
A New Bignum Multiplication Algorithm

Michael Malenkov, Christopher J. Dutra, and Marco T. Morazán
Seton Hall University

Department of Mathematics and Computer Science
400 South Orange Avenue

South Orange, NJ 07079 USA
E-mail: {malenkmi,dutrachr,morazanm}@shu.edu

ABSTRACT
Many modern scientific computations require the manipula-
tion of numbers that are too big to fit in a word of memory.
These computations create the need to develop compound
representations for integers, called bignums, and algorithms
to support arbitrary precision arithmetic operations. One
of the fundamental algorithms that must be implemented is
bignum multiplication. The most popular and best known
implementations of bignum multiplication use as their base
case algorithm the classical algorithm described by Knuth.
This algorithm is modeled on the multiplication algorithm
taught in grade school and is optimized to eliminate redun-
dant memory allocation. Under certain conditions, however,
Knuth’s classical algorithm suffers from limited degree of lo-
cality of reference. In this article, we outline a new base case
bignum multiplication algorithm that carries out the com-
putation with a higher degree of locality of reference when
the size of the multiplier is less than two thirds the size of
the multiplicand.

1. INTRODUCTION
Many modern scientific computations require the manipu-
lation of numbers that are too big to fit in a word of mem-
ory. Among the applications that need such large num-
bers are safe encryption algorithms and the search for the
largest known prime number[4]. To gauge the magnitude of
the numbers we are referring to it suffices to examine the
largest known Mersenne prime number which at this time
is 230402457 − 1. This integer has 91, 252, 052 digits and can
not be stored in one word of memory using any modern
computer architecture. In order to manipulate integers of
this magnitude, bignums are used to represent integers as
compound data structures. A bignum contains a series big-
its which are digits in the base, BASE, used to represent
integers. BASE is always much larger than 10 which is the
base human beings use on a daily basis. The value of BASE
is limited by the hardware limitations of modern computer
systems. For efficiency reasons in many systems, BASE
does not exceed the largest integer representable using one

Proceedings of MASPLAS’06
Mid-Atlantic Student Workshop on Programming Languages and Systems
Rutgers University, April 29, 2006

word of memory.

A bignum is usually represented as a data structure that
contains at least three pieces of information:

1. The address of an array of bigits.

2. The length of the array of bigits

3. The sign of the bignum

An array is usually used to store the bigits, instead of a list,
in order to have efficient implementations of the basic arith-
metic operations. For example, addition and substraction
operations always start with the least significant bigits of
the integers they receive as arguments while division always
starts with the most significant bigits of the integers it re-
ceives as arguments. The use of lists, which are not random
access, to represent bigums would add a lot of overhead to
one or more of the basic arithmetic operations. The size of
the maximum integer representable using an array of big-
its, of course, is limited by the maximum size of the index
into an array. Despite this limitation, however, the use of
modern compound representations of integers continues to
grow.

Any implementation of bignums must include an implemen-
tation for bignum multiplication. Bignum multiplication al-
gorithms can be divided into two categories: base case mul-
tiplication algorithms and divide and conquer algorithms.
The best known base case multiplication algorithm is the
classical algorithm described by Knuth[3]. This algorithm is
virtually implemented by all systems and libraries that sup-
port bignums (some examples are [1, 5]). The best known di-
vide and conquer algorithms are the Karatsuba algorithm[2]
and the Toom-Cook algorithm[1, 3]. The divide and conquer
algorithms split very long bignums into smaller pieces until
a threshold is reached where a the base case algorithm is
applied.

It is important for the base case multiplication algorithm
to be efficient in terms of memory space, time, and local-
ity of reference, because it is ultimately always used during
bignum multiplication. This article reviews Knuth’s clas-
sical multiplication algorithm and argues that it does not
always exhibit the highest degree of locality of reference.
The article then presents a new base case multiplication
algorithm inspired in polynomial multiplication that has a

2.1



higher degree of locality of reference than Knuth’s classical
algorithm under conditions that are detectable at runtime.
The article ends with some concluding remarks and direc-
tions of future work.

