
Toward Systematic Testing of Access Control Policies

Evan Martin
Department of Computer Science

North Carolina State University
Raleigh, NC 27695

eemartin@ncsu.edu

Tao Xie
Department of Computer Science

North Carolina State University
Raleigh, NC 27695

xie@csc.ncsu.edu

ABSTRACT
To facilitate managing access control in a system, access control
policies are increasingly written in specification languages such as
XACML. A dedicated software component called a Policy Deci-
sion Point (PDP) interprets the specified policies, receives access
requests, and returns responses to inform whether access should be
permitted or denied. To increase confidence in the correctness of
specified policies, policy developers can conduct policy testing by
supplying typical test inputs (requests) to the PDP and subsequently
checking test outputs (responses) against expected ones. Unfortu-
nately, manual testing is tedious and few tools exist for automated
testing of XACML policies.

In this paper, we present our work toward a framework for sys-
tematic testing of access control policies. The framework includes
components for policy coverage definition and measurement, re-
quest generation, request evaluation, request set minimization, pol-
icy property inference, and mutation testing. This framework al-
lows us to evaluate various criteria for test generation and selection,
investigate mutation operators, and determine a relationship be-
tween structural coverage and fault-detection capability. We have
implemented the framework and applied it to various XACML poli-
cies. Our experimental results offer valuable insights into choosing
mutation operators in mutation testing and choosing coverage cri-
teria in test generation and selection.

1. INTRODUCTION
Access control is one of the most fundamental and widely used

security mechanisms. It controls which principals such as users
or processes have access to which resources in a system. To fa-
cilitate managing and maintaining access control, access control
policies are increasingly written in specification languages such as
XACML [1] and Ponder [5]. Whenever a principal requests ac-
cess to a resource, that request is passed to a software component
called a Policy Decision Point (PDP). A PDP evaluates the request
against the specified access control policies, and permits or denies
the request accordingly.

Assuring the correctness of policy specifications is becoming
an important and yet challenging task, especially as access con-

Proceedings of MASPLAS’06
Mid-Atlantic Student Workshop on Programming Languages and Systems
Rutgers University, April 29, 2006

Expected
Outputs

Test
Outputs

Test
Inputs

Program

Expected
Responses

ResponsesRequests
Policy

Software Testing

Policy Testing

Figure 1: Mapping of traditional software testing to policy test-
ing.

trol policies become more complex and are used to manage a large
amount of sensitive information organized into sophisticated struc-
tures. Identifying discrepancies between policy specifications and
their intended function is crucial because correct implementation
and enforcement of policies by applications is based on the premise
that the policy specifications are correct. As a result, policy speci-
fications must undergo rigorous verification and validation through
systematic testing to ensure the policy specifications truly encapsu-
late the desires of the policy authors.

Software testing aims at efficiently detecting and correcting er-
rors in software through dynamic execution. Errors in policy spec-
ifications may also be discovered by leveraging existing techniques
for software testing and applying them to policy testing. The sim-
ilarities of traditional software testing and policy testing are illus-
trated in Figure 1. In policy testing, test inputs are access requests
and test outputs are access responses. The execution of test inputs
occurs as requests are evaluated by the PDP against the access con-
trol policies under test. Policy authors can inspect request-response
pairs to check whether they are expected. Access control policies
are often tested with manually defined access requests so that policy
authors may check the PDP’s responses against expected ones [3].
Unfortunately, current policy testing practice tends to be a manual,
ad hoc process. With such a process, it is questionable that high
confidence can be gained on the correctness of access control poli-
cies.

5.1



Mutation testing [6] has historically been applied to general-
purpose programming languages in measuring the quality of a test
suite. In this paper, we present our prevous work toward a frame-
work for systematic policy testing. In particular we have developed
a framework for automated mutation testing of access control poli-
cies [17]. In the framework, we define a set of new mutation opera-
tors for XACML policies. We also develop a tool that automatically
seeds a policy under test with faults by applying these mutation op-
erators, thereby producing numerous mutant policies. We leverage
a change-impact analysis tool to detect equivalent mutants among
generated mutants. We determine whether a mutant policy is killed
by a request by comparing the responses for the request based on
the original policy and mutant policy. Our framework can be ap-
plied on XACML policies together with our previous tools of test
generation, test selection, and structural coverage measurement for
access control policies [16, 19]. We perform an experiment that
uses mutation testing to evaluate structural coverage criteria for test
generation and test selection in terms of fault-detection capabilities.
Our experimental results offer valuable insights into choosing mu-
tation operators in mutation testing and choosing coverage criteria
in test generation and selection. Finally we present our preliminary
results on inferring properties of policies via machine learning ap-
plied to request-response pairs [18].

The rest of the paper is organized as follows. We first present
related work in Section 2 and a brief introduction to XACML in
Section 3. We then present policy coverage, test generation, and
test minimization in Sections 4, 5, and 6. We then present our work
on mutation testing of access control policies in Section 7. Sec-
tion 8 describes the experiment where we apply the automated test
generation, test minimization, coverage measurement, and muta-
tion testing on various XACML policies. Finally we present our
preliminary results on policy property inference via machine learn-
ing in Section 9 and conclude with Section 10.

2. RELATED WORK
To help ensure the correctness of policy specifications, researchers

and practitioners have developed formal verification tools for poli-
cies [8,13,23]. Fisler et al. [8] developed a tool called Margrave that
can verify XACML [1] policies against properties, if they are spec-
ified, and perform change-impact analysis on two versions of poli-
cies when properties are not specified. Margrave performs property
verification by automatically generating concrete counter-examples
in the form of specific requests that illustrate violations of the spec-
ified properties. Similarly, change-impact analysis is performed by
automatically generating specific requests that reveal semantic dif-
ferences between two versions of a policy. Although verification
tools such as Margrave are valuable, it is sometimes beyond the
capabilities of these tools to verify complex access control policies
because of the tools’ limited support for various XACML features.
Furthermore, user-specified properties are often not available [8].
Our mutation testing framework leverages Margrave’s strengths for
generating requests and detecting equivalent mutants.

