
Optimizing AspectJ with abc

McGill Oxford Aarhus

Laurie Hendren Oege de Moor Aske Simon
Jennifer Lhoták Pavel Avgustinov Christensen
Ondřej Lhoták Sascha Kuzins
Chris Goard Damien Sereni

Clark Verbrugge Ganesh Sittampalam
Julian Tibble

– p.1/49

Outline

AspectJ introduction

Challenges of building a compiler for AspectJ

abc as an extensible and optimizing compiler

Optimizations implemented with abc

Future Work

– p.2/49

AspectJ Programming Language

a seamless aspect-oriented extension to Java

originally developed at Xerox PARC

tools for AspectJ now developed and supported by
the Eclipse AspectJ project

ajc compiler for the AspectJ language
(http://eclipse.org/aspectj)

▽ – p.3/49

AspectJ Programming Language

a seamless aspect-oriented extension to Java

originally developed at Xerox PARC

tools for AspectJ now developed and supported by
the Eclipse AspectJ project

ajc compiler for the AspectJ language
(http://eclipse.org/aspectj)

abc, the aspect bench compiler , is a new,
alternative compiler for the AspectJ language,
designed for extensibility and optimization
(http://aspectbench.org)

– p.3/49

AspectJ Introduction

introduce a small Java program, a little expression
interpreter

illustrate three main uses of AspectJ by applying it to
this small example

aspects for additional static checking at compile
time
adding fields/classes/constructors to classes via
aspects
dynamic aspects for applying advice (code) at
specified run-time events

– p.4/49

Example Java Program - expression interpreter

Consider a small interpreter for an expression language,
consisting of:

SableCC-generated files for scanner, parser and tree
utilities in four packages: parser , lexer , node and
analysis .

main driver class, tiny/Main.java , which reads
the input, invokes parser, evaluates resulting
expression tree, prints input expression and result.

expression evaluator class, tiny/Evaluator.java

> java tiny.Main
Type in a tiny exp followed by Ctrl-d :
3 + 4 * 6 - 7
The result of evaluating: 3 + 4 * 6 - 7
is: 20

– p.5/49

AspectJ for Static (compile-time) Checking

Programmer specifies a pattern describing a static
program property to look for and a string with the
warning text.

An AspectJ compiler must check where the pattern
matches in the program, and issue a compile-time
warning (string) for each match.

public aspect StyleChecker {
declare warning :

set (!final !private * *) &&
!withincode (void set * (..)) :
"Recommend use of a set method.";

}

– p.6/49

Using the StyleChecker aspect

The compilation:

abc StyleChecker.java * / * .java

produces the compile-time output:

parser/TokenIndex.java:34:
Warning -- Recommend use of a set method.

index = 4;
ˆ-------ˆ

...

– p.7/49

AspectJ for Intertype Declarations

Programmer specifies, in a separate aspect, new
fields/methods/constructors to be added to existing
classes/interfaces.

An AspectJ compiler must weave in code to
implement these additions.

Other classes in the application can use the added
fields/members/constructors.

In our example, we can use an aspect to add fields
and accessors to the code generated by SableCC,
without touching the generated classes.

– p.8/49

Intertype Declarations - example

All AST nodes generated by SableCC are
subclasses of node.Node .

We must not directly modify the code generated by
SableCC.

public aspect AddValue {
int node.Node. value; // a new field

public void node.Node. setValue(int v)
{ value = v; }

public int node.Node. getValue()
{ return value; }

}

– p.9/49

Using the AddValue aspect

abc AddValue.java * / * .java

where, the evaluator visitor can be now written using the
value field to store intermediate values.

public void outAMinusExp(AMinusExp n)
{ n.setValue(n.getExp().getValue() -

n.getFactor().getValue());
}

instead of the “old" way of storing intermediate values in a
hash table. The aspect-oriented method is more efficient
because fewer objects are created during the evaluation.

– p.10/49

AspectJ for Dynamic Advice

Programmer specifies a pattern describing run time
events, and some extra code (advice) to execute
before/after/around those events.

An AspectJ Compiler must weave the advice into the
base program for all potentially matching events.

