
Towards Automatically Creating Test Suites
from Web Application Field Data

Sara Sprenkle, Emily Gibson, Sreedevi Sampath, and Lori Pollock
Computer and Information Sciences

University of Delaware
Newark, DE 19716

{sprenkle, gibson, sampath, pollock}@cis.udel.edu

ABSTRACT
Creating effective test cases is a difficult problem, especially for
web applications. To comprehensively test a web application’s
functionality, test cases must test complex application state depen-
dencies and concurrent user interactions. Rather than creating test
cases manually or from a static model, field data provides an in-
expensive alternative to creating such sophisticated testcases. An
existing approach to using field data in testing web applications is
user-session-based testing. However, previous user-session-based
testing approaches ignore state dependences from multi-user inter-
actions. In this paper, we propose strategies for leveraging web
application field data to automatically create test cases that test var-
ious levels of multi-user interaction and state dependencies. Results
from our preliminary case study of a publicly deployed web appli-
cation show that these test case creation mechanisms are a promis-
ing testing strategy for web applications.

1. INTRODUCTION
After deployment, web applications frequently undergo main-

tenance to fix bugs, add functionality, and improve performance.
Thoroughly and efficiently testing web applications in a waythat
mimics user interactions is crucial to ensure existing application
functionality has not been affected by maintenance changes. With
the prevalent use of web applications to conduct daily business,
even partial functionality loss can cost businesses millions of dol-
lars per hour [10].

Capture/replay of field data is an approach to testing that em-
ulates real usage. In web application testing, user requests, i.e.,
URLs and associated data, are captured and replayed. Aside from
the primary advantage of ensuring that configuration and applica-
tion code changes have not adversely affected the application’s be-
havior, other benefits include reproducing failures causedby user
input [12] and prioritizing bug fixes based on commonly accessed
code [8]. For web applications, field data has the additionalad-
vantage of being cheap to obtain (compared with other application
domains [12]) and very portable because the usage data is indepen-
dent of the underlying implementation and server technologies.

User-session-based testing—a specific type of capture/replay—
is a complementary approach to traditional testing. In user-session-
based testing, a tester captures accesses during deployment to cre-
ate user sessions, which are then replayed as test cases. Intuitively,
a user sessionis a single user’s interaction with the application.
Elbaum et al. [6] first studied leveraging field data for user-session-
based testing of web applications. They showed that user-session-
based test cases were nearly as effective at exposing faultsas those

Proceedings of MASPLAS’06 Mid-Atlantic Student Workshop on Pro-
gramming Languages and Systems Rutgers University, April 29, 2006.

generated by Ricca and Tonella’s more expensive model-based ap-
proaches [13]. In addition to comparing user-session-based and
model-based test cases, Elbaum et al. [6] proposed a technique to
generate additional test suites by splitting and merging user ses-
sions. They found that the synthesized test suites were not as effec-
tive as user sessions. As a result of our recent work [15], we can
explain this result because the authors manipulated user sessions
without accounting for application state, which affects application
behavior.

During our studies of web application testing with various ap-
plications, we found limitations in user sessions as test cases; the
limitations stem from users sharing application state. Specifically,
existing user-session-based testing techniquesignore multi-user in-
teractionsand, thus,lose necessary application state dependencies.
In this paper, we propose leveraging field data beyond user sessions
to generate test cases, which canexpose different application be-
haviors. By expanding test cases to include multi-user interactions
and accounting for state dependences during replay, the test cases
more closely represent actual application usage. Our more realistic
test cases and replay will cover different code and expose differ-
ent faults than traditional user sessions. In addition, theproposed
test case creation mechanisms allow testers to tailor testing to meet
their goals and localize bugs.

The main contributions of this paper for web applications are

• a presentation of the limitations of user sessions in represent-
ing actual application usage,

• three new automatic test case generation and replay strate-
gies: partition by fixed time blocks, partition by server inac-
tivity threshold, and augmented user sessions, and

• a case study of the test case generation strategies for a pub-
licly deployed web application.

We describe user-session-based testing and its limitations in Sec-
tion 2. In Section 3, we present strategies for automatically gener-
ating test cases from field data. Section 4 presents the methodology
for our case study, and in Section 5, we describe and analyze the re-
sults of our study. Finally, in Section 6, we present our conclusions
and directions for future research.

2. USER-SESSION-BASED TESTING
We first present the limitations of user-session-based testing and

describe why current user-session-based testing techniques may not
be sufficient for testing web applications.

Suppose that we partition a captured log into user sessions and
replay those user sessions, as proposed by Elbaum et al. [6].Each
test case is a user session, where auser sessionis a collection of

6.1

user requests in the form of URL and name-value pairs. To gen-
erate user sessions, we use session cookies as identifiers when the
cookies are available in the log. Otherwise, we say that a user ses-
sion begins when a request from a new IP address reaches the server
and ends when the user leaves the web site or the session timesout.
In our work, we consider a 45-minute gap between two requests
from a user equivalent to a session timing out.