Although various coverage criteria [24] for software programs
exist, only recently have coverage criteria for access control poli-
cies been proposed in our previous work [19]. Policy coverage cri-
teria are needed to measure how well policies are tested and which
parts of the policies are not covered by the existing tests. In our
previous work [19], we have defined policy coverage and devel-
oped a policy coverage measurement tool. Because it is tedious
for developers to manually generate test inputs for policies, and
manually generated tests are often not sufficient for achieving high
policy coverage, we have also developed several techniques of test
generation. The first one iterates over all possible requests for a

given policy, if its domain set is finite. The second one is a random
test generation tool that randomly generates tests for XACML poli-
cies [19]. The third technique [16] is a novel framework that au-
tomatically generates high-quality tests based on a change-impact
analysis tool such as Margrave [8]. Because the number of auto-
matically generated tests is often too large for manual inspection,
we developed a request-reduction tool that greedily selects a mini-
mal set of tests for achieving the same policy coverage as the orig-
inal set of tests. Our new automated mutator allows us to quickly
evaluate test generators and techniques of test selection in terms of
fault-detection capabilities.

3. XACML
The eXtensible Access Control Markup Language (XACML) is

an XML based syntax used to express policies, requests, and re-
sponses. This general-purpose language for access control policies
is an OASIS (Organization for the Advancement of Structured In-
formation Standards) standard [1] that describes both a language
for policies and a language for requests or responses of access con-
trol decisions. The policy language is used to describe general ac-
cess control requirements and is designed to be extended to include
new functions, data types, combining logic, etc.

The five basic elements of XACML policies are PolicySet,
Policy, Rule, Target, and Condition. A policy set is simply
a container that holds other policies or policy sets. A policy is ex-
pressed through a set of rules. With multiple policy sets, policies,
and rules, XACML must have a way to reconcile conflicting rules.
A collection of combining algorithms serves this function [1]. Each
algorithm defines a different way to combine multiple decisions
into a single decision. Both policy combining algorithms and rule
combining algorithms are provided. Seven standard combining al-
gorithms are provided but user-defined combining algorithms are
also allowed [2].

To aid in matching requests with the appropriate policies, XACML
provides a target [1], which is basically a set of simplified condi-
tions for the subject, resource, and action that must be met for a
policy set, policy, or rule to apply to a given request. Once a pol-
icy or policy set is found to apply to a given request, its rules are
evaluated to determine the response.

Finally we have attributes, attribute values, and functions. At-
tributes are named values of known types that describe the subject,
resource, and action of a given access request [1]. A request is
formed of attributes that will be compared to attributed values in a
policy to make the access decisions. Attribute values from a request
are resolved through two mechanisms: the AttributeDesignator
and the AttributeSelector [1]. The former lets the policy spec-
ify an attribute with a given name and type, whereas the latter al-
lows a policy to look for attribute values through an XPath query.

4. COVERAGE MEASUREMENT
Sun has developed an open source, pure Java implementation of

the XACML standard [2]. This implementation supports parsing of
policies, requests, and responses; determining applicable policies
for a given request; evaluating requests against a set of policies; as
well as implementing standard attribute types, functions and policy
combining algorithms.

Our previous work [19] defines three policy coverage metrics
and presents a tool called Poco for measuring policy coverage.
Poco automatically measures three structural coverage metrics: pol-
icy hit percentage, rule hit percentage, and condition hit percentage.
Poco is essentially an instrumented version of Sun’s XACML im-
plementation that automatically collects policy coverage informa-

5.2



tion as requests are evaluated against a policy. Poco acts as a PDP
that accepts access requests and returns access decisions.

As discussed in Section 3, XACML policies have three major en-
tities: policies, rules for each policy, and conditions for each rule.
Policy coverage is quantified for each of these entities and is de-
fined as follows [19]:

• Policy hit percentage. A policy is hit by a request if the pol-
icy is applicable to the request. If all the conditions in the
policy’s target are satisfied by the request, then the policy is
applicable to the request. Policy hit percentage is the number
of hit policies divided by the number of total policies.

• Rule hit percentage. A rule for a policy is hit by a request
if the rule is also applicable to the request. If the policy is
applicable to the request and all the conditions in the rule’s
target are satisfied by the request, then the policy’s rule is also
applicable to the request. Rule hit percentage is the number
of hit rules divided by the number of total rules.

• Condition hit percentage. The evaluation of the condition
for a rule has two outcomes: the true condition and false
condition. A true condition for a rule is hit by a request if the
rule is applicable to the request and the condition is evaluated
to be true. A false condition for a rule is hit by a request if the
rule is applicable to the request and the condition is evaluated
to be false. Condition hit percentage is the number of hit
true conditions and hit false conditions divided by twice the
number of total conditions.

5. TEST GENERATION
This section presents two approaches to test generation for ac-

cess control policies. The first is a simple random request genera-
tion technique and the second is a more sophisticated approach that
leverages change-impact analysis to achieve high structural cover-
age.

5.1 Random Test Generation
Because manually generating requests for testing policies is te-

dious, our previous work [19] developed a random test generation
tool for policies. The tool analyzes the policy under test and gen-
erates requests on demand by randomly selecting requests from the
set of all combinations of attribute id-value pairs found in the pol-
icy. A particular request is represented as a vector of bits. The
length of this vector is equal to the number of different attribute
values found in the policy set targets, policy targets, rule targets,
and rule conditions of the policy under test. Each attribute value
appears in the request if its corresponding bit in the vector is 1,
otherwise the value is not present.

More specifically, all possible combinations can be represented
by integers from 0 to 2n where n is the number of attribute values
found in the policy. Each request is generated by setting each bit in
the vector to 0 or 1 with probability 0.5. The number of randomly
generated requests can be configured by the user and the config-
ured number can be considerably smaller than the total number of
combinations. To construct a request from the integer i, we first
convert i to binary and use the n least significant bits as the vector
of bits that indicate the presence or absence of the possible attribute
values.

