
Test Coverage Tools for Database Applications

Eric Tang
Polytechnic University

6 Metrotech Center
Brooklyn, NY 11218

etang02@utopia.poly.edu

Phyllis G. Frankl
Polytechnic University

6 Metrotech Center
Brooklyn, NY 11218

pfrankl@poly.edu

Yuetang Deng
Google, Inc.

1600 Amphitheatre Parkway
Mountain View, CA 94043
ydeng@google.com

ABSTRACT
Databases are everywhere. Whether it is commercial or sci-
entific, a database is used. Therefore, it is essential that
these database applications work correctly. Testing these
database applications correctly and effectively is a challenge.
AGENDA (A (test) GENerator for Database Applications)
was designed to aid in testing database applications. In ad-
dition to the tools that AGENDA currently has, three ad-
ditional tools were made to enhance testing and feedback.
They are the log analyzer, attribute analyzer, and query cov-
erage.The log analyzer finds relevant entries in log file pro-
duced by DBMS, lexically analyzes them using a grammar
written in JavaCC, and stores some of the data in a database
table. When the log entry represents an executed SQL
statement, this statement is recorded. The attribute ana-
lyzer parses SQL statements. A SQL grammar for JavaCC
was modified, adding code to determine which attributes
are read and written in each SQL statement. A new test
coverage criterion, query coverage, is defined. Query cov-
erage checks whether queries that the tester thinks should
be executed actually are executed. Similar to log analyzer,
JavaCC was used to implement this. It is implemented by
pattern matching executed queries against patterns repre-
senting abstract queries (including host variables) identified
by the tester.

1. INTRODUCTION
Databases are very important tools that helps maintain

information in an orderly fashion. Databases make storing
and searching data quick and easy. No wonder more and
more applications involve databases. Think of all the im-
portant information you retrieve from a database everyday.
For example, checking your savings account balance, look-
ing up your grades, searching for material on the internet,
and much more. In many cases, these applications are mis-
sion critical. They are to perform correctly and efficiently
because many critical operations rely on the data that is
retrieve from a database. Because of the nature of these ap-

Proceedings of MASPLAS’06 Mid-Atlantic Student Workshop on Pro-
gramming Languages and Systems Rutgers University, April 29, 2006

plications, testing the correct behavior of these applications
is of great importance.

A relational database consists of a collection of tables,
described by a schema. To free the programmer from wor-
rying about low level description of data, the database man-
agement system (DBMS) translate high level data storage,
access, and checking primitives to low level description of
data. Application developers uses high level languages such
as C, C++, Java, etc. to run queries to retrieve data for
further processing. When the application executes the SQL
statement, the statement is passed to the DBMS through
API, executed by the DBMS, and the results are returned
to the application.

The challenge in testing database applications is the pos-
sible states that the database can be in. Some challeng-
ing questions include: how to generate database states and
applications inputs that throughly test relevant application
behavior, did the test cases modified the database state cor-
rectly, how to asses test data adequacy, and how to describe
test cases and their initial database state for archival and
reuse purposes. The DBMS provides features that assists
in tackling the chanlleges presented. In earlier work, we ex-
ploited the DBMS assertion checking mechanism to check
whether tests modify database state as expected [6]. In this
paper, we show how the DBMS logging mechanism can pro-
vide tremendous amount of information to determine test
data adequacy. In addition to the challeges stated, applica-
tions with dynamic queries, such as many database appli-
cations written in Java, using the JDBC API to access the
DBMS, pose additional challenges.

2. BACKGROUND
Traditional application testing techniques are not suffi-

cient for testing database applications. Such techniques as
statement, condition, and path coverage are primarily fo-
cused on imperative languages such as C/C++ and Java;
they are inadequate for our purposes because they do not
effectively test queries. Since queries, or statements that
manipulate data in a database, are the most vital pieces of
code in a database application, it is important that queries
be tested effectively. Therefore, it is essential that we de-
velop new techniques to test database applications.