▽ – p.11/49

AspectJ for Dynamic Advice

Programmer specifies a pattern describing run time
events, and some extra code (advice) to execute
before/after/around those events.

An AspectJ Compiler must weave the advice into the
base program for all potentially matching events.

Since events can depend on dynamic information:
some execution state may need to be tracked, and
some advice may be conditional on the result of a
dynamic residue test.

– p.11/49

The basic idea - observing a program execution

Execution Trace of base program

 " all calls to genExpr"

Look for:
 "all executions of the body
 of a main method"

Just after such executions,
 "print the value of the
 counter"

execution(main)
 ...
 call(genStmt)
 ...
 call(genWhileStmt)
 ...
 call(genExpr)
 ...
 call(genExpr)
 ...
 call(genExpr)
 ...
 call(genStmt)

 call(genAssignStmt)
 ...
 call(genExpr)
 ...
 ...
 ...
 ...
 ...

 ...

Just before such calls,
 " increment the counter"

Initialize a counter to 0

Observers

Look for:

– p.12/49

The basic idea - with AspectJ terminology

Initialize a counter to 0

 " all calls to genExpr"

Look for:
 "all executions of the body
 of a main method"

Just after such executions,
 "print the value of the
 counter"

execution(main)
 ...
 call(genStmt)
 ...
 call(genWhileStmt)
 ...
 call(genExpr)
 ...
 call(genExpr)
 ...
 call(genExpr) Just before such calls,

 " increment the counter"

Aspect

Joinpoint (observable event)

Advice (observers)

Pointcut (what to match)

Look for:

– p.13/49

Example expressed using AspectJ

public aspect CountGenExpr {
int count = 0;
// advice to count calls to genExpr
before () : call (String genExpr(..))

{ count++; }

// pointcut to match execution of main
pointcut main() :

execution (public static void main (String[]));

// advice to print out counter after exec of main
after () : main()

{ System.err.println("# expr eval: " + count); }
}

– p.14/49

Compile-time matching and weaving

...

Base Java Code Aspect(s)

Library

...

+

AspectJ Compiler
(ajc or abc)

Woven Java bytecode
– p.15/49

After matching and weaving

public final void before$1()

 int count = 0;

public class CountGenExpr {
// aspect fields

 private static final CountGenExpr
singleton = new CountGenExpr();

// singleton aspect instance

public static CountGenExpr aspectOf()
{ if (singleton != null)

else
 return(singleton);

 }

 ...

 { ...

 public String genStmt(...)

 throw new NoAspectBoundEx(...);

...

...
}

}

genExpr(...);

CountGenExpr.aspectOf().

genExpr(...);

CountGenExpr.aspectOf().

before$1();

before$1();

public class GenCode {

joinpoint shadows

woven advice { System.err.println("# eval:" +

}

public final void after$1()

 count); }

 { count++; }

// advice bodies

– p.16/49

Dynamic Advice - example 2

public aspect ExtraParens {
String around () :

execution (String node.AMultFactor.toString()) ||
execution (String node.ADivFactor.toString())
{ String normal = proceed ();

return "(" + normal + ")";
}

}

Compile: abc ExtraParens.java * / * .java
Run: java tiny.Main

The result of evaluating:
3 + (4 * 6) + (9 / 3)
is: 30

– p.17/49

Recap: uses of AspectJ for example

Static (compile-time) check: Check that accessor
methods are always used to set non-private non-final
fields.

Intertype declaration: Add a new field and
associated accessor methods to the
SableCC-generated node.Node class.

Dynamic advice:
Count the number of expressions evaluated.
Intercept calls to toString() for factors and add
surrounding parentheses, if they are not already
there.

– p.18/49

Challenges: front-end

AspectJ-specific language features, including
relatively complex pointcut (patterns) language.

Intertype declarations, need to be able to extend the
type system in non-trivial ways.

▽ – p.19/49

Challenges: front-end

AspectJ-specific language features, including
relatively complex pointcut (patterns) language.