To help achieve adequate coverage with a small set of random
requests, we modified the random test generation algorithm to en-
sure that each bit was set to 1 and 0 at least once. In particular, we
explicitly set the ith bit to 1 for the first n generated requests where
i = 1, 2, ...n. Similarly, for the next n requests, we explicitly set

policies
1.version
synthesis

3. request
generation

2. change-impact 
analysis

4. request
reduction

policy
versions

counter
examples

requests

requests/
responses

Figure 2: An overview of the framework for test generation
based on change-impact analysis.

the (i − n)th bit to 0. This improved algorithm guarantees that
each attribute value is present and absent at least once as long as
the number of randomly generated requests is greater than 2n.

5.2 Test Generation via Change-Impact Anal-
ysis

To automatically generate high-quality test suites for access con-
trol policies, our previous work has developed a novel framework
based on change-impact analysis [16]. Our framework receives
a set of policies under test and outputs a set of tests in the form
of request-response pairs for developers to inspect their correct-
ness. Figure 2 is a high-level illustration of this framework. The
framework consists of four major components: version synthesis,
change-impact analysis, request generation, and request reduction.
The key notion of the framework is to synthesize two versions of
the given policies in such a way that test coverage targets (e.g., cer-
tain policies, rules, and conditions) are encoded as the differences
of the two synthesized versions. Then a change-impact analysis
tool can be leveraged to generate counterexamples to witness these
differences, thus covering the test coverage targets. The frame-
work generates tests (in the form of requests) based on the gener-
ated counterexamples. We implemented this framework in a tool
called Cirg that leverages Poco and Margrave to automatically gen-
erate test suites with high structural coverage [16].

6. TEST MINIMIZATION
The number of generated requests can be large for complex poli-

cies. In such cases it is infeasible for policy authors to inspect each
request-response pair; therefore, we need to reduce the number of
requests for inspection without incurring substantial loss in fault
detection capability.

We have defined request reduction problem [19] similar to the
test minimization problem for program testing [11]:

Given: request set QS, a set of requirements r1, r2, ..., rn that must
be satisfied to provide the desired test coverage of the policies, and
subsets of QS, Q1, Q2,..., Qn, one associated with each of the ris
such that any one of the request qj belonging to Qi can be used to
test ri.
Problem: Find a representative set of requests from QS that satisfies
all of ris.

5.3



Request
Set 1

Policy Resp

Mutant
Policy 1

Mutant
Policy N

.

.
.
.

Resp 1

Resp N

Correct
Responses

Differ?

Mutant 1
Responses

Mutant N
Responses

Mutator mutation
operators

Request
Set R

.

.

Figure 3: Overview of our framework for policy mutation test-
ing.

In the problem statement, the ris can represent policy coverage
requirements, such as covering a certain policy, a certain rule, and
a certain condition. In a representative set of requests that satisfies
all of the ris, at least one request satisfies each ri. We say a repre-
sentative set is minimal if removing any request from the set causes
the set not to be a representative set. Given a request set QS, there
can be several minimal representative sets QS′ ⊆ QS. Among
the minimal representative request sets, we could find a request set
that has the smallest possible number of requests. Finding such re-
quest tests reduces to optimization problems called “minimum set
cover” and “minimum exact cover”, respectively; these problems
are known to be NP complete, and in practice approximation algo-
rithms are used [14].

7. MUTATION TESTING
This section presents our framework for policy mutation testing.

We first introduce the general concept of mutation testing and de-
scribe mutation testing for access control policies. We then present
how to detect equivalent mutants among generated mutants. Fi-
nally, we present a set of mutation operators used by our automated
policy mutator.

Mutation testing [6] has historically been applied to general pur-
pose programming languages. The program under test is iteratively
mutated to produce numerous mutants, each containing one fault.
A test input is independently executed on the original program and
each mutant program. If the output of a test executed on a mutant
differs from the output of the same test executed on the original pro-
gram, then the fault is detected and the mutant is said to be killed.
The fundamental premise of mutation testing as stated by Geist et
al. [9] is that, in practice, if the software contains a fault, there will
usually be a set of mutants that can only be killed by a test that also
detects that fault. In other words, the ability to detect small, minor
faults such as mutants implies the ability to detect complex faults.
Because fault detection is the central focus of any testing process,
mutation testing provides an external measure of the effectiveness
of that process. The higher the percentage of killed mutants, the
more effective the test set is at fault detection.

In policy mutation testing, the program under test, test inputs,
and test outputs correspond to the policy, requests, and responses,
respectively. An overview of our framework for policy mutation

testing is illustrated in Figure 3. In the framework, we first define
a set of mutation operators, whose details are described in Sec-
tion 7.2. Given a policy and a set of mutation operators, a mutator
generates a number of mutant policies. Given a request set, we eval-
uate each request in the request set on both the original policy and
a mutant policy. The request evaluation produces two responses
for the request based on the original policy and the mutant policy,
respectively. If these two responses are different, then we deter-
mine that the mutant policy is killed by the request; otherwise, the
mutant policy is not killed.

Unfortunately, there are various expenses and barriers associated
with mutation testing. The first and foremost is the generation and
execution of a large number of mutants. For general-purpose pro-
gramming languages, the number of mutants is proportional to the
product of the number of data references and the number of data
objects in the program [20]. For XACML policies, the number of
mutants is proportional to the number of policy elements, namely
policy sets, policies, targets, rules, conditions, and their associated
attributes.

7.1 Equivalent-Mutant Detection
Cost of mutation testing also includes detection of equivalent

mutants [20]. Although there are syntactic differences between an
equivalent mutant and the program under test, the mutant is se-
mantically equivalent to the original one. In other words, the mu-
tant will produce the same result as the original one for all test
inputs and thus provides no benefit. Equivalent-mutant detection
provides a mechanism to better evaluate mutation operators and
more efficiently perform mutation testing because computational
resources will not be wasted in evaluating test inputs or compar-
ing test outputs for equivalent mutants. Detecting such mutants in
software is generally intractable [7] and historically has been done
by hand [20] but using a change-impact analysis tool such as Mar-
grave [8] allows us to detect equivalent mutants among generated
mutants. We originally believed equivalent-mutant detection to be
an important efficiency improvement though we found in practice
that evaluating requests and comparing responses to be computa-
tionally cheaper than performing change-impact analysis with Mar-
grave. Furthermore, limitations of Margrave prevented the detec-
tion of equivalent mutants for mutation operators on conditions and
some combining algorithms.