Programs interact with the database through statements
written in a language called Structured Query Language
(SQL). SQL is used to create, modify, and retrieve data
from a database. The queries on which we will focus in this
paper are those that contain Data Manipulation Language
(DML) commands. DML commands include SELECT, IN-

4.1



import java.sql.*;

class simple
{

public static void main(String [] args) throws SQLException,ClassNotFoundException
{
1. Class.forName("org.postgresql.Driver");
2. Connection connect=

DriverManager.getConnection("jdbc:postgresql://localhost:5432/simple","eric","");

3. Statement simple = connect.createStatement();

4. int sup=Integer.parseInt(args[0]);
5. double prc=Double.parseDouble(args[1]);

6. String q="select * from coffees where SUP_ID="+sup;

7. if(prc>0)
8. q=q+" and price > "+prc;

9. simple.execute("COMMENT ON DATABASE simple IS \’_hot_spot_id 1\’");
10. ResultSet rs=simple.executeQuery(q);
11. while(rs.next())
{

// process results
}
}

Figure 1: Simple Example of a JDBC Application

test # sup id prc query
1 49 9.99 select * from coffees where SUP ID=49 and price > 9.99
2 49 0 select * from coffees where SUP ID=49
3 103 0 select * from coffees where SUP ID=103

Figure 2: Test cases for simple example

SERT, UPDATE, and DELETE.
The commonly used application testing techniques, such

as statement and branch coverage, do not measure which
queries have been executed. This paper describes tools for
measuring coverage according to criteria more directly based
on the SQL statements in the program. Several such crite-
ria have been developed recently [5]. We also introduce a
new criterion that is targeted to programs with dynamically
generated queries.

Testing database applications is a difficult task. To un-
derstand the problems involved, we must understand how
a database application is written. In this paper, we focus
on applications written in Java, using the JDBC library to
connect to the database. In Java/JDBC, queries are treated
as strings. The string (query) is passed to a function which
passes that string into the database. The DBMS then pro-
cesses the query. An error, if there is one, wont be detected
during compilation; it will only be caught during runtime.

Throughout this paper we will illustrate with a simple
example, based on the JDBC tutorial [3]. The database (for
a coffee shop) has a table created by the SQL DDL statement

CREATE TABLE COFFEES (COF_NAME VARCHAR(32),

SUP_ID INTEGER, PRICE FLOAT, SALES INTEGER,

TOTAL INTEGER);

The table has columns for the coffee’s name, the supplier
ID, the price, the amount sold during the current week, and
the total amount sold to date. The program shown in Fig 1
takes two arguments sup id and prc, representing a supplier

ID and a price. In lines 1 – 3, it sets up a connection and
creates a Statement object. Lines 4 – 5 get the arguments
from the command line. Lines 6 – 8 build up a string q rep-
resenting a query, which is then executed in line 10. Line 9
is instrumentation explained in Section 3.1.1. Note that the
form of the query string depends on how the if statement
at line 7 evaluates. If the price is positive, the method re-
turns the set of rows representing coffees that the supplier
has with prices greater than the given price. Otherwise, it
returns the supplier’s coffees, without regard to price.

We assume that the application has a fault: assume the
specification calls for returning coffees with prices less than
prc, i.e., that the “greater than” in line 8 should have been
“less than”. In this simple example, any test case with prc

> 0 will detect the fault, provided that the coffees table
has a row with the given supplier ID.

Figure 2 shows three test cases for this example, along
with the query executed.

The queries in Figure 2 can be thought of as strings that
will be passed into the execute function. If there is an error
in the query, the compiler will not detect it. The DBMS
reports an error back to the database application after the
DBMS executes the string that was passed into the execute
function.