2. CLASSICAL MULTIPLICATION ALGO-
RITHM

The classical bignum multiplication base case algorithm sim-
ulates the multiplication-by-hand algorithm taught in grade
school. In the multiplication-by-hand algorithm, each bigit,
bi, of the multiplier is multiplied by each bigit of the multi-
plicand to produce a result that is multiplied by BASEi. Af-
ter all these intermediate results are known, they are added
together to produce the desired product.

Knuth points out that directly implementing this algorithm
on a computer is inefficient, because it causes a great deal
of unnecessary intermediate memory allocation. Instead of
allocating a bignum to store each product obtained from
multiplying each bigit of the multiplier by the multiplicand,
Knuth’s classical algorithm adds each product as it is being
generated to the result. This guarantees memory is only
allocated is for the result of the multiplication.

Figure 1 displays pseudo-code for an implementation of Knuth’s
base case multiplication algorithm. The procedure bignumMult
traverses the multiplier. For every bigit, bi, of the multiplier
that is not 0, bi is multiplied by the multiplicand and added
to the result in the procedure MultAndAdd. The procedure
MultAndAdd traverses the multiplicand to multiply it by
bi. For each bigit, aj , of the multiplicand, the product of aj

and bi is computed. If this product is greater than the base
of the bignum representation1, a propagation takes place
starting from the i + j + 1th bigit of the result, R, and the
product is updated to only contain the non-propagated por-
tion. The result of all propagations to Ri+j is then added
to the non-propagated portion of the current product and
a propagation takes place if necessary. After this step, all
necessary propagations to all the bigits more significant than
Ri+j has taken place and Ri+j is set to the non-propagated
portion left which is the (i + j)th bigit of the result.

3. CLASSICAL ALGORITHM AND LOCAL-
ITY OF REFERENCE

The degree of locality of reference of an algorithm can be
measured by the size of the memory window that needs to
be accessed at each step of the algorithm. Consider the mul-
tiplication of an n-bigit number, A, by an m-bigit number,
B, where n ≥ m. Without loss of generality, we will let A
be the multiplicand and B be the multiplier. That is, the
multiplier is always the bigit with the smaller magnitude.

Knuth’s classical algorithm requires that for each non-zero
bigit of B, A be traversed. That is, the bignum with the
largest magnitude is linearly traversed multiple times. It is
inefficient to traverse the bignum with the largest magnitude
multiple times. In the worst case, there are no 0 bigits in
B and a memory window containing the n-bigits of A is
accessed for each bigit of B. Furthermore, the algorithm

1This implementation assumes that the product of two big-
its fits in one memory location.

proc bignumMult(Multiplicand, Multiplier, Result)

i = -1
plierlen = MultiplierLen

while (i < plierlen - 1)

i = i + 1
if (Multiplieri != 0)

MultAndAdd(i, Multiplicand, Multiplier, Result)

proc MultAndAdd(i, Multiplicand, Multiplier, Result)
j = -1
candlen = MultiplicandLen
plierIdigit = Multiplieri

while (j < candlen)
j = j + 1

temp = (Multiplicandj * plierIdigit)

if (temp > BASE)

propagate(temp DIV BASE, Result, i+j+1)

temp = temp % BASE
temp = temp + Resulti+j

if (temp > BASE)

propagate(temp DIV BASE, Result, i+j+1)

temp = temp % BASE
Resulti+j = temp MOD BASE

proc propagate(carryIn, Result, start)

k = start
carry = (carryIn + Resultk) DIV BASE

Resultk = (carryIn + Resultk) MOD BASE

while (carry > 0)

k = k + 1
temp = Resultk + carry
Resultk = temp MOD BASE
carry = temp DIV BASE

Figure 1: Implementation Pseudo-code for Knuth’s
Base Case Multiplication Algorithm.

also accesses an n-bigit memory window of the result. Thus,
we have that a minimum of 2n + 1 different bigits must be
accessed at least once for every bigit of the multiplier.

