Towards Automatically Creating Test Suites
from Web Application Field Data

Sara Sprenkle, Emily Gibson, Sreedevi Sampath, and Lori Pollock
Computer and Information Sciences
University of Delaware
Newark, DE 19716
{sprenkle, gibson, sampath, pollocki@cis.udel.edu

ABSTRACT

Creating effective test cases is a difficult problem, esplcfor
web applications. To comprehensively test a web applin&tio
functionality, test cases must test complex applicatiatestiepen-
dencies and concurrent user interactions. Rather thatingeast
cases manually or from a static model, field data provideman i
expensive alternative to creating such sophisticatecctesgts. An
existing approach to using field data in testing web appboatis
user-session-based testing. However, previous usepsdsased
testing approaches ignore state dependences from malttinisr-
actions. In this paper, we propose strategies for levegagieb
application field data to automatically create test cassséist var-
ious levels of multi-user interaction and state dependsndresults
from our preliminary case study of a publicly deployed weplap
cation show that these test case creation mechanisms awengspr
ing testing strategy for web applications.

1. INTRODUCTION

After deployment, web applications frequently undergo mai
tenance to fix bugs, add functionality, and improve perforoea
Thoroughly and efficiently testing web applications in a viagt
mimics user interactions is crucial to ensure existing igpfibn
functionality has not been affected by maintenance changfith
the prevalent use of web applications to conduct daily tassin
even partial functionality loss can cost businesses mitliof dol-
lars per hour [10].

Capture/replay of field data is an approach to testing that em
ulates real usage. In web application testing, user regjuest,
URLs and associated data, are captured and replayed. Aeite f
the primary advantage of ensuring that configuration andiapp
tion code changes have not adversely affected the appiicatie-
havior, other benefits include reproducing failures causedser
input [12] and prioritizing bug fixes based on commonly aseés
code [8]. For web applications, field data has the additiauhl
vantage of being cheap to obtain (compared with other aquic
domains [12]) and very portable because the usage dataeigénd
dent of the underlying implementation and server techrietog

User-session-based testing—a specific type of captutayrep
is a complementary approach to traditional testing. In-session-
based testing, a tester captures accesses during deployonee-
ate user sessions, which are then replayed as test casetveiy,

a user sessiors a single user’s interaction with the application.
Elbaum et al. [6] first studied leveraging field data for usession-
based testing of web applications. They showed that ussiese
based test cases were nearly as effective at exposing éaut®se

Proceedings of MASPLAS'06 Mid-Atlantic Student Workshop Bro-
gramming Languages and Systems Rutgers University, Ari2Q06.

6.1

generated by Ricca and Tonella’s more expensive modebdtsse
proaches [13]. In addition to comparing user-sessionasel
model-based test cases, Elbaum et al. [6] proposed a teshtoq
generate additional test suites by splitting and mergirey 88s-
sions. They found that the synthesized test suites weresreftec-
tive as user sessions. As a result of our recent work [15], are ¢
explain this result because the authors manipulated ussioss
without accounting for application state, which affectplagation
behavior.

During our studies of web application testing with varioys a
plications, we found limitations in user sessions as tes¢gathe
limitations stem from users sharing application state.c8igally,
existing user-session-based testing techniggresre multi-user in-
teractionsand, thuslose necessary application state dependencies
In this paper, we propose leveraging field data beyond ussis®s
to generate test cases, which apose different application be-
haviors By expanding test cases to include multi-user interastion
and accounting for state dependences during replay, theasss
more closely represent actual application usage. Our nealistic
test cases and replay will cover different code and expdéerdi
ent faults than traditional user sessions. In addition piteposed
test case creation mechanisms allow testers to tailontegiimeet
their goals and localize bugs.

The main contributions of this paper for web applicatiores ar

e apresentation of the limitations of user sessions in reptes
ing actual application usage,

e three new automatic test case generation and replay strate-
gies: partition by fixed time blocks, partition by serverdgna
tivity threshold, and augmented user sessions, and

e a case study of the test case generation strategies for a pub-
licly deployed web application.

We describe user-session-based testing and its limitaitioBec-
tion 2. In Section 3, we present strategies for automagicgher-
ating test cases from field data. Section 4 presents the dwtgy
for our case study, and in Section 5, we describe and andlgzet
sults of our study. Finally, in Section 6, we present our dagions
and directions for future research.

2. USER-SESSION-BASED TESTING

We first present the limitations of user-session-baseadhteand
describe why current user-session-based testing teasigay not
be sufficient for testing web applications.

Suppose that we partition a captured log into user sessimhs a
replay those user sessions, as proposed by Elbaum et aE46h
test case is a user session, whergsar sessiolis a collection of

user requests in the form of URL and name-value pairs. To gen-
erate user sessions, we use session cookies as identifienstia
cookies are available in the log. Otherwise, we say that aaese
sion begins when a request from a new IP address reaches\he se
and ends when the user leaves the web site or the sessiorotitnes

In our work, we consider a 45-minute gap between two requests
from a user equivalent to a session timing out.