By partitioning the log into user sessions, we have created test
cases that are easy to replay because there is only one user’sses-
sion state to maintain, we have isolated each user’s actionsfrom
other users, and each test case represents a single user’s use of the
application, i.e., an application use case. Test cases are replayed
sequentially, ordered by the timestamp of their first requests. If a
test case exposes a fault, debugging will focus on a single user’s
requests—rather than the entire log—to locate the fault.

Because the user session contains the requests of a single user,
user-session partitioning loses multi-user interactionsthat occurred
during deployment. A user may affect the shared applicationstate—
and thus the behavior of other users. For example, consider the sce-
nario where two users are simultaneously accessing a bookstore.
The following sequence of events appear in the captured log:

User1: search for Steve Martin’sPure Drivel
User2: buy last copy ofPure Drivel
User1: attempt to buyPure Drivel
User1: since book is on backorder and the user wants

to buy a book as a gift, search for other Steve
Martin books

User1: buyShopgirl

In user-session-based testing, the above log is partitioned into
two test cases that representUser1 andUser2. The test case de-
rived from User1 replays first and will findPure Drivel is still
available but will still purchaseShopgirl. The test suite may not
execute the special code that handles books on backorder.

Suppose instead that we replay logs exactly as captured. Ourtest
case is the entire captured log and exercises the backorder applica-
tion code. While this replay strategy may be more intuitive than
replaying user sessions, it introduces some complexity into the im-
plementation. One could replay each request as if it originated from
one user, but that implementation also does not accurately reflect
the captured behavior. Instead, we need to identify the requesting
user for each request (similar to parsing the user sessions)and make
the request on behalf of the user while maintaining session state for
each user. When we replay the requests in log order, the results
more closely emulate the captured behavior of the application.

Besides the direct influence of users on the behavior of others,
users also affect the dynamically generated parameter data, which
in turn affects replay. A common approach to maintain state across
a user’s requests is to pass data as a parameter in the URL. When
the parameter values are dynamically generated and depend on the
order users access the site, replaying the user requests outof log
order—as in user-session based testing—will not representactual
usage. However, out-of-order execution may cover error code or
less frequently used code.

An example of the effect on dynamically generated parameter
data can be seen in order numbers from our bookstore application.
Returning to our bookstore example, the application may assign an
order number to each user. Instead of looking up the customer’s
order in the database, the order number is passed as a parameter,
e.g., “orderno=XXXX”, thus acting as a cache. The application can
then use the passed order number to process the purchase request.
SinceUser2 purchases a book first, her order number is 0001, and
User1’s order number is 0002. The order numbers are recorded

as URL parameters in the log. When replaying the user sessions
as test cases,User1 is assigned the order number first (0001), but
the assigned value (0001) will not correspond to the order number
encoded in the URL (0002). Unless we fix the user sessions before
replay, which may be difficult or cumbersome with large test suites,
the user-session-based test suite will exercise the error code that
handles the mismatched order numbers, instead of the code han-
dling correct order submissions. Replaying the captured log will
exercise the application as during deployment in this example.1

As we illustrated in these two examples, replaying in log order
captures an application’s deployed behavior closely. However, the
replay may not duplicate the deployed behavior because of differ-
ences in the timing of incoming requests, the configuration of the
system (e.g., not sending email in the testing environment), etc.
Furthermore, if we encounter a bug during replay, it is more diffi-
cult to identify the bug’s root cause because of the log’s size and
the interaction between multiple users. Since deployed applica-
tions can log gigabytes of accesses in a day and the logs are likely
repetitive because users access the application similarly, we need
to reduce the size of the suite, thus reducing test case redundancy
and improving test efficiency.

In summary,a tester probably wants both types of test cases—
test cases that expose faults with respect to one user and faults
caused by interaction between users—because the test caseswill
exercise the application in different ways.The primary advantages
of partitioning into user sessions is that test cases represent the
application’s use cases and isolate the user’s requests from other
users’ requests, which facilitates debugging. However, user-session
partitioning does not emulate multi-user interactions or handle dy-
namically generated parameter data. Alternatively, replaying the
recorded log captures multi-user interactions but makes itharder
to locate bugs. In the next section, we describe our strategies for
generating test cases that address these disadvantages.

3. STRATEGIES FOR GENERATING MULTI-
USER TEST CASES

A test strategy is an algorithm or heuristic used to create test
cases from a representation, an implementation, or a test model [2].
Techniques have been proposed to generate test cases from static
models of a web application [1, 9, 4, 11, 13]. In this section,we
present three different strategies to create test cases that capture
multi-user interactions from field datafor web applications. The
test cases are expected to (1) represent logical user sessions so as
to target functionality and usage patterns as experienced by applica-
tion users, (2) be cost-effective to replay and manageable in terms
of overhead involved in maintaining and executing each testcase,
and (3) be effective in terms of program coverage and fault detec-
tion capabilities.