Section 3 describes three prototype tools to help the soft-
ware tester determine how well the SQL statements in the
program have been tested. These tools analyze the logs pro-
duced by the DBMS and compare the queries that were ac-

4.2



%%%%3937%%%%%%LOG: next transaction ID: 3186181; next OID: 2742086
%%%%3937%%%%%%LOG: database system is ready
%%eric%%3961%%43d56c1f.f79%%3186182%%LOG: statement: COMMENT ON DATABASE simple IS ’_hot_spot_id 1’
%%eric%%3961%%43d56c1f.f79%%3186183%%LOG: statement: select * from coffees where SUP_ID=49 and price > 9.99
%%eric%%3961%%43d56c1f.f79%%0%%LOG: unexpected EOF on client connection
%%%%3938%%%%%%LOG: checkpoints are occurring too frequently (29 seconds apart)
%%%%3938%%%%%%HINT: Consider increasing the configuration parameter "checkpoint_segments".

Figure 3: Excerpt from log file after executing Test Case 1

id pid sid xid qid msg type msg tc id hotspotid
1 3961 -1 0 COMMENT ON DATABASE simple IS ’ hot spot id 1’ 1 -1
2 3961 1 0 select * from coffees where SUP ID=49 and price > 9.99 1 1
3 3961 0 -1 5 unexpected EOF on client connection 1 -1

Figure 4: Log Table entries from test case 1
.

tually executed to the queries that are potentially executed,
as determined by analysis of the source code. In addition,
potential database interactions, such as reads and writes,
are compared with actual interactions. The potential inter-
actions are currently determined by manual analysis of the
source code at each execution point. 1 We refer to the pro-
gram point where an execute function is a called as a hotspot.
The source code is instrumented to record a unique id for
each hotspot. This will be used later to trace back to which
execute function was called to run the query. Soot is used
to instrument a command that will indicate the hotspot id
in the DBMS log.

2.1 JavaCC
To extract meaningful information from a query, we need

a lexical analyzer and parser. JavaCC is a parser generator.
In most languages, whether it is computer or human, there
are grammatical rules that governs the proper use of the
language. The language, in this case, is SQL. The grammar
code for the SQL language is fed into JavaCC and creates
the source code for the lexical analyzer and parser. A lex-
ical analyzer breaks a continuous stream of characters into
meaningful pieces called tokens. A parser is a program that
analyzes the stream of tokens and compares it to a given
grammar. Using the lexical analyzer and parser created by
JavaCC, it is able to determine if a query is grammatically
correct, if so, extract information about the query.

select * from coffee where SUP ID = 49 ;

The lexical analyzer separates the input query into blocks
of text. The data in each box is called a token. The parser
checks the tokens to ensure conformity to the grammar rules.

2.2 Soot
Soot is a Java Optimization Framework. It provides in-

termediate representation for analysis and transformation
of Java bytecodes. The intermediate representation we are
using is called Jimple. Soot converts Java class files (binary
data called bytecodes) into a readable source code like rep-
resentation of the bytecode. Modifications could be made
to the class file without having the Java source code. Line
9 in Figure 1 is an example of instrumentation to indicate

1In future work this will be partially automated.

the hotspot’s (execute function) id. The line 9 was included
in the example to show what the program after instrumen-
tation.

3. COVERAGE ANALYSIS TOOLS
This section describes tools to analyze database logs, to

compare the queries actually executed at each hotspot to
those that are potentially executed, and to compare the in-
teractions (reads and writes) that are actually executed with
those potentially executed. We assume here that the rele-
vant information from the source code has been previously
determined (manually or through an automated approxima-
tion) and has been stored in DB tables.

3.1 Log Analyzer
The output of the log depends on the configuration of the

DBMS. We have configured the DBMS to output more data
then the default configuration.

The log table has entries for

• id unique ID for the entry

• pid process id,

• sid session id,

• xid transaction id,

• qid query id,

• msg type message type (e.g., statement or error),

• msg raw message.

• tc id test case ID

• hotspotid hotspot ID

Figure 3, is a sample of a log file after executing the program
above in Figure 1 with testcase 1 in Figure 2.