By partitioning the log into user sessions, we have created t
cases that are easy to replay because there is only one ssg&r's
sion state to maintain, we have isolated each user’s actions
other users, and each test case represents a single useokthe
application, i.e., an application use case. Test casesplayed
sequentially, ordered by the timestamp of their first retpuel a
test case exposes a fault, debugging will focus on a singlesus
requests—rather than the entire log—to locate the fault.

Because the user session contains the requests of a siegle us
user-session partitioning loses multi-user interactibasoccurred
during deployment. A user may affect the shared applicatiate—
and thus the behavior of other users. For example, considesce-
nario where two users are simultaneously accessing a lmyekst
The following sequence of events appear in the captured log:

Userl: search for Steve MartinBure Drivel

User2: buy last copy ofPure Drivel

Userl: attemptto buyPure Drivel

Userl: since book is on backorder and the user wants
to buy a book as a gift, search for other Steve
Martin books

Userl: buy Shopgirl

In user-session-based testing, the above log is partdtiame
two test cases that represésgerl andUser2. The test case de-
rived from Userl replays first and will findPure Drivel is still
available but will still purchas&hopgirl The test suite may not
execute the special code that handles books on backorder.

Suppose instead that we replay logs exactly as capturede€tur
case is the entire captured log and exercises the backqrpkca
tion code. While this replay strategy may be more intuitivart
replaying user sessions, it introduces some complexitythe im-
plementation. One could replay each request as if it ortgahtrom
one user, but that implementation also does not accuraséigct
the captured behavior. Instead, we need to identify theasting
user for each request (similar to parsing the user sessiodsnake
the request on behalf of the user while maintaining sessaia for
each user. When we replay the requests in log order, thetsesul
more closely emulate the captured behavior of the apptinati

Besides the direct influence of users on the behavior of sther
users also affect the dynamically generated parametey ahieh
in turn affects replay. A common approach to maintain statess
a user’s requests is to pass data as a parameter in the URIn Whe
the parameter values are dynamically generated and depethe o
order users access the site, replaying the user requests tmgf
order—as in user-session based testing—uwill not represetngl
usage. However, out-of-order execution may cover erroe aud
less frequently used code.

An example of the effect on dynamically generated parameter
data can be seen in order numbers from our bookstore appficat
Returning to our bookstore example, the application maigasn
order number to each user. Instead of looking up the custemer
order in the database, the order number is passed as a paramet
e.g., “orderno=XXXX", thus acting as a cache. The applmatan
then use the passed order number to process the purchasstrequ
SinceUser2 purchases a book first, her order number is 0001, and
Userl's order number is 0002. The order numbers are recorded

6.2

as URL parameters in the log. When replaying the user session
as test cased)serl is assigned the order number first (0001), but
the assigned value (0001) will not correspond to the orderbar
encoded in the URL (0002). Unless we fix the user sessionseefo
replay, which may be difficult or cumbersome with large testes,

the user-session-based test suite will exercise the eode that
handles the mismatched order numbers, instead of the cade ha
dling correct order submissions. Replaying the capturgdwil
exercise the application as during deployment in this exxafp

As we illustrated in these two examples, replaying in logeord
captures an application’s deployed behavior closely. Hewehe
replay may not duplicate the deployed behavior becauseffef-di
ences in the timing of incoming requests, the configuratiothe
system (e.g., not sending email in the testing environmezit).
Furthermore, if we encounter a bug during replay, it is maffe d
cult to identify the bug’s root cause because of the log's siad
the interaction between multiple users. Since deployediapp
tions can log gigabytes of accesses in a day and the logkatg li
repetitive because users access the application similaeyheed
to reduce the size of the suite, thus reducing test case daday
and improving test efficiency.

In summary,a tester probably wants both types of test cases—
test cases that expose faults with respect to one user arid fau
caused by interaction between users—because the testwédkes
exercise the application in different wayBhe primary advantages
of partitioning into user sessions is that test cases reptabe
application’s use cases and isolate the user’s requests dtber
users’ requests, which facilitates debugging. However-gession
partitioning does not emulate multi-user interactionsamdie dy-
namically generated parameter data. Alternatively, reptathe
recorded log captures multi-user interactions but makésairitder
to locate bugs. In the next section, we describe our stregeigr
generating test cases that address these disadvantages.

3. STRATEGIES FOR GENERATING MULTI-
USER TEST CASES

A test strategy is an algorithm or heuristic used to create te
cases from a representation, an implementation, or a tedsIrf&].
Techniques have been proposed to generate test cases &tien st
models of a web application [1, 9, 4, 11, 13]. In this sectior,
present three different strategies to create test casesdpture
multi-user interactions from field datior web applications. The
test cases are expected to (1) represent logical user sesEi@s
to target functionality and usage patterns as experiengagjtica-
tion users, (2) be cost-effective to replay and manageaktierms
of overhead involved in maintaining and executing eachdase,
and (3) be effective in terms of program coverage and faucde
tion capabilities.

Throughout this section, we will use Figure 1 to illustrate t
differences between test case generation strategiesteFigia) is
the captured web server log, with userserl, user2, user3and
userdaccessing the application. Partitioning by user sessass,
described in the previous section, creates the test casesish
Figure 1 (b). In the remainder of the paper, we will refer tis th
approach as BERSESSIONS

!Handling nondeterministic parameter values is an areatafdu
research. One approach is to modify the application undertaoe
generate the values deterministically and test the nondétistic
code independently.