7.2 Mutation Operators
Previous studies [12, 15] have been conducted to investigate the

types and effectiveness of various mutation operators for general-
purpose programming languages; however, these mutation opera-
tors often do not directly apply to mutating policies. This section
describes the chosen mutation operators for XACML policies. An
index of the mutation operators is listed in Table 1 and their details
are described as below.

1. Policy Set Target True (PSTT). Ensure that the policy set is
applied to all requests by removing the <Target> tag of each
PolicySet element. The number of mutants created by this
operator is equal to the number of PolicySet elements with
a <Target> tag. The number of equivalent mutants created
depends on the specific policy under test.

2. Policy Set Target False (PSTF). Ensure that the policy set is
never applied to a request by modifying the <Target> tag of
each PolicySet element. The number of mutants created by
this operator is equal to the number of PolicySet elements.
The number of equivalent mutants created depends on the
specific policy under test.

5.4



Table 1: Index of mutation operators.
ID Description
PSTT Policy Set Target True
PSTF Policy Set Target False
PTT Policy Target True
PTF Policy Target False
RTT Rule Target True
RTF Rule Target False
RCT Rule Condition True
RCF Rule Condition False
CPC Change Policy Combining Algorithm
CRC Change Rule Combining Algorithm
CRE Change Rule Effect
RMPS Remove Policy Set
RMP Remove Policy
RMR Remove Rule

3. Policy Target True (PTT). Ensure that the policy is applied to
all requests simply by removing the <Target> tag of each
Policy element. The number of mutants created by this
operator is equal to the number of Policy elements with
a <Target> tag. The number of equivalent mutants created
depends on the specific policy under test.

4. Policy Target False (PTF). Ensure that the policy is never ap-
plied to a request by modifying the <Target> tag of each
Policy element. The number of mutants created by this
operator is equal to the number of Policy elements. The
number of equivalent mutants created depends on the spe-
cific policy under test.

5. Rule Target True (RTT). Ensure that the rule is applied to all
requests simply by removing the <Target> tag of each Rule
element. The number of mutants created by this operator is
equal to the number of Rule elements with a <Target> tag.
The number of equivalent mutants created depends on the
specific policy under test.

6. Rule Target False (RTF). Ensure that the rule is never ap-
plied to a request by modifying the <Target> tag of each
Rule element. The number of mutants created by this oper-
ator is equal to the number of Rule elements. The number
of equivalent mutants created depends on the specific policy
under test.

7. Rule Condition True (RCT). Ensure that the condition al-
ways evaluates to True simply by removing the condition
of each Rule element. The number of mutants created by
this operator is equal to the number of Rule elements with
a <Condition> tag. The number of equivalent mutants cre-
ated depends on the specific policy under test.

8. Rule Condition False (RCF). Ensure that the condition al-
ways evaluates to False by manipulating the condition value
or the condition function. The number of mutants created by
this operator is equal to the number of Rule elements. The
number of equivalent mutants created depends on the specific
policy under test.

9. Change Policy Combining Algorithm (CPC). Try all possible
policy combining algorithms. This high-level mutation may
change the way that various policies interact. This operator
is only meaningful if there is more than one Policy element

in the policy under test. Currently there are six policy com-
bining algorithms implemented in Sun’s XACML implemen-
tation [2] but four of these algorithms semantically reduce to
two, leaving only four policy combining algorithms, namely
deny-overrides, permit-overrides, first-applicable, and only-
one-applicable. The number of mutants created by this oper-
ator for policies with more than one Policy element is three
and zero otherwise. The number of equivalent mutants cre-
ated depends on the specific policy under test.

10. Change Rule Combining Algorithm (CRC). Try all possible
rule combining algorithms. This high-level mutation may
change the way that various rules interact. This operator is
only meaningful if there is more than one Rule element in
the policy under test. Currently there are five rule combin-
ing algorithms implemented in Sun’s XACML implementa-
tion [2] but four of these algorithms semantically reduce to
two, leaving only three rule combining algorithms, namely
deny-overrides, permit-overrides, and first-applicable. The
number of mutants created by this operator for policies with
more than one Rule element is two and zero otherwise. The
number of equivalent mutants created depends on the specific
policy under test.

11. Change Rule Effect (CRE). Invert each rule’s Effect by chang-
ing Permit to Deny or Deny to Permit. The number of mu-
tants created by this operator is equal to the number of rules
in the policy. This operator should never create equivalent
mutants unless a rule is unreachable, in which case the rule
should probably be removed.

12. Remove Policy Set (RMPS). If there is more than one PolicySet
element, then we remove each policy set in turn. The number
of created mutants is equal to the number of PolicySet el-
ements in the entire policy. This operator only creates equiv-
alent mutants if the removed PolicySet is unreachable or
redundant in which case the policy set should probably be
removed.

13. Remove Policy (RMP). If there is more than one Policy el-
ement, then we remove each policy in turn. The number of
created mutants is equal to the number of Policy elements
in the entire policy. This operator creates equivalent mutants
only if the removed Policy is unreachable or redundant, in
which case the policy should probably be removed.

14. Remove Rule (RMR). If there is more than one Rule element,
then we remove each rule in turn. The number of created
mutants is equal to the number of Rule elements in the en-
tire policy. This operator creates equivalent mutants only if
the removed Rule is unreachable or redundant in which case
it should probably be removed. (Note that we do not have
a Remove Condition (RMC) mutation operator, because this
mutation operator has the exactly same semantic as RCT.)

8. MUTATION EXPERIMENT
This section presents the experiment that we conducted to eval-

uate our policy mutator and the defined mutation operators. The
policy mutator uses the defined mutation operators to automatically
seed the policy under test with faults for generating mutant policies.
These mutant policies are then used to evaluate request sets to de-
termine the mutant-killing ratios. This process provides a measure
of quality for each request set in terms of fault-detection capabil-
ity. Because two of these request sets are generated based on the

5.5



structural coverage of the policy, we can find correlations between
structural coverage and fault-detection capability. We first describe
the experiment’s objective and measures as well as the experiment
instrumentation. We then present and discuss the experimental re-
sults and finally describe threats to validity.