Intertype declarations, need to be able to extend the
type system in non-trivial ways.

abc’s solution:
use Polyglot, an extensible framework for Java
compilers (Cornell)
express AspectJ language via LALR(1) grammar:
base Java grammar + additional grammar rules
for AspectJ
use Polyglot’s extension mechanisms to override
key points in type system to handle intertype
declarations.

– p.19/49

Challenges: back-end

Need to handle input from .java and .class files.

AspectJ compilers need additional modules:
matcher, weaver

need to produce efficient woven code (.class files)

▽ – p.20/49

Challenges: back-end

Need to handle input from .java and .class files.

AspectJ compilers need additional modules:
matcher, weaver

need to produce efficient woven code (.class files)

abc’s solution:
clean design of matcher and weaver using a
simplified and factored pointcut language
use Soot, which provides Jimple IR (typed
3-addr), standard optimizations, and an
optimization framework

– p.20/49

The abc approach

abc has been designed to be an:

extensible compiler:
easy to implement language extensions
build on two extensible frameworks, Polyglot and
Soot

▽ – p.21/49

The abc approach

abc has been designed to be an:

extensible compiler:
easy to implement language extensions
build on two extensible frameworks, Polyglot and
Soot

optimizing compiler:
convenient IR
good weaving strategies
standard compiler optimizations
AspectJ-specific optimizations

– p.21/49

The abc architecture

Backend

.class

Java bytecode

Polyglot−based frontend

Code generation and static weaving

Advice weaving and optimization

Aspect Info

.java

Jimple IR

Java AST

AspectJ AST Frontend

Separator

– p.22/49

Are there performance overheads?

From the AspectJ (ajc) FAQ:

"Though we cannot show it without a benchmark
suite, we believe that code generated by AspectJ
has negligible performance overhead. Inter-type
member and parent introductions should have
very little overhead, and advice should only have
some indirection which could be optimized away
by modern VMs."

– p.23/49

Really no significant overheads?

Studied overheads due to weaving in:
[10] Dufour, Goard, Hendren, de Moor, Sittampalam
and Verbrugge, Measuring the dynamic behaviour of
AspectJ programs, OOPSLA 2004.

In general, low overheads for large or cold simple
advice.

However, very high overheads in some cases:

around advice more complicated, leads to poor
space and/or time performance; and

cflow pointcuts need potentially expensive
dynamic checks.

– p.24/49

Example of around advice
public static String genExpr(Expr e, boolean verbose)

{ if (verbose)
log("Generating Expr " + e);

if (e instanceof Literal)
...

}
public static String genStmt(Stmt s, boolean verbose)

{ ... }

Want to intercept all calls to gen* methods and
change second argument to false.

public aspect NeutralizeFlag {
String around (boolean flag) :

call (String gen * (* ,boolean)) && args (* ,flag)
{ if (flag) print("changing flag to false");

String s = proceed (false);
return(s);

}
}

– p.25/49

What’s tricky about around advice?
public aspect NeutralizeFlag {

String around (boolean flag) :
call (String gen * (* ,boolean)) && args (* ,flag)
{ if (flag) print("changing flag to false");

String s = proceed(false) ;
return(s);

}
}

...
str1 = genExpr(e,true);
...
str2 = genStmt(s,false);
...

proceed means different things, depending on the
joinpoint shadow being matched.

ajc has two approaches, (1) inlining/specialization and
(2) closures.

– p.26/49

ajc inlining/specialization approach
...
str1 = aroundBodyAdvice1(e,true); // genExpr(e,true);
...
str2 = aroundBodyAdvice2(s,false); // genStmt(s,false);
...

public static final String
aroundBodyAdvice1(Expr e, boolean v)

{ ...
aroundBody1(e,false); // proceed(false);
...

}

public static final String
aroundBody1(Expr e, boolean v)

{ return genExpr(e,v); }

possible code blowup due to many copies of advice

doesn’t work for proceed in local/anonymous classes
or circular advice

– p.27/49

ajc closure approach

can be used for all situations

ajc uses this approach when proceed is in a
local/anonymous class, circular advice, or with
-XnoInline

creates a closure class for each matching joinpoint
shadow, thus (potentially many classes).

each closure class contains a run method
specialized to the shadow.

one general version of the advice, takes a closure as
input

advice calls run method of closure for proceed

requires packaging arguments into arrays of Objects
which leads to a lot of allocation, boxing/unboxing
and casts

– p.28/49

abc generic switch-based approach (Kuzins M.Sc.)