Time User: Request Test Case 1 Test Case 1 Test Case 1 Test Case 1 Test Case 3

00:01 userl: home.jsp 00:01 userl: home.jsp 00:01 userl: home.jsp 00:01 userl: home.jsp 00:05 user3: home.jsp
00:01 userl: home.jsp 00:02 userl: browse.jsp 00:02 userl: browse.jsp 00502 userli browse.jsp 00502 userli browse.jsp 00309 user23 browse jsp
00:02 userl: browse.jsp 00:04 userl: shop.jsp 00:03 user2: home.jsp 00:03 user2: home.jsp 00:03 user2: home jsp 00:18 user4: home.jsp
00:03 user2: home.jsp 00:30 userl: login.jsp 00:04 userl: shop.jsp 00:04 userl: shop.jsp 00:04 userl: shop.jsp 00:22 user3: browse.jsp

00:05 user3: home.jsp 00:05 user3: home.jsp 00:23 user3: shop.jsp

00:04 userl: shop.jsp 00:05 user3: home.jsp

00:05 user3: home.jsp
00:09 user2: browse.jsp
00:18 user4: home.jsp
00:22 user3: browse.jsp
00:23 user3: shop.jsp

Test Case 2

00:03 user2: home.jsp
00:09 user2: browse.jsp
00:32 user2: browse.jsp
00:33 user2: shop.jsp

00:09 user2: browsejsp 00:29 user4: browse.jsp
00:18 user4: home.jsp 00:30 userl: login.jsp
00:22 user3: browse.jsp 00:31 user3: login.jsp
00:23 user3: shop.jsp

00:29 user4: browse.jsp

00:30 userl: login.jsp

00:09 user2: browse.jsp

Test Case2
00:18 user4: home.jsp

Test Case2
00:09 user2: browse.jsp

Test Case 3

Test Case 3 00:18 user4: home.jsp

00:29 usera: browse.jsp Test Case 3 00:22 user3: browse.jsp Test Case 4 Test Case2 Test Case 4

00:30 userl: login.jsp ! : T
in.J . . l . . > :04 1: shop., : N .

00:31 user3: login.jsp 00:22 user3: browse.jsp 00:29 user4: browse.jsp 00:23 user3: shop.jsp 00:04 userl: shop.jsp 00:22 user3: browse.jsp

00:05 user3: home.jsp 00:23 user3: shop.jsp

00:09 user2: browse.jsp gggg 32:;‘1‘ Ihggi\ﬁsebjsp
00:31 user3: login.jsp

00:23 user3: shop.jsp
00:31 user3: login.jsp

Test Case 4

Test Case 4
00:30 userl: login.jsp
00:31 user3: login.jsp

00:32 user2: browse.jsp
00:33 user2: shop.jsp
00:35 user4: shop.jsp

Test Case 5
00:29 user4: browse.jsp
00:30 userl: login.jsp

00:18 user4: home.jsp
00:22 user3: browse.jsp

. loain i : : Jj : : j . loain i . . P 00:32 user2: browse.jsp

00:36 user4: login.jsp 00:18 user4: home.jsp 00:32 user2: browse.jsp 00:31 user3: login.jsp 00:23 user3: shop.jsp : : g
00:29 usera: browse.jsp 00:33 user2: shop.jsp 00:32 user2: browse.jsp 00:29 user4: browse.jsp %%%?é tﬁzﬁi iﬂg@ﬁg
00:35 userd: shop.jsp 00:35 userd: shop.jsp 00:33 user2: shop.jsp 00:30 userl: login.jsp 00:36 user4: login.jsp

00:36 user4: login.jsp 00:36 user4: login.jsp 00:35 user4: shop.jsp

00:36 user4: login.jsp

00:31 user3: login.jsp
00:32 user2: browse.jsp
00:33 user2: shop.jsp

(a) Captured Log (b) User Sessions (c) Fixed Time Blocks

(d) Server Inactivity Threshold (d) Augmented User Session

| } ‘
| ! ‘
| ! ‘
| ! ‘
| ! |
| ! ‘
| ! ‘
| ! |
| ! ‘
| ! |
| ! |
| ! ‘
| ! ‘
| ! |
| ! ‘
| ! ‘
| ! |
| ! |
| ! |
| ! ‘
| ! |
| ! ‘
! | |
| i i | R . i . . f
00:05 user3: home.jsp 3 00:23 user3: shop.jsp ! 00:22 user3: browse.jsp 3 00:03 user2: home.jsp 00:18 user4: home.jsp
|
| ! ‘
| ! ‘
| ! |
| ! ‘
| ! |
| ! |
| ! ‘
| ! ‘
| ! |
| ! ‘
| ! ‘
| ! |
| ! |
| ! |
| ! ‘
| ! |
| ! ‘
| ! ‘
| ! ‘
| ! |
| ! ‘
| ! ‘