8.1 Objective and Measures
The objective of the experiment is to investigate the following

questions:
1. How strong is the correlation between structural coverage

and fault-detection capability? More specifically, does test
selection based on structural coverage criteria produce re-
quest sets with high fault-detection capability?

2. What are the individual characteristics of each mutation op-
erator? Are some more difficult to kill than others? Are some
easily killed by request sets selected based on structural cov-
erage criteria?

To help answer these questions, we collect several metrics to
compare the request generation techniques based on change-impact
analysis, random request generation, and the minimized random re-
quest set based on structural coverage. The following metrics are
measured for each policy under test, each request set, and each mu-
tation operator.

• Policy hit percentage. The policy hit percentage or policy
coverage is the number of policies involved in evaluating the
request set divided by the total number of policies.

• Rule hit percentage. The rule hit percentage or rule coverage
is the number of rules involved in evaluating the request set
divided by the total number of rules.

• Condition hit percentage. The condition hit percentage is the
number of conditions involved in evaluating the request set
divided by two times of the total number of conditions.

• Test count. The test count is the size of the request set or
the number of tests generated by the chosen test-generation
technique. For testing access control policies, a test is syn-
onymous with request.

• Reduced-test count. Given a policy and the generated set of
requests, the reduced test count is the size of the reduced
request set based on policy coverage.

• Mutant-killing ratio. Given a request set, the policy under
test, and the set of generated mutants, the mutant-killing ratio
is the number of mutants killed by the request set divided by
the total number of mutants.

Intuitively a set of requests that achieve higher policy coverage
are more likely to reveal faults. This notion is easy to understand
because a fault in a policy element that is never covered by a re-
quest would never contribute to a response and thus a fault in that
element cannot possibly be revealed. There is a direct correlation
between the test count and the test evaluation time because a large
request set would take longer to evaluate than a smaller set. Fur-
thermore, a low test count is highly desirable because the request-
response pairs may need to be inspected manually to verify that the
policy specification exhibits the intended policy behavior. An ideal
request set should have a low test count, high structural coverage,
and high fault-detection capability.

8.2 Instrumentation
In the experiment, we used the policy mutator for generating mu-

tants, the Cirg tool for test generation [16] based on change-impact
analysis, a random request generation tool [19], a policy coverage
measurement tool [19] for test selection, and Margrave [8] for lim-
ited equivalent-mutant detection.

Table 2: Policies used in the experiment.
Subject # PolSet # Pol # Rule # Cond
codeA 5 2 2 0
codeB 7 3 3 0
codeC 8 4 4 0
codeD 11 5 5 0
conference 0 1 15 0
default-2 1 13 13 12
demo-11 0 1 3 4
demo-26 0 1 2 2
demo-5 0 1 3 4
mod-fedora 1 13 13 12
simple-policy 1 2 2 0

We collected policies from several sources as subjects in our ex-
periment. Each policy is preprocessed to ensure unique policy el-
ement identifiers in order to correctly measure structural coverage.
Once each policy has been preprocessed, we can apply a request
generation technique to generate tests. We compare three requests
sets. The first one is generated by Cirg based on change-impact
analysis. The second one is randomly generated. The third one is
actually a subset of the second greedily selected to ensure equiva-
lent structural coverage.

The random test generation technique requires only the complete
policy. The technique parses the policy and enumerates all possible
attribute id-value pairs. This set is represented as a vector of bits
and each bit is randomly set to 0 or 1, which indicates the absence
or presence of the corresponding attribute id-value pair in the gen-
erated request as described in Section 5.1. We generate exactly 50
random requests for each subject. Finally, we greedily select re-
quests from this set based on structural coverage. Doing so allows
us to directly measure the reduction in fault detection capability
when selecting requests based on structural coverage.

The test generation technique based on change-impact analysis
uses only one of the variants of version synthesis described in our
previous work [16]. The policy versions are essentially equiva-
lent to the mutants generated with the CRE operator. We use Mar-
grave’s API to perform a change-impact analysis on the original
policy and each of the policy versions. Based on the counterex-
amples produced by Margrave, the request generator generates re-
quests. Exactly one request is generated from each version.

We used 11 XACML policies collected from three different sources
as subjects in our experiment. Table 2 summarizes the basic statis-
tics of each policy. The first column shows the subject names.
Columns 3-5 show the numbers of policy sets, policies, rules, and
conditions, respectively. The conference1 policy is a slightly
modified version of the policy used by Zhang et al. [22]. The
<Condition> tags were removed so Sun’s XACML implemen-
tation could evaluate the requests. This policy relies on custom
functions implemented in the PDP that interact with a database
at runtime for request evaluation. Sun’s XACML implementation
supports only the standard functions and so it failed to evaluate re-
quests properly. Once the relevant conditions were removed from
the policy, requests were evaluated successfully. Although these
modifications changed the semantics of the policy, it is structurally
similar and thus suitable for the experiment. Five of the policies,
namely simple-policy, codeA, codeB, codeC, and codeD are

1http://www.cs.bham.ac.uk/˜mdr/research/
projects/05-AccessControl/

5.6



0

10

20

30

40

50

60

70

80

90

100

co
deA

co
deB

co
deC

co
deD

co
nfer

en
ce

defa
ult-2

dem
o-11

dem
o-26

dem
o-5

mod-fe
dor

a

sim
ple-

polic
y

M
ut

an
t-K

ill
in

g 
R

at
io

s
Cirg Random Selected Random

Figure 4: Mutant-killing ratios for all operators by subjects.

examples used by Fisler et al. [8, 10]. The remaining policies are
examples of real XACML policies used by Fedora2. Fedora is an
open source software that gives organizations a flexible service-
oriented architecture for managing and delivering digital content.
Fedora uses XACML to provide fine-grained access control to the
digital content it manages. The Fedora repository of default and
example XACML policies provided a useful resource of realistic
subjects.

