic blocks
demarcating the intervals are executed frequently. Figure 7
shows the same trend in measured execution time when dif-
ferent thresholds are used.

4.3. Measuring Energy Consumption of Simpoints
Energy consumption of each simpoint is measured using

the trigger mode of the oscilloscope. Measuring all simpoints
in one program execution in auto mode takes shorter time,
but the resolution is much lower than the other method be-
cause the communication latency between the oscilloscope
and the data acquisition machine put an upper bound on the
resolution we can use, otherwise, some data points will be
lost. Measuring the simpoints one by one removes this lim-
itation, so we can get very high resolution. Program execu-
tion and data acquisition are on the same machine. Reading
data from the oscilloscope is always performed after the mea-
surement of a simpoints is done. There is still no interference
to the measured program execution. We use the second in-1.7
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Figure 6: Normalized overhead in energy consumption of instrumented benchmarks using different thresholds.
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Figure 7: Normalized overhead in execution time of instrumented benchmarks using different thresholds.
strumentation method in Section 3.5, and implement an auto-
matic measurement and data acquisition process to do mea-
surement of any number of simpoints as a single task.

5. Experimental Results
We tried three different thresholds to find infrequent ba-

sic blocks, 0.1%, 1%,and 5%. In each case, the total absolute
execution frequency of the selected infrequent basic blocks
are less than 0.1%, 1%, or 5% of total execution frequency
of all basic blocks. The basic blocks instrumented for power
measurement are a subset of these. Actually, at most two of
them are instrumented for physical measurement of each sim-
point. A maximum number of clusters, 30, is used to find the
best clustering as in SimPoint [19]. We also show the exper-
imental results of SimPoint with a fixed interval length of 10
million instructions. We do not claim that our phase classi-
fication method is more accurate than SimPoint. Rather, we
show that we can also find the representative slices for pro-
gram execution using infrequent basic blocks to demarcate in-
tervals, and this method enables power physical measurement
of simpoints with very low instrumentation overhead and pro-
vides a way to get fine-grained time-dependent power behav-
ior through measurement.

Using the power measurement infrastructure described in
Section 4, we measured the CPU power curves for the unin-
strumented benchmarks, the ones with all final basic blocks
instrumented, the simpoints of the two instrumentation meth-
ods mentioned in Section 3.5. Energy consumption is calcu-
lated as

E = U ∗
∑

It (1)

where E is energy consumption, U is the voltage of CPU,
I is the measured current on the CPU power cable, t is the

time resolution of the power data points. The sum is over all
of the data points for one benchmark or simpoint.

Due to the variable interval lengths, we estimate the to-
tal energy consumption using the weight based on our mod-
ified weighting scheme in Section 3.4. energy/instruction is
calculated for each simpoint, the products of this value and
the weight are added up, and the estimated energy consump-
tion is the product of this weighted energy/instruction and the
total number of instructions. Energy estimation error rate is
calculated as

error =

|energy estimated− energy measured|

energy measured
(2)

Time estimation is similar to energy estimation.
Figure 8 shows the error rates of the infrequent ba-

sic block-based phase classification method with different
thresholds and SimPoint with fixed interval size of 10M in-
structions. Error rate is based on the comparison between
estimated energy and measured energy of the uninstru-
mented benchmarks. The columns show us the trade-off
between interval size variance and instrumentation over-
head. Low threshold results in variable length inter-
vals clustered into the same cluster. But the interference
to the program execution is also low since only a few ba-
sic blocks are instrumented. The opposite is true when a
high threshold of 5% is used. The interval size is more sta-
ble in the same phase, but the instrumentation overhead
is high. When threshold 1% is used, we get the low-
est error rate among the three. SimPoint has high error
rates due to the high frequency of the instrumented ba-
sic blocks. In our experiment result, the number of intervals
increases with the increase in the threshold used to find infre-
quent basic blocks. Graphs are not shown here due to space
limitation.1.8
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Figure 8: Error rates of energy consumption estimation when different thresholds are used, based on comparison between esti-
mated and measured energy of uninstrumented benchmarks.
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Figure 9: Error rates of energy consumption estimation when different thresholds are used, based on comparison between esti-
mated and measured energy of instrumented benchmarks shown in Figure 6.

To verify that the low error rates in Figure 8 are not ob-
tained by accident and the selected simpoints are really rep-
resentative of the program execution, in Figure 9, we show
the error rates when the estimated energy consumption is cal-
culated from the measured simpoints with all final infrequent
basic blocks instrumented and compare this estimation to the
measured energy consumption of the whole benchmark with
all final infrequent basic blocks instrumented. Here SimPoint
has very low average error rate since instrumentation over-
head does not affect the estimation accuracy now. It is less
than 6% after gcc is removed from the benchmark group.
This error rate might be higher than the error rate evaluated
through simulation because there is an operation to set the
voltage to a low value at the end of each simpoint, but there
is no such operation at the end of other intervals. This causes
higher estimated energy consumption, but does not affect the
precision of the measured power behavior of simpoints. Our
new phase classification has lower error rates for some bench-
marks. One possible reason is that the program behavior of
these benchmarks is hard to characterized by simpoints of the
same size. The low error rate in Figure 9 shows that the se-
lected simpoints are truly representative of the program exe-
cution and our low overhead instrumentation method enables
us to get the program time-dependent power behavior that is
very close to the real power behavior.

Lau et. al proposed variable length intervals and hierar-
chical phase behavior in [13]. We did not validate the profil-
ing and clustering in the new SimPoint version in energy esti-
mation consumption because time-dependent power behavior
observation is our objective and thus small and similar inter-

val sizes, detailed BBVs, and low overhead are necessary.
Figure 10 shows the frequency of instrumented ba-

sic blocks during the program execution in simpoints. Here
we can see that instrumentation overhead increases with the
increased threshold. This is consistent with our explana-
tion of the trade-off between interval size variance and in-
strumentation overhead. SimPoint has the highest value
because of the high frequency of the basic blocks that demar-
cate the simpoints.

6. Conclusion
This paper introduced our infrastructure for efficient pro-

gram power behavior characterization and evaluation, includ-
ing the Camino compiler for profiling and instrumentation, a
new phase classification method, and the physical measure-
ment setup for precise power measurement. By demarcating
intervals using infrequently executed basic block, we get in-
tervals with variable lengths and negligible instrumentation
overhead for physical measurement of simpoints. Through
experiments on a real system, we demonstrated that our new
phase classification method can also find representative in-
tervals for energy consumption estimation as SimPoint. The
ability of instrumenting programs on various levels, identify-
ing phases, and obtaining detailed power behavior of program
execution slices makes this infrastructure useful in power be-
havior characterization and optimization evaluation.
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[8] C. Hu, J. McCabe, D. A. Jiménez, and U. Kremer. The camino
compiler infrastructure. Proceedings of the 2005 Workshop on
Binary Instrumentation and Applications (WBIA), 2005.

[9] C. Isci and M. Martonosi. Identifying program power phase
behavior using power vectors. Proceedings of the IEEE Inter-
national Workshop on Workload Characterization (WWC-6),
2003.

[10] C. Isci and M. Martonosi. Phase characterization for
power: Evaluating control-flow-based and event-counter-
based techniques. In 12th International Symposium on High-
Performance Computer Architecture (HPCA-12), Febrary
2006.

[11] A. Iyer and D. Marculescu. Power aware microarchitecture re-
source scaling. Proceedings of the conference on Design, Au-
tomation and Test in Europe (DATE’01), pages 190–196, 2001.
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