Figure 1: Examples of Generating Test Cases from Field Data

3.1 Time-Based Approaches Input: log L = (ro,r1,...,7a), Sorted by timestamp of request

We propose partitioning the web server log based on time in- OUIPut: test cases” = (co, 1, -, €m)
N : - . select a fixed time intervaimeint
tervals. The intuition behind creating such a test casedsttie - .
o e select the first request in the captured lod.

test case represents a shapshot of application activiiyn the add request, to test case;, j — 0
server’s (rather than a single user’s) perspective. The-based lett be the tﬁe time stam p;bjf r;quest
approaches are highly dependent on the application clegistats for each request;, i > 0 in log L
and typical usage patterns of the application and are apptefor note the tirﬁe stamps of request-
applications whose usage patterns change depending amtheft if difference between, andt > t'z i
day or year. For example, an application that manages areonfe . . i imen
ence may have distinct periods of activity for submissicaspera- Icr:gaetr;(ralgvd test ca
ready submissions, and registration, with bursts of dgtiuring let £ be the the tim;’itamp of request
certain times of the day or as deadlines approach. Anotlznpbe addr: to test case.
is a frequently used bookstore application that has longesazps ¢ J
of requests arriving from the same user within small timerint
vals. On the other hand, a course manager application where i
structors post grades and students view their grades onthodd
have shorter bursts of activity intermingled with long,atiee peri-

Figure 2: FIXED-TIME BLOCK Algorithm

ods. In the course management application, small inactviegs of test cases, the length must be chosen wisely. If not sslect
probably suggest students viewing their grades after ttevictor appropriately, the fixed-time blocks are likely to partitithe web
assigned grades; larger inactivity periods could occuveen as- server log into numerous small test cases or create largesikip
signments. redundant—test cases containing many requests. Boths# Huoe-
. . narios are undesirable because they contribute to the exerbf
3.1.1 Fixed-Time Blocks maintaining and executing a large suite of test cases or #esma
We first propose simply partitioning the web server log inxed suite of large test cases.

time blocks (FXED-TIME BLOCK). Partitioning by FXED-TIME ..
BLock addresses the disadvantages that arise from partitiogingb 3-1.2 ~ Server Inactivity Threshold
USER SESSIONS while creating smaller, multi-user test cases that ~ To decrease the number of logical user sessions split acnalss

are easier to debug than the full log. The straightforwagdrithm tiple test cases while still maintaining a high level of nwuiser
to generate test cases is shown in Figure 2. interaction, we propose partitioning based on server iviacpe-
For the example in Figure 1 (a), we partition the test suitae riods. We hypothesize that application usage patternsgehafter

blocks oftimeint = 10 minutes to create the four test cases shown a period of inactivity. To determine a suitable server iivitgt pe-
in Figure 1 (c). All the requests in each test case are lesstéma riod, we apply statistical analysis on the captured logisqus of
minutes apart. The last requestliest Case land the first request inactivity to determine a suitable server inactivity intarfor the
in Test Case 2are separated by more than 10 minutes, hence the application.

two requests are assigned to separate test cases. Anyctitera Figure 3 shows the algorithms for generating test casesand f
betweeruserlanduser2that affects the state of the system in the determining a reasonable threshold. Using the partitgpmitgo-
first 10 minutes during actual usage is capturedést Case 1 rithm with a server inactivity period of 4 minutes, the captiilog
The primary disadvantage ofi¥eD-TIME BLOCK is the strict in Figure 1 (a) is partitioned into five test cases (Figure)). (&
partitioning of the log into fixed-time-length test casehjain means should be noted that a tester only needs to select an apg®pri
that a logical user session may be split across multipleczEsts. threshold once—potentially for many different applicase—and

Since the chosen fixed length will determine the number argl si therefore this approach is cheaper than continually sglithe logs

6.3

Input: log L = (rg,71, ..., 7s), SoOrted by timestamp of request
Output: test case€’ = (co, c1, ..., Cm)
To partition log by server inactivity :
select server inactivity thresholéreshold
select the first request in the captured lod.
add requesty to test case;,j = 0
let ¢ be the the time stamp of request
for each request; inlog L
note the time stamp of requestr;
if difference between, andt > threshold
increment j
create new test casg
let ¢t be the the time stamp of request
addr; to test case;
Tofind inactivity threshold :
partition log into user sessions as described in Section 2 to
create set of user sessialis
compute time differenceerver_inactivity;;, between
consecutive user sessiomsandu; in U
analyze statistically akkerver_inactivity;;
to determine a reasonable threshold

Figure 3: SERVER INACTIVITY Threshold Algorithm

Input: log L = (ro, 71, ..., 7a), SOrted by timestamp of request
Output: test case€’ = (co, c1, ..., Cm)
create the set of user sessi@ghsrom the captured lod,
as defined in Section 2
for each user sessian in the setU
save the timestamp of the firgt and last; requests in;
for each request; in the captured lod.
for each user sessiary in the set/
let¢; be the timestamp of;
if fj <t <l;
addr; to u;

Figure 4: AUGMENTED USER SESSIONSAlgorithm

into individual user sessions as wittsBR SESSIONS

Replaying the test cases created IBRSER INACTIVITY parti-
tioning covers distinct application usage patterns antlcap multi-
user interactions. AlthoughERVER INACTIVITY captures more
logical user sessions thanX¥eD-TIME BLOCK, some logical user
sessions will still be split across multiple test cases. ddition,
because of either poor threshold choice or heavy applitasage,
SERVERINACTIVITY can create large test cases with many requests
per test case. The overhead of maintaining and executifgarge
test cases may not practical, especially in the case of heastin-
uous application usage.