Throughout this section, we will use Figure 1 to illustrate the
differences between test case generation strategies. Figure 1 (a) is
the captured web server log, with usersuser1, user2, user3,and
user4accessing the application. Partitioning by user sessions,as
described in the previous section, creates the test cases shown in
Figure 1 (b). In the remainder of the paper, we will refer to this
approach as USERSESSIONS.

1Handling nondeterministic parameter values is an area of future
research. One approach is to modify the application under test to
generate the values deterministically and test the nondeterministic
code independently.

6.2

00:05 user3: home.jsp
00:09 user2: browse.jsp
00:18 user4: home.jsp
00:22 user3: browse.jsp
00:23 user3: shop.jsp
00:29 user4: browse.jsp
00:30 user1: login.jsp

00:04 user1: shop.jsp

00:01 user1: home.jsp
00:02 user1: browse.jsp
00:03 user2: home.jsp

Time User: Request

00:31 user3: login.jsp
00:32 user2: browse.jsp
00:33 user2: shop.jsp
00:35 user4: shop.jsp
00:36 user4: login.jsp

(a) Captured Log

Test Case 1

00:02 user1: browse.jsp
00:04 user1: shop.jsp
00:30 user1: login.jsp

Test Case 2
00:03 user2: home.jsp
00:09 user2: browse.jsp
00:32 user2: browse.jsp
00:33 user2: shop.jsp

Test Case 3
00:05 user3: home.jsp
00:22 user3: browse.jsp

Test Case 4
00:18 user4: home.jsp
00:29 user4: browse.jsp
00:35 user4: shop.jsp
00:36 user4: login.jsp

00:23 user3: shop.jsp
00:31 user3: login.jsp

00:01 user1: home.jsp

(c) Fixed Time Blocks

00:01 user1: home.jsp
00:02 user1: browse.jsp
00:03 user2: home.jsp
00:04 user1: shop.jsp
00:05 user3: home.jsp
00:09 user2: browse.jsp
Test Case2
00:18 user4: home.jsp

Test Case 3
00:22 user3: browse.jsp
00:23 user3: shop.jsp
00:29 user4: browse.jsp

Test Case 4
00:30 user1: login.jsp

00:32 user2: browse.jsp
00:31 user3: login.jsp

00:33 user2: shop.jsp
00:35 user4: shop.jsp
00:36 user4: login.jsp

Test Case 1 Test Case 1

00:02 user1: browse.jsp
00:03 user2: home.jsp

00:01 user1: home.jsp

00:04 user1: shop.jsp
00:05 user3: home.jsp

00:09 user2: browse.jsp
Test Case2

Test Case 3
00:18 user4: home.jsp

Test Case 4
00:22 user3: browse.jsp
00:23 user3: shop.jsp

00:29 user4: browse.jsp
00:30 user1: login.jsp
00:31 user3: login.jsp
00:32 user2: browse.jsp

00:35 user4: shop.jsp
00:33 user2: shop.jsp

00:36 user4: login.jsp

Test Case 5

Test Case 1
00:01 user1: home.jsp
00:02 user1: browse.jsp
00:03 user2: home.jsp
00:04 user1: shop.jsp
00:05 user3: home.jsp
00:09 user2: browse.jsp
00:18 user4: home.jsp
00:22 user3: browse.jsp
00:23 user3: shop.jsp
00:29 user4: browse.jsp
00:30 user1: login.jsp
Test Case2
00:03 user2: home.jsp
00:04 user1: shop.jsp
00:05 user3: home.jsp
00:09 user2: browse.jsp
00:18 user4: home.jsp
00:22 user3: browse.jsp
00:23 user3: shop.jsp
00:29 user4: browse.jsp
00:30 user1: login.jsp
00:31 user3: login.jsp
00:32 user2: browse.jsp
00:33 user2: shop.jsp

00:05 user3: home.jsp
00:09 user2: browse.jsp
00:18 user4: home.jsp
00:22 user3: browse.jsp
00:23 user3: shop.jsp
00:29 user4: browse.jsp
00:30 user1: login.jsp
00:31 user3: login.jsp

Test Case 3

Test Case 4
00:18 user4: home.jsp
00:22 user3: browse.jsp
00:23 user3: shop.jsp

00:30 user1: login.jsp
00:29 user4: browse.jsp

00:31 user3: login.jsp
00:32 user2: browse.jsp
00:33 user2: shop.jsp
00:35 user4: shop.jsp
00:36 user4: login.jsp

(d) Augmented User Session
(b) User Sessions

(d) Server Inactivity Threshold

Figure 1: Examples of Generating Test Cases from Field Data

3.1 Time-Based Approaches
We propose partitioning the web server log based on time in-

tervals. The intuition behind creating such a test case is that the
test case represents a snapshot of application activity, from the
server’s (rather than a single user’s) perspective. The time-based
approaches are highly dependent on the application characteristics
and typical usage patterns of the application and are appropriate for
applications whose usage patterns change depending on the time of
day or year. For example, an application that manages a confer-
ence may have distinct periods of activity for submissions,camera-
ready submissions, and registration, with bursts of activity during
certain times of the day or as deadlines approach. Another example
is a frequently used bookstore application that has long sequences
of requests arriving from the same user within small time inter-
vals. On the other hand, a course manager application where in-
structors post grades and students view their grades onlinewould
have shorter bursts of activity intermingled with long, inactive peri-
ods. In the course management application, small inactive periods
probably suggest students viewing their grades after the instructor
assigned grades; larger inactivity periods could occur between as-
signments.