8.3 Results
Table 3 summarizes the structural coverage metrics for each pol-

icy and each request set. We do not show the minimized random
request set because it has equivalent coverage as its superset. Each
row of the table corresponds to a particular policy and each column
group corresponds to a request set. Within each column group, we
show the policy, rule, and condition coverage percentages. N/A in-
dicates that there are no policy elements of that type and thus cov-
erage cannot be computed. Both test generation techniques achieve
100% policy coverage for almost all subjects because it is the most
coarse measure of structural coverage. Cirg achieves only 50%
condition coverage because the generation technique does not at-
tempt to evaluate the condition as true and false but merely covers
the condition’s rule once. However, for policy and rule elements,
Cirg is at least as good as random generation at achieving high
structural coverage.

Figure 4 illustrates the average mutant-killing ratios for each re-
quest set grouped by subjects. By comparing these results with
those in Table 3, we observe that there is indeed a correlation be-
tween structural coverage and fault detection capability. One ex-
ample is the conference policy; the structural coverage for the two
random request sets is zero and, as expected, the mutant-killing ra-
tio is also zero. Similarly we observe that the mutant-killing ratios
across all subjects for the random and selected random request sets
are quite similar. Unfortunately the mutant-killing ratio is still low
when considering the high structural coverage. The observation in-
dicates that a stronger criteria is needed. Specifically the average
mutant-killing ratios for the Cirg, Random, and Selected Random
request sets are 59%, 47%, and 38%, respectively.

Figure 5 illustrates the average mutant-killing ratios for each re-
quest set grouped by mutation operators. Recall that the CPC and
CRC mutation operators exploit the way that various policies and

2http://www.fedora.info

0

10

20

30

40

50

60

70

80

90

100

PSTT
PSTF PTT

PTF
RTT

RTF
RCT

RCF
CPC

CRC
CRE

RMPS
RMP

RMR

M
ut

an
t-K

ill
in

g 
R

at
io

s

Cirg Random Selected Random

Figure 5: Mutant-killing ratios for all subjects by operators.

various rules interact, respectively. These mutation operators have
less than 11% mutant-killing ratios. The observation indicates that
these operators produce mutants that are particularly difficult to
kill. Conversely, RMPS, PSTF, and PSTT have over 60% killing ra-
tios, and RMR, RTF, CRE, PTF, RMP, RCF, and PTT have at least
90% killing ratios. By inspecting the results, we found that some of
these mutation operators are redundant. For example, RMPS and
PSTF have identical killing ratios across all request sets. This ob-
servation indicates that these two operators are semantically equiv-
alent. Similar results are observed for the pairs of RMP-PTF and
RMR-RTF. In retrospect, these mutation operators should be se-
mantically equivalent because a target that is always evaluated to
false is semantically equivalent to removing the element that the
target applies to.

We provided the original policy and each mutant policy to Mar-
grave’s change-impact analysis feature to perform equivalent-mutant
detection. If Margrave finds counter-examples that illustrate dif-
ferences between the policies, then they must not be equivalent.
Unfortunately Margrave supports only a subset of XACML fea-
tures; therefore, the converse does not hold, resulting in potential
false positives. In other words, if Margrave does not find counter-
examples for a particular mutant, then the mutant may or may not
be equivalent. In our experiment, Margrave identified less than 1%
of all mutants as potentially equivalent. Furthermore, these po-
tentially equivalent mutants occurred only for the CPC and CRC
mutation operators. Performing equivalent mutation detection is
costly, taking approximately 45 minutes for the whole experiment.
When considering the low percentage of detection, potential for
false positives, and high computational cost, we feel other means
of equivalent mutant detection are needed.

In summary, the results indicate that although structural coverage
is indeed correlated to fault-detection capability, structural cover-
age is not strong enough to achieve an acceptable level of fault
detection. Note that the structural coverage investigated in this ex-
periment is essentially equivalent to statement coverage in general-
purpose programming languages. In future work, we plan to inves-
tigate stronger criteria that correspond to path coverage. We expect
these stronger criteria to be much more effective at achieving higher
killing ratios. Similar to the findings in mutation testing of general-
purpose programming languages, we found that equivalent-mutant
detection is expensive and some mutation operators are redundant,
indicating a subset of mutation operators may be sufficient for mu-
tation testing.

5.7



Table 3: Structural coverage achieved by each request set.
Random Request Set Cirg

Subject Pol % Rule % Cond % # Req # Min Req Pol % Rule % Cond % # Req
codeA 100 100 N/A 50 2 100 100 N/A 2
codeB 100 100 N/A 50 3 100 100 N/A 3
codeC 100 100 N/A 50 6 100 100 N/A 4
codeD 100 100 N/A 50 6 100 100 N/A 5
conference 0 0 N/A 50 0 100 100 N/A 15
default-2 100 92.31 75 50 6 100 100 50 13
demo-11 100 100 75 50 2 100 100 50 2
demo-26 100 100 50 50 1 100 100 50 2
demo-5 100 100 75 50 3 100 100 50 3
mod-fedora 100 84.62 58.33 50 7 84.62 84.62 33.33 11
simple-policy 100 100 N/A 50 4 100 100 N/A 2

8.4 Threats to Validity
The threats to external validity primarily include the degree to

which the subject policies, mutation operators, coverage metrics,
and test sets are representative of true practice. These threats could
be reduced by further experimentation on a wider type and larger
number of policies and an larger number of mutation operators. In
particular, lower level mutation operators are needed to operate on
the subject, resource, and action attributes found in various policy
elements. Currently the proposed mutation operators operate only
on higher level policy elements. The threats to internal validity
are instrumentation effects that can bias our results such as faults
in Sun’s XACML implementation, faults in Margrave’s API and/or
its limitations, as well as faults in our own policy mutator, policy
coverage measurement tool, and request generators.