3.2 Augmented User Sessions

To address the disadvantage of breaking up the logical eser s
sions in the other multi-user interaction approaches, vesent a
third approach: AGMENTED USERSESSIONS This approach has
the advantages of replaying the whole captured log whileigitag
reasonably-sized test cases to ease in debugging andjte$tie
algorithm for generating test cases is in Figure 4.

The captured log in Figure 1 (a) is converted into test cages b
AUGMENTED USER SESSIONSas shown in Figure 1 (e).Test
Case 1contains all the requests made liserland any other re-
quests made at the same time thserlwas using the application.

6.4

The advantage of usingl G MENTED USER SESSIONSIS that the

test cases capture unbroken groups of logical user sessibile

still capturing multi-user interaction that may affect #iate of the
system. As shown in Figure 1 (e), a request may be contained in
multiple test cases and the size of the test cases might lecleoge

and difficult to manage for some applications. Generatiegétest
cases costs more than the other techniques (includsBR$ES-
SIONS) because we need to logically divide the user sessionsédefor
augmenting them.

3.3 Summary of Tradeoffs

In this section, we presented three alternatives to ussitsesas
test cases and discussed the benefits and limitations ofteelch
nigue informally; a qualitative summary of the tradeoffavibeen
the test-case generation techniques is in Table 1. Our peapap-
proaches address the limitation oEBER SESSIONS namely that
user sessions as test cases fail to capture multi-useaati@ns.
However, the proposed approaches have their own benefits and
drawbacks. FXED-TIME BLOCK and FERVER INACTIVITY re-
quire the tester to choose an appropriate time length ostthre
old and the resulting test cases may break logical userosessi
across multiple test cases, unlik&#&MENTED USER SESSIONS
Splitting logical user sessions will causexED-TIME BLock and
SERVERINACTIVITY to cover more error code thanusMENTED
USER SESSIONS which technique covers more code in practice is
the subject of our case study in the next section.

In terms of test case generation cost, the worst case tineaftr
generation algorithm i®(n), wheren is the number of requests
in the log. In practice, the algorithm forl6MENTED USER SES-
SIONSis more expensive because it requires calculating user ses-
sion boundaries in addition to augmenting the test casesetar,
the ability of test cases to model user behavior and the esegeh
executing the test cases are more important considerdtianghe
initial test case generation cost.

3.4 Implementation

The capture/replay system is part of our web applicatiotings
framework [15]. Our system for capture/replay consistshoéé
components: logging, test-case generation, and replay. ldgu
ging tool records user requests, including URL data and iesok
The log is the input to our suite of test-case generatiorstaahich
implements the test case generation algorithms. We impitede
customized replay tools using HTTPClient [7], which hasdjet
and post requests, file uploading, and maintaining the tdisas-
sion state. For test cases that contain requests from fheultiers,
the requests are tagged with time and session informatidghato
the tool can maintain the state for each user, as describ8dadn
tion 2. For more details about our framework, refer to [15].

Except for UGMENTED USERSESSIONS the USERSESSIONS
FIXED-TIME BLOCK, and ERVER INACTIVITY algorithms are
implemented exactly as presented. However, fQtGMENTED
USER SESSIONS a single logged request may appear in multiple
test cases—effectively replaying portions of logical usessions
multiple times. However, for our coverage studies, singeare
ing the full test suite is equivalent to replaying the log, have
slightly modified the implementation so that the same retjaemt
replayed multiple times; the implementation change wilhifest
itself in the time results.

4. CASE STUDY

To evaluate the differences between the testing strategeeap-
plied the strategies to the captured log of a deployed weli-app
cation. Each test case generation technique is partitjonirpro-

Test Suite Benefits

Drawbacks

USER SESSIONS Represent logical user sessions

No multi-user interaction

cases

FIXED-TIME BLOCK Multi-user interaction; variable-sized test | Requires smart time out; likely to split user sessions
cases across test cases
SERVER INACTIVITY Multi-user interaction; variable-sized test | Requires smart threshold; may split user sessions

across test cases

AUGMENTED USER SESSIONS

teraction

Represent logical user sessions; Multi-user in-

Larger test cases than USER SESSIONS; higher cost to
generate test cases

Table 1: Qualitative Comparison of Techniques

[Classes | Methods [NCLOC [Statements |
[355 | 1534 | 61720 | 27136 |

Table 2: Subject Application Characteristics

[TotURLs [Distinct URLs [25th % | Median Gap [75th % [Avg Gap |
[16275 | 443 | 4s] 24's | 74s | 13mins |

Table 3: Log Characteristics

cessing the original server log in different ways. We woilte to
compare the resultant types of test cases in terms of

1. Effectiveness — program coverage
2. Efficiency — the cost of test suite generation and replay

4.1 Subject Application

Our research group developed a customized web applicaiion f
maintaining a digital publications library based on DSpareopen-
source digital repository system [5]. The application aatically
generates sorted publications pages from a database seatrch
group members maintain through a web application interfae
user can create dynamic views of publications by searchiitiy w
different criteria. DSpace is written in Java Servlets aBBdthat
deliver HTML content to the user and uses a PostGreSQL dsgaba
and a filestore backend. We collected field data after puinhigi
our digital library in August 2005.