3.1.1 Fixed-Time Blocks
We first propose simply partitioning the web server log into fixed

time blocks (FIXED-TIME BLOCK). Partitioning by FIXED-TIME

BLOCK addresses the disadvantages that arise from partitioning by
USERSESSIONS, while creating smaller, multi-user test cases that
are easier to debug than the full log. The straightforward algorithm
to generate test cases is shown in Figure 2.

For the example in Figure 1 (a), we partition the test suite intime
blocks oftimeint = 10 minutes to create the four test cases shown
in Figure 1 (c). All the requests in each test case are less than ten
minutes apart. The last request inTest Case 1and the first request
in Test Case 2are separated by more than 10 minutes, hence the
two requests are assigned to separate test cases. Any interaction
betweenuser1anduser2that affects the state of the system in the
first 10 minutes during actual usage is captured byTest Case 1.

The primary disadvantage of FIXED-TIME BLOCK is the strict
partitioning of the log into fixed-time-length test cases, which means
that a logical user session may be split across multiple testcases.
Since the chosen fixed length will determine the number and size

Input : log L = (r0, r1, ..., rn), sorted by timestamp of requestr

Output : test casesC = (c0, c1, ..., cm)
select a fixed time intervaltimeint

select the first requestr0 in the captured logL
add requestr0 to test casecj , j = 0
let t be the the time stamp of requestr0

for each requestri, i > 0 in log L

note the time stampti of requestri

if difference betweenti andt > timeint

increment j
create new test casecj

let t be the the time stamp of requestri

addri to test casecj

Figure 2: FIXED -T IME BLOCK Algorithm

of test cases, the length must be chosen wisely. If not selected
appropriately, the fixed-time blocks are likely to partition the web
server log into numerous small test cases or create large—possibly
redundant—test cases containing many requests. Both of these sce-
narios are undesirable because they contribute to the overhead of
maintaining and executing a large suite of test cases or a smaller
suite of large test cases.

3.1.2 Server Inactivity Threshold
To decrease the number of logical user sessions split acrossmul-

tiple test cases while still maintaining a high level of multi-user
interaction, we propose partitioning based on server inactivity pe-
riods. We hypothesize that application usage patterns change after
a period of inactivity. To determine a suitable server inactivity pe-
riod, we apply statistical analysis on the captured log’s periods of
inactivity to determine a suitable server inactivity interval for the
application.

Figure 3 shows the algorithms for generating test cases and for
determining a reasonable threshold. Using the partitioning algo-
rithm with a server inactivity period of 4 minutes, the captured log
in Figure 1 (a) is partitioned into five test cases (Figure 1 (d)). It
should be noted that a tester only needs to select an appropriate
threshold once—potentially for many different applications—and
therefore this approach is cheaper than continually splitting the logs

6.3

Input : log L = (r0, r1, ..., rn), sorted by timestamp of requestri

Output : test casesC = (c0, c1, ..., cm)
To partition log by server inactivity :

select server inactivity thresholdthreshold

select the first requestr0 in the captured logL
add requestr0 to test casecj , j = 0
let t be the the time stamp of requestr0

for each requestri in log L

note the time stampti of requestri

if difference betweenti andt > threshold

increment j
create new test casecj

let t be the the time stamp of requestri

addri to test casecj

Tofind inactivity threshold :
partition log into user sessions as described in Section 2 to

create set of user sessionsU

compute time difference,server inactivityij , between
consecutive user sessionsui anduj in U

analyze statistically allserver inactivityij

to determine a reasonable threshold

Figure 3: SERVER I NACTIVITY Threshold Algorithm

Input : log L = (r0, r1, ..., rn), sorted by timestamp of requestri

Output : test casesC = (c0, c1, ..., cm)
create the set of user sessionsU from the captured logL,

as defined in Section 2
for each user sessionui in the setU

save the timestamp of the firstfi and lastli requests inui

for each requestri in the captured logL
for each user sessionuj in the setU

let ti be the timestamp ofri

if fj ≤ ti ≤ lj
addri to uj

Figure 4: AUGMENTED USER SESSIONSAlgorithm

into individual user sessions as with USERSESSIONS.
Replaying the test cases created by SERVER INACTIVITY parti-

tioning covers distinct application usage patterns and captures multi-
user interactions. Although SERVER INACTIVITY captures more
logical user sessions than FIXED-TIME BLOCK, some logical user
sessions will still be split across multiple test cases. In addition,
because of either poor threshold choice or heavy application usage,
SERVERINACTIVITY can create large test cases with many requests
per test case. The overhead of maintaining and executing such large
test cases may not practical, especially in the case of heavy, contin-
uous application usage.