For large enough values of n, any virtual memory system will
be forced to perform page swapping between main memory
and cache and between main memory and backing store.
Although paging in a virtual memory system can not be en-
tirely avoided, performance can be improved by making the
size of the memory window accessed smaller. It is desirable
to develop an algorithm that does not traverse the bignum
with the largest magnitude multiple times.

4. POLYNOMIAL MULTIPLICATION
Knuth’s classical multiplication algorithm focuses on explic-
itly multiplying each bigit of the multiplier by the multipli-
cand at each step in the algorithm. An alternate bignum
multiplication algorithm is suggested by focusing, instead,
on what is needed for each bigit of the result. To determine
the dependencies of each bigit of the result, each bignum can
be thought of as the representation of a polynomial. Each
bigit of a bignum is the coefficient of a power of the base
used in the representation. Thus, bignum multiplication
can resemble polynomial multiplication.

2.2



An n-degree polynomial, A(x), and an m-degree polynomial,
B(x), can be characterized as follows:

A(x) = a0 + a1x + a2x
2 + . . . + an−2x

n−2 + anxn−1

B(x) = b0 + b1x + b2x
2 + . . . + bn−2x

m−2 + bnxm−1

The product of A(x) ∗B(x) can be characterized as follows:

A(x)B(x) = a0b0

+ (a0b1 + a1b0)x

+ (a0b2 + a1b1 + a2b0)x
2

. . .
+ (a0bn+m + a1bn+m−1 + · · ·+ an+mb0)x

n+m.

Therefore, we have that each coefficient, ri, of A(x) ∗ B(x)
can be characterized as follows:

ri =
Pi

j=0 ajbi−j ,

where aj is 0 if j > n and, similarly, bi−j is 0 if i − j < 0 or
i − j > m.

5. NEW MULTIPLICATION ALGORITHM
5.1 The Algorithm
The mathematical formulation of the product of two poly-
nomials immediately suggests an algorithm for bignum mul-
tiplication. At each step during the algorithm one of the
bigits of the result is computed. Unlike polynomial multi-
plication where there is an unknown value represented by a
variable, in bignum multiplication the are no unknown val-
ues. This means that ith bigit of the result depends on ri

and on the carry generated from the computations to obtain
the values of r0 . . . ri−1. This carry must be added to ri and
a carry must be generated for the computation of ri+1.

Pseudo-code for this algorithm is displayed in Figure 2.
Each bigit of the result is computed starting from the least
significant bigit. For each bigit i of the result, Ri, that is
computed, a carry is propagated to the bigits Ri+1 . . . Rlen−1.
This work is done by the procedure bignumMult.

The computation of the ith bigit of the result and the prop-
agation of any carry is done the the procedure compCoef-
fAndPropagate. This procedure traverses through the val-
ues in [0 . . . i] adding a bigit product term corresponding to
Ai∗Bi−j to Ri and propagating a carry if necessary. A prod-
uct term is 0 if either of the subscripts to the multiplier or
the multiplicand are to imaginary bigits (i.e. i /∈ [0..Alen−1]
and i − j /∈ [0..Blen − 1]) and is Ai ∗ Bi−j otherwise.

5.2 Properties
The first observation that can be made about algorithm I is
that at each step at most Blen bigits of the multiplicand,
Blen bigits of the multiplier, and Blen−1 bigits of the result
are accessed. This algorithm requires a memory window of
3Blen − 1 bigits at each step of the computation.