3.1.1 Instrumentation
In producing the log files, the DBMS knows nothing about

which hotspot a given SQL statement is executed from.
Thus, we must instrument the program to cause hotspot IDs
to be included in the log. During the log analysis phase, the
executed SQL statement is associated with its hotspot.

4.3



auto id aid qid tid tname aname context condition testcaseid
7 2 1 2796928 coffees sup id read where 1
8 3 1 2796928 coffees price read where 1
9 1 1 2796928 coffees cof name read from 1

10 2 1 2796928 coffees sup id read from 1
11 3 1 2796928 coffees price read from 1
12 4 1 2796928 coffees sales read from 1
13 5 1 2796928 coffees total read from 1

Figure 5: Executed Element table entries pertaining to test case 1.
.

In our current prototype, before each hotspot we add a
special query involving the hotspot ID, as illustrated in line
9 of Figure 1. When testing our tools, line 9 was inserted
manually. However, we have developed a tool that automat-
ically inserts line 9 using Soot.

We are current working on a more elegant way to do this
which is discussed later in Section 4. This new technique is
not only more elegant but more flexible due to the ability
to store more information.

3.1.2 Lexical Analysis
The first step is essentially a lexical analysis of the log

file. For each relevant log entry, the process id, session id,
transaction id, message type (e.g., statement or error), and
raw message, are inserted into a log table row. The raw
message (i.e., the SQL statement executed or the error mes-
sage) consists of multiple tokens. It’s the last element of
the log entry, so it can easily be copied in its entirety into
the log table. If the message is a SQL statement an ID is
assigned so it can be referenced from the executed-element
table, where more details about the statement’s database
interactions will be stored.

The hotspot ID is found by searching for the most re-
cent log entry with the special hotspot query and with the
same session, process, and transaction IDs. It is often the
preceding log entry, but may be earlier in the log, due to
statements executed by other sessions or by the test envi-
ronment or additional messages from the DBMS.

Test case IDs are updated when the new test case markers
are found in the log and are filled in at each log table row.
The log table entries resulting from test case 1 are shown
in Figure 4. Transaction and session IDs are elided to save
space.

3.2 SQL statement analysis
Most of the coverage criteria discussed above involve anal-

ysis of SQL statements executed, to determine which database
elements they involved and how those elements occurred.
A SQL parser was modified to extract relevant informa-
tion, map table and attribute names to unique IDs derived
from the database’s information schema, and store it in the
database. We call the resulting tool component the attribute
analyzer. The attribute analyzer fills an executed element
table which has columns representing

• aID attribute ID from the information schema

• qID query ID from log analyzer

• tID table ID from the information schema

• tname table name

• aname attribute name

• context read or write

• condition where is the column name located (e.g.
where, set, from, into, values)

Our attribute analyzer was implemented using JavaCC [1].
JavaCC inputs grammar rules and actions (written in Java)
and produces a top-down parser, written in Java. We modi-
fied a SQL grammar from [2], adding actions to identify table
and attribute names occurring in the SQL statement and
to the context in which they occur (FROM clause, INTO
clause, SET clause, WHERE clause, etc.) Methods corre-
sponding to grammar non-terminals are modified to return
lists of table and attribute names occurring in the token
sequences they process.

The database schema is then used to find the unique ID for
each relevant (table-name, attribute-name) pair. Attribute
names can occur in SQL statments either with or without
the corresponding table names. For example, one could have
used dot notation to refer to coffees.price rather than
price. Programmers usually write only the attribute name
as long as it is unambiguous, i.e., as long as the same at-
tribute name does not occur in more than one table involved
in the statement. For each unqualified attribute name oc-
curring in the statement, the attribute analyzer checks all
the tables in the corresponding FROM clause, until a table
with that attribute name is found.