Goals:
general-purpose strategy
avoid making multiple copies of advice
avoid many extra classes and creation of extra
objects

Strategy:
give each class containing a matching shadow a
static ClassId

within each class, give each matching shadow a
static ShadowId

use switches to dispatch to the correct
implementation of proceed

– p.29/49

abc generic switch-based approach - Example
public final String around$2 (boolean flag,

int shadowID, int classID, Object arg1, boolean arg2)
{ if (flag) ...

switch (classID) //implementation of proceed
{ case 1: s = CodeGen.proceed$2(shadowID,arg1,arg2);

break;
case 2: s = Main.proceed$2(shadowID,arg1,arg2);

break;
}
...

}

public class CodeGen {
...
public static String proceed$2(

int shadowID, Object arg1, boolean arg2)
{ String s;

switch (shadowID)
{ case 1: s = genExpr((Expr) arg1, false); break;

case 2: s = genStmt((Stmt) arg1, false); break;
...

}
return(s);

}
} – p.30/49

Postpass optimizations

Can start with the switch-based strategy and then
specialize some, or all shadows.

NeutralizeVerbose.aspectOf().

around$2(flag,1,2,e,verbose);

Can specialize/inline directly, or

specialize/inline to methods as done by ajc .
New Idea! ... recognize when specialized
methods are clones and only create one new
method.

– p.31/49

Benchmarks using around advice
Base Programs:

sim: a discrete event simulator for certificate
revocations
weka: machine learning library
ants: ant colony simulator (ICFP 2004 contest)

Aspects:
nullptr-rec: small advice to check for coding
standards (methods returning null), from Asberry.
nullptr: same as above, but fixed to remove
recursive application within advice body
delayed: captures output calls and delays to end,
example of the AspectJ worker pattern suggested
by Laddad, uses proceed in an inner class
profiler: large advice, applies to every method
call

– p.32/49

Time and space measurements

Time (s) Size (instr.)

Benchmark ajc abc abc ajc abc abc

switch inline switch inline+

+clone clone

sim-nullptr-rec 124.0 23.6 21.8 10724 8216 15089

sim-nullptr 21.4 21.9 19.9 10186 7893 8869

weka-nullptr-rec 45.5 18.9 16.3 130483 103401 148183

weka-nullptr 16.0 19.0 15.8 134290 103018 89029

ants-delayed 18.2 17.5 17.1 3785 3688 3965

ants-profiler 21.2 22.5 20.1 13401 7202 14003

.... on to cflow optimizations

– p.33/49

What is a cflow pointcut?

 { counter++; }

execution(main)
 ...
 call(genStmt)
 ...
 call(genWhileStmt)
 ...
 call(genExpr)
 ...
 call(genExpr)
 ...
 call(genExpr)
 ...
 call(genStmt)

 call(genAssignStmt)
 ...
 call(genExpr)
 ...
 ...
 ...
 ...
 ...

 ...

Execution Trace of base program

before(): call(* genStmt(..)) &&
 cflow(call(* genWhileStmt(..)))

– p.34/49

Original ajc implementation of cflow

For each cflow clause cflow (pointcut_expr)

Create a thread-local stack for this clause.

For each joinpoint shadow matching pointcut_expr,
insert update shadows:

before matching joinpoint shadow, weave a push
after matching joinpont shadow, weave a pop
each push and pop must retrieve correct
thread-local stack

To determine if clause cflow (pointcut_expr) is true,
weave a dynamic test (query shadow).

the clause cflow (pointcut_expr) is true when the
associated cflow stack is non-empty.

– p.35/49

Update and query shadows for our example

before (): call (* genStmt(..)) &&
cflow (call (* genWhileStmt(..)))