DSpace’s application and log characteristics from Aug@&52
through February 2006 are in Tables 2 and 3, respectively.aph
plication characteristics include both the JSP and Java.dém
the log characteristics in Table 3, we see that the time gapdan
most consecutive requests is very short—less than a miiftee-d
ence between them.

4.2 Methodology

4.2.1 Variables and Measures

Our experiment involves one independent variable: thectesst
generation technique. The test case generation techneyaes-
ined are WBER SESSIONS FIXED-TIME BLOCK, SERVER INAC-
TIVITY ,and AUGMENTED USER SESSIONS

To answer the previously stated research goals, we evdluate
generated test cases in terms of efficiency and effectigendée
used three dependent variables as our measures: programn cov
age, cost of generation, and replay cost for suite.

4.2.2 Experiment Design

We performed our experiments within the experimental frame
work described in our previous work [15]. We use Cenqua’'v&i§3]
to collect statement, condition, and branch coverage.

by FIXED-TIME BLOCK and SERVERINACTIVITY depend on the
chosen length of time or inactivity threshold, we generared
test suites for KED-TIME BLOCK, using timeouts of one minute,
one hour, and six hours based on the log characteristicshile Ba
and our intuitions about what lengths of time would capture e
fective test cases. We chose an inactivity threshold of 2tutes
for SERVERINACTIVITY after statistically analyzing the inactivity
gaps in two very different web applications, a conferencgstea-
tion and submission manager as well as DSpace. We found that
75% of the server inactivity periods were greater than 25uteis
Therefore, an inactivity period of 25 minutes will merge 2%%
the logical user sessions in test cases. To replay the tes$.cae
used our customized Java replay tools. We collected géoeaid
replay costs as well as coverage for each suite.

4.3 Threats to Validity

One threat to validity of our experiments is our lack of large
captured logs—Ilogs that contain millions of accesseseratiman
thousands. Because we conducted our case study on oneaapplic
tion with its own unique usage characteristics, we canno¢geize
our results to all web applications; however, we believeappli-
cation is complex enough and we collected a large enougtolbg t
able to evaluate some of the differences between the taobsidn
addition, the machines we used to run experiments were it de
cated to our experiments; other users, other experimeatkups,
and network activity may affect the timing results.

5. RESULTS AND ANALYSIS

In this section, we present the results of our case study ds we
as our analysis of these results. Table 4 summarizes thiéksrésu
test suite size, number of statements covered, generatien and
replay time for all generated suites.

5.1 Program Coverage Effectiveness

From Table 4, the statement coverage for most of the tesssuit
was comparable (within 400 statements), covering aroufd 6f3
the code. We do not expect 100% coverage because using field
data as test cases will only cover the code that users acdess.
alyzing our coverage reports, we found that most of the uncov
ered code was in alternative classes that our configurattbnat
use. The remaining uncovered code was administrative iimct
ality and classes used to initialize the system because artedt
logging user sessions after this phase.

AUGMENTED USER SESSIONScovers the most statements. Be-
cause AIGMENTED USER SESSIONSreplays the log similarly to
the deployed execution with interacting users, the emdlasers
primarily maintain the appropriate state and the appliceliehaves
as expected, covering the most code. We did observe reghasts
did not match deployed behavior, which we believe was cabged
a change in the code. Inevitably, because of DSpace’s depead

We implemented each test case generation technique in Javaon state, . $ER SESSIONSwill execute error code (often redundant

We executed each technique on DSpace’s captured acces® logs
generate the suite of test cases. Because the test suiersigeh

6.5

in our study) instead of the correct behavior. We attribbigerhuch
smaller coverage of the hourly and minute test suites tttisygjithe

Metric User Session Hourly Minute | 6-hour Server Inactivity Augmented User Sessions (Log)
Number of Test Cases 1342 1769 8447 508 1814 1342 (1)
Statements Covered 17536 15713 12270 17674 17745 17866

Generation Time Per Suite (s) 9 11 52 5 14 16 (1)

Suite Replay Cost (mins) 76 102 216 73 75 52

Table 4: Comparison of Test Suites

Comparison Hourly | Minute | 6-hour Server Inactivity Augmented User Sessions
USUA 17630 17638 17731 17947 17971

USNA 15585 12141 17445 17300 17363
(USUA)-(USNA) 2045 5497 286 647 608

US-A 1934 5381 74 219 156

A-US 111 116 212 428 452

Table 5: Comparison of Statement Coverage of Alternative Tst Case Generation Techniques (A) with YER SESSIONS(US)

logical user session across test cases and thus losingstierss case so that we did not replay the same URL multiple times and
state. These test suites execute error code more frequkatiythe b) the suite executes less error code; depending on the cder
other test suites. executed, the server will return an empty response, whickses