9. PROPERTY INFERENCE
Again our primary objective is to efficiently identify discrepan-

cies between the policy specification and the true desires of the pol-
icy authors. In other words, we wish to reveal faults in the policy
specification. We help a user identify these discrepancies or bugs
by finding specific requests that are likely bug-exposing. We first
observe the policy’s behavior by probing it with several automati-
cally generated requests. These observations are used as input, in
the form of request-response pairs, to a particular class of machine
learning algorithms called classification learning. The output of the
machine learning algorithms is essentially a summary of the policy
in the form of inferred properties that may not be true for all re-
quests but are true for most requests. We do not wish to recreate the
policy in its entirety through these inferred properties but merely
capture the general policy behavior in order to help identify special
cases. The rationale is that the policy specification is mostly correct
and that the bug-exposing requests represent a small percentage.
Under this rationale, any request that violates the inferred proper-
ties are special cases or requests that result in responses that deviate
from the policy’s normal behavior. These special cases are identi-
fied as being likely bug-exposing and warrant manual inspection.
We have integrated Sun’s XACML implementation [2] and a col-
lection of machine learning algorithms for data mining tasks [21]
into a tool that implements our approach through request genera-
tion, request evaluation, and policy property inference.

We infer policy properties by applying machine learning on request-
response pairs. Our current tool leverages Weka [21], a collection
of machine learning algorithms for data mining tasks. Weka con-
tains tools for pre-processing, classification, regression, clustering,
association rules, and visualization. In general, data mining is de-

fined as the process of discovering patterns in data such as explicit
knowledge structures (i.e., structural descriptions) [21].

In our research context, we are mostly interested in the knowl-
edge structures acquired as a mechanism to infer general and not
necessarily universally true properties of the policy. Machine learn-
ing techniques are frequently used to gain insight into the structure
of their data rather than to make predictions for new cases [21].
We use knowledge structures generated from a genre of machine
learning algorithms called classification learning to summarize the
results of request-response pairs thereby expressing the policy in a
different and often more concise way.

As requests are evaluated against the policy, our tool appends
relevant information about the request-response pairs to a data file
in a particular format being used as training data for Weka [21].
Weka mines the request-response pairs to find and describe struc-
tural patterns. These structural patterns are described in the form
of rules or properties that are simple conditional expressions or
properties that classify requests into four response types: Permit,
Deny, NotApplicable, and Indeterminate. These rules are
useful for manual inspection and for identifying corner cases. Be-
cause the rules produced by the classification learning algorithms
are statistically true, it is likely of interest to the user to inspect the
requests that violate those rules. If violating requests exist in the
training data, then they are identified by Weka as misclassified in-
stances. If no violating request has been generated by the request
factory, then it is possible to translate the rule into a property and
use an existing property verification tool [8, 13, 23] to generate a
request or set of requests that violate the inferred property.

9.1 Preliminary Results
We applied our tool on an access control policy of a central

grades repository system for a university, which was earlier used
by Fisler et al. [8] to illustrate policy verification. Because the pol-
icy defines small, finite sets of subjects, resources, and actions, we
use the AllComboReqFactory to generate the entire set of possi-
ble requests. With 3 subjects, 2 resources, and 2 actions, the re-
quest factory generated 27 = 128 different requests. Unfortunately
56 of the combinations produced invalid requests that resulted in
Indeterminate responses, 54 evaluated to NotApplicable re-
sponses, 10 evaluated to Deny responses, and 8 evaluated to Permit
responses.

We used the Prism classification algorithm [4] to generate rule
sets using two different sets of training data. The first set used the
output from all 128 requests. In the second set we removed all in-
stances with the response of Indeterminate or NotApplicable.
Although the performance of the partial data set appears similar to

5.8



1.1 If Faculty = 1
and (Receive = 1 or Assign = 1)
and (ExternalGrades = 1 or InternalGrades = 1)
then Permit

1.2 If Student = 1
and Receive = 1
and ExternalGrades = 1 then Permit

1.3 If Student = 1
and Assign = 1
and ExternalGrades = 1 then Deny

1.4 If True then Deny

Figure 6: Rules in the actual XACML policy.

2.1 If Faculty = 1 then Permit
2.2 If Student = 1

and InternalGrades = 0
and Receive = 1 then Permit

2.3 If TA = 1 then Deny
2.4 If Student = 1

and InternalGrades = 1 then Deny
2.5 If Student = 1

and Receive = 0 then Deny

Figure 7: Rules generated by the Prism classification algorithm
on the partial data set.

that of the full data set, the number of rules is smaller and more
relevant for the partial data set. The full data set produces 30 rules
whereas the partial data set produces the 5 rules shown in Figure 7.

For comparison purposes, we have translated the rules in the ac-
tual XACML policy to the form shown in Figure 6. By comparing
Figure 6 and Figure 7, we see that the inferred properties do indeed
summarize the policy. However, because there are misclassified
instances, we know that the inferred properties are not universally
true. Note that Rules 6.1 and 6.2 are equivalent to Rules 7.1 and 7.2,
respectively. Rules 7.4 and 7.5 are intuitively correct because a
student should not have access to internal grades or have assign
permissions for any resource.

An error in the policy specification was discovered after we in-
vestigated the misclassified requests. Recall that those misclassi-
fied requests represent instances in which the policy produces re-
sponses that are inconsistent with the responses of similar requests.
The rationale is that these special cases are likely bug-exposing re-
quests. The request in question is one in which a Student wishes
to Receive and Assign the resource of ExternalGrades. The
classification model correctly classifies the response as Deny but
the policy evaluates the request to Permit. The policy authors did
not intend for a student to have permissions to assign their own
grade as shown by Rule 6.3. This error is the same discrepancy
found by Fisler et al. [8], which is a result of a subtlety of the
XACML language. The root cause of the problem is that XACML
allows an arbitrary number of values for a given attribute. This ex-
ample illustrates that the investigation of misclassified requests can
lead to the discovery of errors in policy specifications.

This simple example has shown that even with a small number of
request-response pairs, machine learning can be a valuable tool for
discovering and summarizing the basic properties of a policy. We
suspect that its value and power will increase as the complexity and
size of the policy grows because the inferred properties can sum-
marize and aggregate the complex rules specified in the expressed
policy. Further experimentation with a broader range of classifica-
tion algorithms on large, complex policies is still required in future
work to further assess the approach.