{ counter++; }

Update Shadows

context = ...;
cflowstack1.getThreadStack().push(context);
genWhileStmt(...);
cflowstack1.getThreadStack().pop();

Query Shadows

if (!cflowstack1.getThreadStack().isEmpty())
CountGenExpr.aspectOf().before$2(...);

genStmt(...);

– p.36/49

Optimized cflow in abc

Intraprocedural:

share identical cflow stacks
replace stacks with counters when no context
required
reuse thread-local stacks/counters within a
method

Interprocedural:

detect when query and/or update shadows are not
needed
needs a call graph ... but weaving changes call
graph

– p.37/49

Sharing identical cflow stacks

Often several cflow clauses are identical, and can
share the same cflow stack.

Typical example:

pointcut scope(): cflow (call (* MyPackage. * (..)));

pointcut one(): ... && scope();

pointcut two(): ... && scope();

...

pointcut foo(): ... && cflow (call (* MyPackage. * (..)));

Identify identical (up to α-renaming) cflow clauses
and assign them the same cflow stack.

Simplified version of this optimization has been
adopted in ajc1.2.1.

– p.38/49

Replacing stacks with counters

Original ajc (version 1.2 and earlier) always used
cflow stacks.

The stacks store an array of Objects, one element of
the array for each context value to be stored.

A common case is that there are no context values to
store.

In this case, use a thread-local counter, instead of
a thread-local stack.

This optimization has been adopted in ajc1.2.1.

– p.39/49

Reusing thread-local stack/counter within a method

According to the AspectJ semantics, each
stack/counter must be local to a thread.

Retrieving the thread-local stack/counter has a
significant overhead.

Only load a thread-local stack/counter once and
store reference in local variable.

Implemented by generating:

if (localStack1 == null)

localStack1 = cflowstack1.getThreadStack();

... and then optimizing away the unnecessary code
using a customized intra-procedural null pointer
analysis.

– p.40/49

Whole program optimizations to eliminate shadows

before (): call (* genStmt(..)) &&
cflow (call (* genWhileStmt(..)))

{ counter++; }

Query Shadows

if (!cflowstack1.getThreadStack().isEmpty())
CountGenExpr.aspectOf().before$2(...);

genStmt(...);

Update Shadows

context = ...;
cflowstack1.getThreadStack().push(context);
genWhileStmt(...);
cflowstack1.getThreadStack().pop();

– p.41/49

Examples: when can you eliminate shadows?

Never matches
public static void main(...)
{ ...

output = genStmt(body,true);
...

}

Always matches or possibly matches
public static String genWhileStmt(Stmt s, boolean v)
{ outcond = genExpr(s.getExpr(),v);

outbody = genBody(s.getBody(),v);
...

}

public static String genBody(Stmt s, boolean v)
{ out = genStmt(s,v);

...
}

– p.42/49

Need to know the call graph, but weaving changes it

Weaving
Instructions

Jimple IR from
.class/frontend

Woven
Jimple

AspectInfo
from frontend

Matcher

Weaver
Analysis
Results

Matcher

Bytecode Gen.

Weaving
Optimiser

Optimize &
Analyser

– p.43/49

Interprocedural analyses for cflow

mayCflow: Set of statements whose execution may be
within given cflow

mustCflow: Set of statements which execute only
within given cflow

necessaryShadows: Set of stack updates observable by
some stack query

implemented using Jedd [PLDI2004]

even though the sets are large, the BDDs represent
them efficiently

using a points-to based call graph instead of a
CHA-based call graph leads to slightly more accurate
and faster cflow analyses

– p.44/49

Benchmarks using cflow

figure: small benchmark, part of AspectJ tutorial

quicksort: small example used in previous work on
cflow analysis [Sereni and de Moor, AOSD2003]

sablecc: count allocations in a phase of a compiler
generator

ants: identify allocations in a key simulator loop

LOD: Law of Demeter checker [Lieberherr, Lorenz
and Wu, AOSD2003]

Cona: Aspects for Contracts [Skotiniotis and Lorenz,
OOPSLA2004(companion)]

– p.45/49

Static measurements of cflow optimizations

Intraprocedural optimizations
only the ants benchmark needs a stack, rest can
use counters
numbers of stacks/counters greatly reduced (a lot
of sharing)