To help quantify the differences between the suites, we esenp the replay tool to repeat the request.
the statement coverage ofséRr SEssioNswith the other suites, o]
shown in Table 5. The first row is the combined number of state- 5.3 Preliminary Analysis

ments that the suites cover, and the second row is the nurfiber 0 Qur case study revealed interesting results: even thoughtest
statements in common that both suites cover. The third ro&v is syjte replayed the same requests, the order in which rexuese
measure of how different the two suites are: the larger tt, tihe replayed and how session state was maintained affectegtie a
more different the suites. The fourth row is the number ofesta cation’s behavior. While all test suites executed the sa?iestate-
ments LBER SESsIONScovers but the alternative suite (A) does ments, each test suite covered additional unique cogeERSES-

not cover. Lastly, the fifth row is the number of statemenés the SIONS executed error code because of out-of-order replay, while

alternative suite covers (A) thatdéR SESSIONS(US) does not. Fixep-TIME BLOCK and, to a lesser extent,ESVER INACTIV-
USER SEssIONsexecuted some code that the alternative suites |1y executed error code because session state was not maintaine

did not and vice versa. The best alternative techniqueRY8R appropriately (due to split in the logical user sessions).

INACTIVITY and AUGMENTED USER SESSION9 executed over To maximize DSpace coverage, test cases should maintain log

400 statements thatdER SEssiONSmissed. We attribute most of jcal user sessions and capture multi-user interactionsutrcase
the code unique to BER SESSIONSto statements that handle state Study, AUGMENTED USERSESSIONScovered the most statements.
inconsistencies caused by th&ER SESSIONSs loss of multi-user while not explicit, £RVER INACTIVITY maintained user sessions
interactions. For example, when replaying&R SESSIONS some in our experiment, as a side effect of using an accurateiirigct
of the publications were not uploaded or were not approvedfo threshold. Combining test suites from different generatirate-

clusion in the digital library because of inconsistenciesizen the gies provides more coverage than using the test suites femin e
publication identifier in the URL and the publication iddiati that technique in isolation.

the executing server expected. Instead of executing thecteg The unique code covered by the suites other thaGBENTED
COde, USER SESSIONScovers error code in a servlet that handles USER SEss|ONsmay not be Worth their rep|ay cost because the
displaying publications because the publication id is raditv same code is executed frequently by the multiple test casti

For DSpace, replaying bothdER SEssioNsand AUGMENTED suite. In the future, we are interested in studying the rmaighn-
USERSESS|ONWie|dS the |argest number of statements executed— crease in Coverage by the test cases from the differentaeetgen_
in only two hours. eration techniques. We believe thakEp-TIME BLock (Minute

. . or Hourly) will create suites where latter test cases improover-

5.2 Test Suite Generation & Replay Costs age of earlier test cases only marginally.

Test suite generation consists of two costs: parsing thveskag Choosing and replaying an appropriate reduced suite mayfbe s
and generating suites. The time required for parsing theesérg ficient to address the issue of multiple test cases covelmgame
is dependent on the number of requests—a constant acrasg all code. After removing the redundant test cases from eackuést
techniques except for WGMENTED USER SESSIONS We auto- we believe that we will be left with different types of testseas.
matically generated each test suite in less than a minushagn For example, as we have shown in previous work [14], reducing

in Table 4. Creating test cases seems to dominate the coshef g USERSESSIONSresults in a reduced suite that represents the set of
erating suites because the cost closely matches the nurhpen-o different use cases of the application. Reducing a test stéated

erated test cases. by FIXED-TIME BLOCK or SERVERINACTIVITY will likely select
The cost of replaying the test suites was on the order of an hou test cases from different application usage cycles. Raduwauiites
The time to replay the multi-user capturing test cases wagm generated by BGMENTED USERSESSIONSCreates test cases that
eral higher because of the cost of maintaining the state €dtipre contain unique logical user sessions and multi-user iotierss. In
users and replaying each request as the appropriate usaddin the future, we plan to reduce the suites from the differestt¢ase
tion, test suites with more test cases will take more timesfay generation strategies and evaluate their cost-effed@sg&n
due to the increased overhead of starting our Java replaphoe We were also interested in investigating whether it is mare i
for every test case. portant to capture multi-user interactions or logical ssssions in
We attribute AIGMENTED USERSESSIONSS faster replay time the test cases. From our resultssgk SESSIONS which does not
to two factors: a) we preprocessed the requests into one tasy capture multi-user interaction, covers less code than a-based

6.6

technique such asi¥eD-TIME BLOCK (6-hour) or SRVER IN- Although difficult to evaluate, another metric to considethie ease
ACTIVITY . Both AXED-TIME BLOCK (6-hour) and 8RVER IN- with which a user can locate a bug from a test case. Based sa the
ACTIVITY maintain multi-user interaction at the cost of some loss experiments, we can then make recommendations to testeus ab

in maintaining logical user sessions, although this washmtase
for the other time-based techniques. For our subject agijiia, it
appears that it is more important to capture multi-userattgons
than maintain logical user sessions. However, we do notattpis
to hold true for web applications that do not have state dégen
cies caused by multi-user interaction.