3.2 Augmented User Sessions
To address the disadvantage of breaking up the logical user ses-

sions in the other multi-user interaction approaches, we present a
third approach: AUGMENTEDUSERSESSIONS. This approach has
the advantages of replaying the whole captured log while providing
reasonably-sized test cases to ease in debugging and testing. The
algorithm for generating test cases is in Figure 4.

The captured log in Figure 1 (a) is converted into test cases by
AUGMENTED USER SESSIONSas shown in Figure 1 (e).Test
Case 1contains all the requests made byuser1and any other re-
quests made at the same time thatuser1was using the application.

The advantage of using AUGMENTED USER SESSIONSis that the
test cases capture unbroken groups of logical user sessions, while
still capturing multi-user interaction that may affect thestate of the
system. As shown in Figure 1 (e), a request may be contained in
multiple test cases and the size of the test cases might become large
and difficult to manage for some applications. Generating these test
cases costs more than the other techniques (including USER SES-
SIONS) because we need to logically divide the user sessions before
augmenting them.

3.3 Summary of Tradeoffs
In this section, we presented three alternatives to user sessions as

test cases and discussed the benefits and limitations of eachtech-
nique informally; a qualitative summary of the tradeoffs between
the test-case generation techniques is in Table 1. Our proposed ap-
proaches address the limitation of USER SESSIONS, namely that
user sessions as test cases fail to capture multi-user interactions.
However, the proposed approaches have their own benefits and
drawbacks. FIXED-TIME BLOCK and SERVER INACTIVITY re-
quire the tester to choose an appropriate time length or thresh-
old and the resulting test cases may break logical user sessions
across multiple test cases, unlike AUGMENTED USER SESSIONS.
Splitting logical user sessions will cause FIXED-TIME BLOCK and
SERVER INACTIVITY to cover more error code than AUGMENTED

USERSESSIONS; which technique covers more code in practice is
the subject of our case study in the next section.

In terms of test case generation cost, the worst case time foreach
generation algorithm isO(n), wheren is the number of requests
in the log. In practice, the algorithm for AUGMENTED USERSES-
SIONS is more expensive because it requires calculating user ses-
sion boundaries in addition to augmenting the test cases. However,
the ability of test cases to model user behavior and the expense of
executing the test cases are more important considerationsthan the
initial test case generation cost.

3.4 Implementation
The capture/replay system is part of our web application testing

framework [15]. Our system for capture/replay consists of three
components: logging, test-case generation, and replay. Our log-
ging tool records user requests, including URL data and cookies.
The log is the input to our suite of test-case generation tools, which
implements the test case generation algorithms. We implemented
customized replay tools using HTTPClient [7], which handles get
and post requests, file uploading, and maintaining the client’s ses-
sion state. For test cases that contain requests from multiple users,
the requests are tagged with time and session information sothat
the tool can maintain the state for each user, as described inSec-
tion 2. For more details about our framework, refer to [15].

Except for AUGMENTEDUSERSESSIONS, the USERSESSIONS,
FIXED-TIME BLOCK, and SERVER INACTIVITY algorithms are
implemented exactly as presented. However, for AUGMENTED

USER SESSIONS, a single logged request may appear in multiple
test cases—effectively replaying portions of logical usersessions
multiple times. However, for our coverage studies, since replay-
ing the full test suite is equivalent to replaying the log, wehave
slightly modified the implementation so that the same request is not
replayed multiple times; the implementation change will manifest
itself in the time results.

4. CASE STUDY
To evaluate the differences between the testing strategies, we ap-

plied the strategies to the captured log of a deployed web appli-
cation. Each test case generation technique is partitioning or pro-

6.4

Test Suite Benefits Drawbacks
USER SESSIONS Represent logical user sessions No multi-user interaction
FIXED-TIME BLOCK Multi-user interaction; variable-sized test

cases
Requires smart time out; likely to split user sessions
across test cases

SERVER INACTIVITY Multi-user interaction; variable-sized test
cases

Requires smart threshold; may split user sessions
across test cases

AUGMENTED USER SESSIONS Represent logical user sessions; Multi-user in-
teraction

Larger test cases than USER SESSIONS; higher cost to
generate test cases

Table 1: Qualitative Comparison of Techniques

Classes Methods NCLOC Statements
355 1534 61720 27136

Table 2: Subject Application Characteristics

Tot URLs Distinct URLs 25th % Median Gap 75th % Avg Gap
16275 443 4 s 24 s 74s 13 mins

Table 3: Log Characteristics

cessing the original server log in different ways. We would like to
compare the resultant types of test cases in terms of

1. Effectiveness – program coverage

2. Efficiency – the cost of test suite generation and replay

4.1 Subject Application
Our research group developed a customized web application for

maintaining a digital publications library based on DSpace, an open-
source digital repository system [5]. The application automatically
generates sorted publications pages from a database that research
group members maintain through a web application interface. A
user can create dynamic views of publications by searching with
different criteria. DSpace is written in Java Servlets and JSPs that
deliver HTML content to the user and uses a PostGreSQL database
and a filestore backend. We collected field data after publicizing
our digital library in August 2005.