It is necessary to determine when the size of the memory
window needed by each step of this algorithm is less than the
size of the memory window needed by each step of Knuth’s

proc bignumMult(Multiplicand, Multiplier, Result)
i = -1
while (i < ResultLen - 2)

i = i + 1
compCoeffAndPropagate(i,Multiplicand, Multiplier,Result)

proc compCoeffAndPropagate(i,A,B, Res)

j = -1

while (j < i)

j = j + 1

Resi = Resi + bigitProductTerm(i,i-j,A,B)

if (Resi > BASE)

propagate(Resi/BASE,Res,i+1)

Resi = Resi MOD BASE
proc bigitProductTerm(asub, bsub, A, B)

term = 0
if ((asub < Alen) ∧ (bsub > -1) ∧ (bsub < Blen))

term = Aasub * Bbsub
return(term)

proc propagate(carryIn, Result, start)

k = start
carry = (carryIn + Resultk) DIV BASE

Resultk = (carryIn + Resultk) MOD BASE

while (carry > 0)

k = k + 1
temp = Resultk + carry
Resultk = temp MOD BASE
carry = temp DIV BASE

Figure 2: Pseudo-Code for Multiplication Algo-
rithm I.

classical algorithm. Solving the following inequality for Blen
yields the answer:

3Blen − 1 < 2Alen + 1
Blen < 1

3
(2Alen + 2)

This result states that each step of this new multiplication
algorithm requires a smaller memory window than each step
of Knuth’s classical algorithm when the length of the multi-
plier is, roughly, less than 2

3
the length of the multiplicand.

When this condition does not hold, the size of the memory
window required by each step of Knuth’s classical algorithm
is the same or smaller. This suggests that by comparing
the lengths of the multiplicand the multiplier at runtime a
bignum multiplication implementation can determine which
algorithm ought to be used.

This first algorithm, although provably correct and more
local than Knuth’s classical algorithm under the condition
stated above, is rather unsatisfying because a lot of work is
done to add product terms that are 0. These 0 terms cor-
respond to the products of bigits that do not exist in the
bignums being multiplied and will occur in every computa-
tion of Ri for i > Blen.

6. ALGORITHM REFINEMENT
6.1 Location of 0 Terms
To eliminate the work done for 0 terms, the computation
required for each ri can be examined to determine where

2.3



the 0 terms occur. Recall that ri is given by:

ri = a0bi + a1bi−1 + a2bi−2 + . . . + ai−2b2 + ai−1b1 + aib0.

Notice that for all product terms needed for ri the sum of
the subscript of a and the subscript of b is always equal to
i. This invariant property can be exploited to determine
which product terms are 0 terms and which are not 0 terms.
If i < Blen, then there are no 0 terms in the computation of
ri. This follows from observing that the subscript of any a
is always less than or equal to Alen − 1 and observing that
the subscript of any b is never negative and is never greater
than Blen − 1. In other words, the range of subscripts for
both a and b are in [0..Blen−1] which means that all aibi−j

are the product of two existing bigits. Thus, we have that:

i < m ⇒ ri =
Pi

j=0 ajbi−j

For the computation of each ri when i > Alen − 1, the
most significant bigit of A, AAlen−1, and the most significant
bigit of B, BBlen−1, are needed. Thus, the maximum valid
subscript for a in the computation of ri is Alen−1. Note that
the values of aj for j ∈ [Alen . . . i] are 0 terms and there is
no need to add these terms to ri. To find the minimum valid
subscript for a for the computation of ri, set the subscript
of b to Blen − 1 and solve the following equation for j:

i − j = Blen − 1
−j = −i + Blen − 1

j = i − Blen + 1

Thus, we have that:

i > Alen − 1 ⇒ ri =
PAlen−1

j=i−Blen+1 ajbi−j

For the computation of each ri when m ≤ i ≤ Alen−1, there
are Blen non-zero product terms. This means that each ri

depends on each bigit of B. Thus, i − j ∈ [0 . . . Blen − 1].
To find the smallest valid subscript for a solve the following
equation as before:

i − j = Blen − 1
−j = −i + Blen − 1

j = i − Blen + 1

The largest valid subscript for a is given by:

i − j = 0
−j = −i

j = i

Thus, we have that:

Blen ≤ i ≤ Alen − 1 ⇒ ri =
Pi

j=i−m+1 ajbi−j

proc bignumMult(cand, plier, Result)
i = -1
while (i < ResultLen - 2)

i = i + 1
sumAndPropValidBigitProducts(i, cand, plier, Result)

sumAndPropValidBigitProducts(i, A, B, Res)

if (i < Blen)

sumAndProp(0, i, i, A, B, Res)

else if (i > Alen - 1)

sumAndProp(i-Blen+1, Alen-1, i, A, B, Res)

else
sumAndProp(i-Blen+1, i, i, A, B, Res)

sumAndProp(start, finish, i, A, B, Res)
j = start - 1
coeff = Resi

while (j < finish)
j = j + 1

coeff = coeff + bigitproductTerm(j,i-j, A, B)

if (coeff ≥ BASE)

propagate(coeff/BASE,Res,i)

coeff = coeff MOD BASE
Resi = coeff

bigitproductTerm(asub, bsub, A, B)

return(Aasub * Bbsub)

proc propagate(carryIn, Result, start)

k = start
carry = (carryIn + Resultk) DIV BASE

Resultk = (carryIn + Resultk) MOD BASE

while (carry > 0)

k = k + 1
temp = Resultk + carry
Resultk = temp MOD BASE
carry = temp DIV BASE

Figure 3: Pseudo-code for Multiplication Algorithm
II.

6.2 Algorithm
The above reformulation of the equation for ri suggests an
improved bignum multiplication algorithm that does not
perform any work to determine if a term is 0 during the
computation of ri. The pseudo-code for this refinement if
displayed in Figure 3. The procedure bignumMult traverses
the bignum allocated for the result to compute each ri and
generate the carry for ri+1. No computation takes place for
the most significant bigit of the result, rRlen−1, since it only
depends on the carry generated during the computation of
rRlen−2.

The procedure sumAndPropValidBigitProducts computes each
ri by identifying in which range of interest (i < Blen, i >
Alen - 1, or Blen ≤ i ≤ Alen - 1) i lies in and calling sumAnd-
Prop with the indexes of lowest and highest valid bigits of
A. This action guarantees that during the computation of
each ri there is no work done for 0 terms.

The procedure sumAndProp takes as part of its input the
indexes into A where the computation of ri should start and
finish. It sets the variable coeff , which represents the value

2.4



of ri computed so far, to Resi which stores the carry it re-
ceives from ri−1. It then loops through indexes, j, of A from
start to finish adding product terms to coeff and propa-
gating a carry if necessary. Each of these product terms is
known to only index valid bigits of A and B and, therefore,
the procedure bigitproductTerm always returns ai ∗ bj−1.

Eliminating the addition of 0 terms during the computation
of ri does not change the number of different bigits accessed.
Therefore, we have that the size of the memory window re-
quired for this refined algorithm is the same as the algorithm
in Figure 2.

7. COST OF REDUCING THE MEMORY
WINDOW SIZE

The reduction of the memory window size when Blen <
1
3
(2Alen + 2) comes at a runtime cost when the multiplier

contains many 0 bigits. Knuth’s classical algorithm per-
forms no bigit by bigit multiplications when a bigit of the
multiplier is 0. There is no need to, because the product of
the multiplicand and 0 is always 0 and adds no value to the
result. The new algorithm described in this article performs
all bigit by bigit multiplications for a multiplier bigit that is
0. Thus, the number of memory accesses and bigit by bigit
multiplications performed is larger for the new algorithm in
the presence of bigits that are 0 in the multiplier.

The number of extra bigit by bigit multiplications performed
by the our algorithm is given by:

ExtraMults = Number of multiplier 0-bigits ∗ Alen

When there are no bigits that are 0 in the multiplier, Knuth’s
classical algorithm and the new algorithm described in this
article perform the same number of bigit by bigit multipli-
cations. If the number of bigits that are 0 in the multiplier
is small, then the impact on performance of the extra bigit
by bigit multiplications done by the new algorithm is likely
to be negligible. On the other hand, if the multiplier is ex-
pected to have many 0 bigits then the effort to reduce the
memory window size may be counter productive. In the
worst case, all the bigits of the multiplier but 1 may be 0
and the new algorithm performs (Blen−1)∗Alen more bigit
by bigit multiplications. For small values of Alen, however,
the impact on performance is likely to be negligible.