For each attribute occurrence, a row is inserted in the
executed-element table, indicating the attribute ID, the SQL
statement ID, whether the attribute was defined (written)
or used (read), and the clause in which it occurred. Al-
though the coverage criteria described above do not distin-
guish between different ways an attribute may be used (e.g.,
in SELECT list, in WHERE clause, in ORDER BY clause,
etc.), one can easily envision new criteria that use that in-
formation. Since we’re collecting that information, anyway,
we record it in the executed-element table, to allow flexibil-
ity for testers to define new coverage criteria. The part of
the table resulting from analysis of test case 1 are shown in
Figure 5.

3.3 Query Coverage
The tool Query Coverage compares queries actually exe-

cuted at a given hotspot to the queries found in the source
code at all execution points (hotspots). Query Coverage
uses a parser to break queries into tokens. After each token,
custom made Java code gets executed.

Before comparing, Query Coverage checks to see if the
queries have the same number of tokens; if not, then the
queries are not compared. If they are the same length, then

4.4



Query # Query
1 select * from coffees where SUP ID=? and price > ?
2 select * from coffees where SUP ID=?

Figure 6: Possible queries that could of been executed

comparison of the tokens is made from start to end. In
JDBC, the queries that are dynamic do not show values of
the query run in the log. Instead, sybmols are used; there-
fore we must do pattern matching. The tool matches SQL
keywords and operators. Any query that contains the pat-
tern will be considered a match. The tool also produces a
report that includes the number of queries extracted from
the source code and the number of queries from the log. The
queries that match, meaning they were run, are bolded. In
addition, Query Coverage informs the examiner of how well
the software is being tested, by reporting the percentage of
queries covered.

Example
In Figure 1, there are two possible queries that can be ex-
ecuted as shown in Figure 6. The question mark indicates
a value will be dynamically assigned during runtime. If test
case 1 is used, query 1 will be executed. Likewise, if test
case 2 is used, query 2 will be executed. Let’s say test case
1 was executed, in the log, we will have query 1. The follow-
ing tokens will be compared: Select, *, from, coffees, where,
SUP ID, =, and, price, >

4. FUTURE WORK
A better way to detect hotspots is to instrument a wrap-

per for the execute method. PreparedStatement is an inter-
face, therefore, we can extend the interface and rewrite the
functions in the class to store valuable data such as dynam-
ically assigned values, testcase id, and etc during execution
of the query. Every PreparedStatement and Statement will
be replaced with our custom class called LogStatements.

For simplicity, functions setInt and setString will contain
code that will extract the dynamically allocated value. All
other functions in LogStatements model the same function-
ality as PreparedStatement. The Throwable class allows us
to trace back to the line number of the execute function.
This class will be implemented in the execute function of
the LogStatement. The line number can also be utilized as
the hotspot id. With this technique, it will no longer be
necessary to instrument line 9 in Figure 1.

5. CONCLUSION
This paper addresses the question of how to construct

tools to measure coverage. We point out that traditional ap-
proaches, in which tools essentially monitor control flow, are
not suitable for database applications with dynamic queries.
The new tools were designed to give valuable information to
the software tester regarding code coverage. They use the
results from static analysis, or analyzing code, and log anal-
ysis to inform the examiner how well the application has
been tested.

The new prototypes will allow the tester to augment fu-
ture test cases to produce improved coverage. This will re-
sult in better error detection, and enhance the performance
and usability of the database application.

6. REFERENCES
[1] https://javacc.dev.java.net.

[2] http://www.cobase.cs.ucla.edu/pub/javacc/plsql/
FormsPlSql.jj.

[3] JDBC Tutorial.
http://java.sun.com/products/jdbc/book.html.

[4] http://www.sable.mcgill.ca/soot/. Soot: a Java
Optimization Framework. 2002.

[5] G. M. Kapfhammer and M. L. Soffa. A family of test
adequacy criteria for database-driven applications. In
ESEC/FSE, Sept. 2003.

[6] Y. Deng, P. G. Frankl, and D. Chays. Testing
database transactions with agenda. In ICSE, pages
78–87, 2005.

4.5