DSpace’s application and log characteristics from August 2005
through February 2006 are in Tables 2 and 3, respectively. The ap-
plication characteristics include both the JSP and Java code. From
the log characteristics in Table 3, we see that the time gap between
most consecutive requests is very short—less than a minute differ-
ence between them.

4.2 Methodology

4.2.1 Variables and Measures
Our experiment involves one independent variable: the testcase

generation technique. The test case generation techniquesexam-
ined are USER SESSIONS, FIXED-TIME BLOCK, SERVER INAC-
TIVITY , and AUGMENTED USERSESSIONS.

To answer the previously stated research goals, we evaluated
generated test cases in terms of efficiency and effectiveness. We
used three dependent variables as our measures: program cover-
age, cost of generation, and replay cost for suite.

4.2.2 Experiment Design
We performed our experiments within the experimental frame-

work described in our previous work [15]. We use Cenqua’s Clover [3]
to collect statement, condition, and branch coverage.

We implemented each test case generation technique in Java.
We executed each technique on DSpace’s captured access logsto
generate the suite of test cases. Because the test suites generated

by FIXED-TIME BLOCK and SERVER INACTIVITY depend on the
chosen length of time or inactivity threshold, we generate three
test suites for FIXED-TIME BLOCK, using timeouts of one minute,
one hour, and six hours based on the log characteristics in Table 3
and our intuitions about what lengths of time would capture ef-
fective test cases. We chose an inactivity threshold of 25 minutes
for SERVER INACTIVITY after statistically analyzing the inactivity
gaps in two very different web applications, a conference registra-
tion and submission manager as well as DSpace. We found that
75% of the server inactivity periods were greater than 25 minutes.
Therefore, an inactivity period of 25 minutes will merge 25%of
the logical user sessions in test cases. To replay the test cases, we
used our customized Java replay tools. We collected generation and
replay costs as well as coverage for each suite.

4.3 Threats to Validity
One threat to validity of our experiments is our lack of large

captured logs—logs that contain millions of accesses, rather than
thousands. Because we conducted our case study on one applica-
tion with its own unique usage characteristics, we cannot generalize
our results to all web applications; however, we believe ourappli-
cation is complex enough and we collected a large enough log to be
able to evaluate some of the differences between the techniques. In
addition, the machines we used to run experiments were not dedi-
cated to our experiments; other users, other experiments, backups,
and network activity may affect the timing results.

5. RESULTS AND ANALYSIS
In this section, we present the results of our case study as well

as our analysis of these results. Table 4 summarizes the results for
test suite size, number of statements covered, generation time, and
replay time for all generated suites.

5.1 Program Coverage Effectiveness
From Table 4, the statement coverage for most of the test suites

was comparable (within 400 statements), covering around 63% of
the code. We do not expect 100% coverage because using field
data as test cases will only cover the code that users access.An-
alyzing our coverage reports, we found that most of the uncov-
ered code was in alternative classes that our configuration did not
use. The remaining uncovered code was administrative function-
ality and classes used to initialize the system because we started
logging user sessions after this phase.

AUGMENTED USERSESSIONScovers the most statements. Be-
cause AUGMENTED USER SESSIONSreplays the log similarly to
the deployed execution with interacting users, the emulated users
primarily maintain the appropriate state and the application behaves
as expected, covering the most code. We did observe requeststhat
did not match deployed behavior, which we believe was causedby
a change in the code. Inevitably, because of DSpace’s dependence
on state, USERSESSIONSwill execute error code (often redundant
in our study) instead of the correct behavior. We attribute the much
smaller coverage of the hourly and minute test suites to splitting the

6.5

Metric User Session Hourly Minute 6-hour Server Inactivity Augmented User Sessions (Log)
Number of Test Cases 1342 1769 8447 508 1814 1342 (1)
Statements Covered 17536 15713 12270 17674 17745 17866
Generation Time Per Suite (s) 9 11 52 5 14 16 (1)
Suite Replay Cost (mins) 76 102 216 73 75 52

Table 4: Comparison of Test Suites

Comparison Hourly Minute 6-hour Server Inactivity Augmented User Sessions
US ∪ A 17630 17638 17731 17947 17971
US ∩ A 15585 12141 17445 17300 17363
(US ∪ A) - (US ∩ A) 2045 5497 286 647 608
US - A 1934 5381 74 219 156
A - US 111 116 212 428 452

Table 5: Comparison of Statement Coverage of Alternative Test Case Generation Techniques (A) with USER SESSIONS(US)

logical user session across test cases and thus losing the session’s
state. These test suites execute error code more frequentlythan the
other test suites.