10. CONCLUSION
We have developed several tools that contribute to a framework

toward systematic policy testing. We have defined policy coverage,
implemented a tool to measure it, and used it as a criteria for test

selection. We have developed a random test generation technique
as well as more complicated techniques based on change-impact
analysis. We have evaluated the test generation and selection tech-
niques in terms of structural coverage and fault detection capability.
We have developed an automated mutation testing framework for
access control policies. In this framework, we have defined a set
of mutation operators. We have implemented a mutator that gen-
erates a number of mutant policies based on the defined mutation
operators. We evaluate each request in a given request set on both
the original policy and a mutant policy. The request evaluation pro-
duces two responses for the request based on the original policy
and the mutant policy, respectively. If these two responses are dif-
ferent, then we determine that the mutant policy is killed by the
request. We have also leveraged a change-impact analysis tool to
detect equivalent mutants among generated mutants. We have con-
ducted an experiment on various XACML policies to evaluate the
mutation operators as well as request generation and selection tech-
niques in terms of fault-detection capabilities. Our experimental re-
sults show that although structural coverage is a strong indicator of
fault-detection effectiveness, it is far from optimal. The shortcom-
ings of test selection based on structural coverage are highlighted
by mutation operators that exploit how different policy elements
interact. Moreover, careful test generation and selection techniques
can substantially reduce the size of the test suite while incurring a
relatively low loss of fault-detection capability. Finally we present
an approach to policy property inference via machine learning and
some preliminary results of the application of the technique on an
access control policy. The results indicate that machine learning
can be a valuable tool for discovering and summarizing the ba-
sic properties of a policy although further experimentation with a
broader range of classification algorithms on larger, more complex
policies is still required to further assess the approach.

11. ACKNOWLEDGMENTS
We would like to thank Ting Yu for discussions that help improve

the work described in this paper.

12. REFERENCES
[1] OASIS eXtensible Access Control Markup Language

(XACML). http:
//www.oasis-open.org/committees/xacml/,
2005.

[2] Sun’s XACML implementation.
http://sunxacml.sourceforge.net/, 2005.

[3] A. Anderson. XACML 1.1 committee specification
conformance tests. http://www.oasis-open.org/
committees/xacml/ConformanceTests/, 2002.

[4] J. Cendrowska. Prism: An algorithm for inducing modular
rules. International Journal of Man-Machine Studies,
27(4):349–370, 1987.

[5] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The
Ponder policy specification language. In Proc. International
Workshop on Policies for Distributed Systems and Networks,
pages 18–38, 2001.

[6] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test
data selection: Help for the practicing programmer. IEEE
Computer, 11(4):34–41, April 1978.

[7] R. A. DeMillo and A. J. Offutt. Constraint-based automatic
test data generation. IEEE Trans. Softw. Eng.,
17(9):900–910, 1991.

[8] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.
Tschantz. Verification and change-impact analysis of

5.9



access-control policies. In Proc. 27th International
Conference on Software Engineering, pages 196–205, 2005.

[9] R. Geist, A. J. Offutt, and F. Harris. Estimation and
enhancement of real-time software reliability through
mutation analysis. IEEE Transactions on Computers,
41(5):55–558, 1992.

[10] M. M. Greenberg, C. Marks, L. A. Meyerovich, and M. C.
Tschantz. The soundness and completeness of Margrave with
respect to a subset of XACML. Technical Report CS-05-05,
Department of Computer Science, Brown University, 2005.

[11] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for
controlling the size of a test suite. ACM Trans. Softw. Eng.
Methodol., 2(3):270–285, 1993.

[12] M. Hennessy and J. F. Power. An analysis of rule coverage as
a criterion in generating minimal test suites for
grammar-based software. In Proc. 20th IEEE/ACM
International Conference on Automated Software
Engineering, pages 104–113, November 2005.

[13] G. Hughes and T. Bultan. Automated verification of access
control policies. Technical Report 2004-22, Department of
Computer Science, University of California, Santa Barbara,
2004.

[14] D. S. Johnson. Approximation algorithms for combinatorial
problems. J. Comput. System Sci., 9:256–278, 1974.

[15] Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation
operators for Java. In Proc. International Symposium on
Software Reliability Engineering, pages 352–363, 2002.

[16] E. Martin and T. Xie. Automated test generation for access
control policies via change-impact analysis. In Under
Submission. http://www.csc.ncsu.edu/faculty/
xie/publications/cirg.pdf.

[17] E. Martin and T. Xie. Automated mutation testing of access
control policies. In Submitted to the 22nd IEEE Interational
Conference on Software Maintenance (ICSM 2006),
September 2006.
http://www.csc.ncsu.edu/faculty/xie/
publications/policymutation.pdf.

[18] E. Martin and T. Xie. Inferring access-control policy
properties via machine learning. In Proc. of International
Workshop on Policies for Distributed Systems and Networks
(POLICY 2006), June 2006.

[19] E. Martin, T. Xie, and T. Yu. Defining and measuring policy
coverage in testing access control policies. In Submitted to
the IEEE/ACM Interational Conference on Automated
Software Engineering (ASE 2006), 2006.
http://www.csc.ncsu.edu/faculty/xie/
publications/xacmlcov.pdf.

[20] J. Offutt and R. H. Untch. Mutation 2000: Uniting the
orthogonal. In Mutation 2000: Mutation Testing in the
Twentieth and the Twenty First Centuries, pages 45–55,
October 2000.

[21] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2005.

[22] N. Zhang, M. Ryan, and D. P. Guelev. Synthesising verified
access control systems in XACML. In Proc. 2004 ACM
workshop on Formal Methods in Security Engineering, pages
56–65, 2004.

[23] N. Zhang, M. Ryan, and D. P. Guelev. Evaluating access
control policies through model checking. In Proc. 8th
International Conference on Information Security, pages
446–460, September 2005.

[24] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test
coverage and adequacy. ACM Comput. Surv., 29(4):366–427,
1997.

5.10