From our preliminary results, WMENTED USER SESSIONS
best imitates the deployed application behavior. Dependimthe
time interval/threshold selected¥ED-TIME BLOCK and SERVER

INACTIVITY are likely to imitate deployed application behavior.

However, small intervals of IKED-TIME BLOCKor inappropri-
ately selected inactivity threshold values will split logi user ses-
sions to such an extent that the resulting loss in sessite with
make it impossible to mimic deployed behavior.

5.4 Observations

Beyond the results of our case study, we also informally ob-

served different application behaviors by replaying therahtive
test suites. We inadvertently performed load testing onagmyi-
cation. While we had no problem replayingsBR SESSIONSON
the application, our server and the application could natlfathe
high load created by replaying the other test suites, whateg

ated many more sessions at a high rate. Since users do not have

an explicit “end” or “close” request to end their sessior, server
typically throws out the session after some period of invitgti The
default timeout for the Resin web server is 30 minutes. Insysr

tem, we replay a month’s worth of requests in about 10 minutes

The server must have enough resources to handle all of thestx
otherwise it does not have time to clean out sessions andstanst
dropping requests.

Replaying the test cases with multi-user interaction akxpmsed

a known problem in DSpace’s underlying text search engirie wi

too many open files, which has been addressed in later versfon
DSpace.
We also observed that, in a few cases, replaying #RVERIN-

ACTIVITY test suite exhibited behavior similar to actual deployed

application behavior that WMENTED USER SESSIONSreplay
failed to mimic. Upon inspection, we believe that somethimg

usual happened—perhaps on the client-side or on the network
that is not captured in our log because the user was not behavi

as expected. This was an interesting observation, contaoyr
intuitions, but we cannot make any conclusive claims reggrthe
replay accuracy of SBRVERINACTIVITY over the captured log.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we presented and evaluated several new apg®a

to generating test cases from field data that address theofoss

multi-user interaction in current user-session-basetingegech-
nigues. In terms of generation cost, replay cost, and cgeem@ur
techniques generated alternative suites that provide molte-user
interactions and have comparable coverage to user-sesasau
testing. However, user-session-based testing does exsoute
code not executed by our suites.

We have not yet fully compared our approaches to current user

session-based testing techniques. In the future, we plaveloate
the approaches on multiple applications with differentlizpgion
and usage characteristics. We also will evaluate the téstssim
terms of their relative abilities to expose faults. Becawseare
likely to generate large, redundant test suites from thd fieita,
we also want to compare the reduced suites derived from edeh s

6.7

appropriate test-case generation techniques, givenapplication
and usage characteristics.

Acknowledgments

We thank Frank Zappaterrini for building one of the replaglso
and Frank Zappaterrini and Madhu Nayak for customizing R8pa

7. REFERENCES

[1] A. Andrews, J. Offutt, and R. Alexander. Testing web
applications by modeling with FSMSoftware Systems and
Modeling 4(2), April 2005.

[2] R. Binder.Testing Object-Oriented Systemgldison
Wesley, 2000.

[3] Clover: Code coverage tool for Java.
<http:/mww.cenqua.com/cloves/, 2006.

[4] G. DiLucca, A. Fasolino, F. Faralli, and U. D. Carlini.
Testing web applications. limternational Conference on
Software Maintenancgage 310, October 2002.

[5] DSpace Federatior<http://www.dspace.org/, 2006.

[6] S. Elbaum, S. Karre, and G. Rothermel. Improving web
application testing with user session dataPhoceedings of
the 25th International Conference on Software Engineering
pages 49-59. 2003.

[7] HTTPClient V0.3-3.
<http://www.innovation.ch/java/HT TPClient/, 2006.

[8] B. Liblit, A. Aiken, A. X. Zheng, and M. |. Jordan. Bug
isolation via remote program sampling.PiDI '03:
Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementatjgeges
141-154, 2003.

[9] C.-H. Liu, D. C. Kung, and P. Hsia. Object-based data flow
testing of web applications. IRirst Asia-Pacific Conference
on Quality Softwarg2000.

[10] Michal Blumenstyk. Web Application Development -
Bridging the Gap between QA and Development.
<http://www.stickyminds.cons, 2002.

[11] J. Offutt, Y. Wu, X. Du, and H. Huang. Bypass testing of
web applications. IREEE 15th International Symposium on
Software Reliability Engineeringrages 187-197, Nov. 2004.

[12] A. Orso and B. Kennedy. Selective capture and replay of
program executions. IRroceedings of the Third
International Workshop on Dynamic Analysis (WODA)
pages 1-7, May 2005.

[13] F. Ricca and P. Tonella. Analysis and testing of web
applications. IfProceedings of the 23rd International
Conference on Software Engineerjmpgges 25-34, 2001.

[14] S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and
A. Souter. Analyzing clusters of web application user
sessions. IfProceedings of the Third International Workshop
on Dynamic Analysis (WODAMay 2005.

[15] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock.
Automated replay and fault detection for web applications.
In Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE05)
pages 253-262, November 2005.