To help quantify the differences between the suites, we compare
the statement coverage of USER SESSIONSwith the other suites,
shown in Table 5. The first row is the combined number of state-
ments that the suites cover, and the second row is the number of
statements in common that both suites cover. The third row isa
measure of how different the two suites are: the larger the total, the
more different the suites. The fourth row is the number of state-
ments USER SESSIONScovers but the alternative suite (A) does
not cover. Lastly, the fifth row is the number of statements that the
alternative suite covers (A) that USERSESSIONS(US) does not.

USER SESSIONSexecuted some code that the alternative suites
did not and vice versa. The best alternative techniques (SERVER

INACTIVITY and AUGMENTED USER SESSIONS) executed over
400 statements that USERSESSIONSmissed. We attribute most of
the code unique to USERSESSIONSto statements that handle state
inconsistencies caused by the USERSESSIONS’s loss of multi-user
interactions. For example, when replaying USERSESSIONS, some
of the publications were not uploaded or were not approved for in-
clusion in the digital library because of inconsistencies between the
publication identifier in the URL and the publication identifier that
the executing server expected. Instead of executing the expected
code, USER SESSIONScovers error code in a servlet that handles
displaying publications because the publication id is not valid.

For DSpace, replaying both USERSESSIONSand AUGMENTED

USERSESSIONSyields the largest number of statements executed—
in only two hours.

5.2 Test Suite Generation & Replay Costs
Test suite generation consists of two costs: parsing the server log

and generating suites. The time required for parsing the server log
is dependent on the number of requests—a constant across allour
techniques except for AUGMENTED USER SESSIONS. We auto-
matically generated each test suite in less than a minute, asshown
in Table 4. Creating test cases seems to dominate the cost of gen-
erating suites because the cost closely matches the number of gen-
erated test cases.

The cost of replaying the test suites was on the order of an hour.
The time to replay the multi-user capturing test cases was ingen-
eral higher because of the cost of maintaining the state for multiple
users and replaying each request as the appropriate user. Inaddi-
tion, test suites with more test cases will take more time to replay
due to the increased overhead of starting our Java replay tool once
for every test case.

We attribute AUGMENTED USERSESSIONS’s faster replay time
to two factors: a) we preprocessed the requests into one large test

case so that we did not replay the same URL multiple times and
b) the suite executes less error code; depending on the errorcode
executed, the server will return an empty response, which causes
the replay tool to repeat the request.

5.3 Preliminary Analysis
Our case study revealed interesting results: even though each test

suite replayed the same requests, the order in which requests were
replayed and how session state was maintained affected the appli-
cation’s behavior. While all test suites executed the same 12K state-
ments, each test suite covered additional unique code: USER SES-
SIONS executed error code because of out-of-order replay, while
FIXED-TIME BLOCK and, to a lesser extent, SERVER INACTIV-
ITY executed error code because session state was not maintained
appropriately (due to split in the logical user sessions).

To maximize DSpace coverage, test cases should maintain log-
ical user sessions and capture multi-user interactions. Inour case
study, AUGMENTEDUSERSESSIONScovered the most statements.
While not explicit, SERVER INACTIVITY maintained user sessions
in our experiment, as a side effect of using an accurate inactivity
threshold. Combining test suites from different generation strate-
gies provides more coverage than using the test suites from each
technique in isolation.

The unique code covered by the suites other than AUGMENTED

USER SESSIONSmay not be worth their replay cost because the
same code is executed frequently by the multiple test cases in the
suite. In the future, we are interested in studying the marginal in-
crease in coverage by the test cases from the different test case gen-
eration techniques. We believe that FIXED-TIME BLOCK (Minute
or Hourly) will create suites where latter test cases improve cover-
age of earlier test cases only marginally.

Choosing and replaying an appropriate reduced suite may be suf-
ficient to address the issue of multiple test cases covering the same
code. After removing the redundant test cases from each testsuite,
we believe that we will be left with different types of test cases.
For example, as we have shown in previous work [14], reducing
USERSESSIONSresults in a reduced suite that represents the set of
different use cases of the application. Reducing a test suite created
by FIXED-TIME BLOCK or SERVER INACTIVITY will likely select
test cases from different application usage cycles. Reducing suites
generated by AUGMENTED USERSESSIONScreates test cases that
contain unique logical user sessions and multi-user interactions. In
the future, we plan to reduce the suites from the different test case
generation strategies and evaluate their cost-effectiveness.

We were also interested in investigating whether it is more im-
portant to capture multi-user interactions or logical usersessions in
the test cases. From our results, USER SESSIONS, which does not
capture multi-user interaction, covers less code than a time-based

6.6

technique such as FIXED-TIME BLOCK (6-hour) or SERVER IN-
ACTIVITY . Both FIXED-TIME BLOCK (6-hour) and SERVER IN-
ACTIVITY maintain multi-user interaction at the cost of some loss
in maintaining logical user sessions, although this was notthe case
for the other time-based techniques. For our subject application, it
appears that it is more important to capture multi-user interactions
than maintain logical user sessions. However, we do not expect this
to hold true for web applications that do not have state dependen-
cies caused by multi-user interaction.