The likelihood of having small values of Alen is high, be-
cause base case multiplication algorithms like those described
in this article are not directly used in practice to multiply
bignums that are very long. For very long bignums, divide
and conquer algorithms such as Karatsuba multiplication
are employed. These algorithms divide long bignums repeat-
edly into smaller bignums until the lengths of the pieces are
small enough to apply a base case multiplication algorithm.
Therefore, we conjecture that the impact on performance of
the extra multiplications performed by the new algorithm
described in this article is negligible.

8. CONCLUDING REMARKS
This article describes a new base case multiplication algo-
rithm for integers that are bignums. When compared to

Knuth’s classical bignum multiplication algorithm, the new
algorithm reduces the size of the memory window required
at each step of the computation if the length of the multi-
plier is less than 2

3
the length of the multiplicand. Knuth’s

classical multiplication algorithm revolves around multiply-
ing each bigit of the multiplier by the multiplicand. Our
new algorithm, in contrast, revolves around computing each
bigit of the product. By focusing of computing each bigit
of the product instead of multiplying each bigit of the mul-
tiplier by the multiplicand, the new algorithm avoids hav-
ing to repeatedly traverse the multiplicand which is always
the bignum with the largest magnitude. Thus, yielding a
bignum multiplication algorithm that does not perform any
unnecessary allocations as Knuth’s classical algorithm and
that makes the process of multiplication more local.

The new algorithm, however, can perform more memory ac-
cesses and more bigit-by-bigit multiplications than Knuth’s
classical algorithm when the multiplier contains bigits that
are 0. The classical algorithm reduces the amount of mem-
ory accesses and of multiplications by performing no work
when it processes a multiplier bigit that is 0. The new algo-
rithm presented in this article can avoid performing actual
multiplications by 0, but can not avoid the extra memory
accesses. This is due to not individually processing each
bigit of the multiplier and, instead, individually processing
each bigit of the result. Our future work includes refin-
ing the new multiplication algorithm to avoid unnecessary
memory accesses and multiplications when a bigit is 0. Our
focus, however, is not on bigits of the multiplier. Instead,
our refinement focuses on what to do when bigits of the
multiplicand are 0. Given that the multiplicand has a larger
magnitude than the multiplier, it is likely to contain more
zeroes than the multiplier. Reducing memory accesses and
bigit-by-bigit multiplications for bigits of the multiplicand
that are zero is likely to yield an algorithm that performs
less work than Knuth’s classical bignum multiplication al-
gorithm.

Our future work also includes performing benchmark exper-
iments to gather empirical measurements to quantify the
impact on performance of the final version of the new algo-
rithm. In addition, our future work also includes studying
how the new algorithm can be efficiently used to implement
Karatsuba multiplication and other divide and conquer mul-
tiplication algorithms.

9. ACKNOWLEDGEMENTS
The authors would like to thank the Department of Math-
ematics and Computer Science of Seton Hall University for
their support. We are also very grateful to Dr. Barbara Ry-
der and the MASPLAS’06 Organizing Committee for their
efforts to provide a forum for the presentation of our work.

10. REFERENCES
[1] Torbjörn Granlund. GNU MP: The GNU Multiple

Precisision Arithmetic Library. http://swox.com/gmp/,
September 2004.

[2] A. Karatsuba and Y. Ofman. Multiplication of
Multidigit Numbers on Automata. Soviet Phys. Dokl.,
7:595–596, 1963.

2.5



[3] Donald E. Knuth. Seminumerical Algorithms.
Addison-Wesley, 1981.

[4] Mersenne.org. 43rd Known Mersenne Prime Found!!
http://mersenne.org/prime.htm, December 2005.

[5] The Larceny Project. Larceny User’s Manual.
http://www.ccs.neu.edu/home/will/Larceny/manual/,
2006.

2.6