From our preliminary results, AUGMENTED USER SESSIONS

best imitates the deployed application behavior. Depending on the
time interval/threshold selected FIXED-TIME BLOCK and SERVER

INACTIVITY are likely to imitate deployed application behavior.
However, small intervals of FIXED-TIME BLOCKor inappropri-
ately selected inactivity threshold values will split logical user ses-
sions to such an extent that the resulting loss in session state will
make it impossible to mimic deployed behavior.

5.4 Observations
Beyond the results of our case study, we also informally ob-

served different application behaviors by replaying the alternative
test suites. We inadvertently performed load testing on ourappli-
cation. While we had no problem replaying USER SESSIONSon
the application, our server and the application could not handle the
high load created by replaying the other test suites, which gener-
ated many more sessions at a high rate. Since users do not have
an explicit “end” or “close” request to end their session, the server
typically throws out the session after some period of inactivity. The
default timeout for the Resin web server is 30 minutes. In oursys-
tem, we replay a month’s worth of requests in about 10 minutes.
The server must have enough resources to handle all of the requests,
otherwise it does not have time to clean out sessions and muststart
dropping requests.

Replaying the test cases with multi-user interaction also exposed
a known problem in DSpace’s underlying text search engine with
too many open files, which has been addressed in later versions of
DSpace.

We also observed that, in a few cases, replaying the SERVER IN-
ACTIVITY test suite exhibited behavior similar to actual deployed
application behavior that AUGMENTED USER SESSIONS replay
failed to mimic. Upon inspection, we believe that somethingun-
usual happened—perhaps on the client-side or on the network—
that is not captured in our log because the user was not behaving
as expected. This was an interesting observation, contraryto our
intuitions, but we cannot make any conclusive claims regarding the
replay accuracy of SERVER INACTIVITY over the captured log.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented and evaluated several new approaches

to generating test cases from field data that address the lossof
multi-user interaction in current user-session-based testing tech-
niques. In terms of generation cost, replay cost, and coverage, our
techniques generated alternative suites that provide moremulti-user
interactions and have comparable coverage to user-session-based
testing. However, user-session-based testing does execute some
code not executed by our suites.

We have not yet fully compared our approaches to current user-
session-based testing techniques. In the future, we plan toevaluate
the approaches on multiple applications with different application
and usage characteristics. We also will evaluate the test suites in
terms of their relative abilities to expose faults. Becausewe are
likely to generate large, redundant test suites from the field data,
we also want to compare the reduced suites derived from each suite.

Although difficult to evaluate, another metric to consider is the ease
with which a user can locate a bug from a test case. Based on these
experiments, we can then make recommendations to testers about
appropriate test-case generation techniques, given theirapplication
and usage characteristics.

Acknowledgments
We thank Frank Zappaterrini for building one of the replay tools
and Frank Zappaterrini and Madhu Nayak for customizing DSpace.

7. REFERENCES
[1] A. Andrews, J. Offutt, and R. Alexander. Testing web

applications by modeling with FSMs.Software Systems and
Modeling, 4(2), April 2005.

[2] R. Binder.Testing Object-Oriented Systems. Addison
Wesley, 2000.

[3] Clover: Code coverage tool for Java.
<http://www.cenqua.com/clover/>, 2006.

[4] G. DiLucca, A. Fasolino, F. Faralli, and U. D. Carlini.
Testing web applications. InInternational Conference on
Software Maintenance, page 310, October 2002.

[5] DSpace Federation.<http://www.dspace.org/>, 2006.
[6] S. Elbaum, S. Karre, and G. Rothermel. Improving web

application testing with user session data. InProceedings of
the 25th International Conference on Software Engineering,
pages 49–59. 2003.

[7] HTTPClient V0.3-3.
<http://www.innovation.ch/java/HTTPClient/>, 2006.

[8] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. InPLDI ’03:
Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation, pages
141–154, 2003.

[9] C.-H. Liu, D. C. Kung, and P. Hsia. Object-based data flow
testing of web applications. InFirst Asia-Pacific Conference
on Quality Software, 2000.

[10] Michal Blumenstyk. Web Application Development -
Bridging the Gap between QA and Development.
<http://www.stickyminds.com>, 2002.

[11] J. Offutt, Y. Wu, X. Du, and H. Huang. Bypass testing of
web applications. InIEEE 15th International Symposium on
Software Reliability Engineering, pages 187–197, Nov. 2004.

[12] A. Orso and B. Kennedy. Selective capture and replay of
program executions. InProceedings of the Third
International Workshop on Dynamic Analysis (WODA),
pages 1–7, May 2005.

[13] F. Ricca and P. Tonella. Analysis and testing of web
applications. InProceedings of the 23rd International
Conference on Software Engineering, pages 25–34, 2001.

[14] S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and
A. Souter. Analyzing clusters of web application user
sessions. InProceedings of the Third International Workshop
on Dynamic Analysis (WODA), May 2005.

[15] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock.
Automated replay and fault detection for web applications.
In Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE05),
pages 253–262, November 2005.

6.7