Interprocedural optimizations
all query and update shadows removed, except
for 1 in the sablecc benchmark

– p.46/49

Speedups due to cflow optimizations

Benchmark no-opt share share+ share+ +inter-proc
(sec) (sec) cntrs cntrs+

(sec) reuse
(sec) × no-opt (sec) × intra

figure 1072.2 238.3 90.3 20.3 (52.82) 1.96 (10.38)
quicksort 122.3 75.1 27.9 27.4 (4.46) 27.3 (1.00)
sablecc 29.0 29.1 22.8 22.5 (1.29) 20.4 (1.10)
ants 18.7 18.8 18.7 17.9 (1.04) 13.1 (1.37)
LoD-sim 1723.9 46.6 32.8 26.2 (65.80) 23.7 (1.11)
LoD-weka 1348.7 142.5 91.9 75.2 (17.93) 66.3 (1.13)
Cona-stack 592.8 80.1 41.2 27.4 (21.64) 23.1 (1.19)
Cona-sim 75.8 75.3 73.8 72.0 (1.05) 73.6 (0.98)

– p.47/49

Conclusions - Recap

abc is a new compiler for AspectJ which is extensible
and optimizing.

abc uses Polyglot to build an extensible front-end
and Soot to build an extensible back-end.

It is worth thinking about AspectJ-specific
optimizations, and abc has implemented
optimizations (PLDI05) to handle major overheads
identified in the OOPSLA04 study.

Need a special strategy for interprocedural analysis,
since weaving can make non-trivial changes to the
call graph.

– p.48/49

What’s next?

Both the abc team and others are implementing new
extensions of AspectJ.

tracematches to match on related traces of events
(OOPSLA05)
adding and extending open modules for AspectJ
(AOSD06)

Apply interprocedural analysis to statically check
more dynamic pointcuts and optimize tracematches.

Enable more powerful static checking of declare
constructs.

Lots more work by the abc team to come ... we
welcome users and benchmarks!

http://aspectbench.org
– p.49/49

	Optimizing AspectJ with abc
	Outline
	AspectJ Programming Language
	AspectJ Programming Language

	AspectJ Introduction
	Example Java Program - expression interpreter
	AspectJ for Static (compile-time)
Checking
	Using the 	exttt {	extbf {StyleChecker}} aspect
	AspectJ for Intertype Declarations
	Intertype Declarations - example
	Using the 	exttt {AddValue} aspect
	AspectJ for Dynamic Advice
	AspectJ for Dynamic Advice

	The basic idea - observing a program execution
	The basic idea - with AspectJ terminology
	Example expressed using AspectJ
	Compile-time matching and weaving
	After matching and weaving
	Dynamic Advice - example 2
	Recap: uses of AspectJ for example
	Challenges: front-end
	Challenges: front-end

	Challenges: back-end
	Challenges: back-end

	The abc approach
	The abc approach

	The abc architecture
	Are there performance overheads?
	Really no significant overheads?
	Example of 	exttt {	extbf {around}} advice
	What's tricky about 	exttt {	extbf {around}} advice?
	ajc inlining/specialization approach
	ajc closure approach
	abc generic switch-based approach (Kuzins M.Sc.)
	abc generic switch-based approach - Example
	Postpass optimizations
	Benchmarks using 	exttt {	extbf {around}} advice
	Time and space measurements
	What is a 	exttt {	extbf {cflow}} pointcut?
	Original ajc implementation of 	exttt {	extbf {cflow}}
	Update and query shadows for our example
	Optimized 	exttt {	extbf {cflow}} in abc
	Sharing identical 	exttt {	extbf {cflow}} stacks
	Replacing stacks with counters
	Reusing thread-local stack/counter within a method
	Whole program optimizations to eliminate shadows
	Examples: when can you eliminate shadows?
	Need to know the call graph, but weaving changes it
	Interprocedural analyses for 	exttt {	extbf {cflow}}
	Benchmarks using 	exttt {	extbf {cflow}}
	Static measurements of 	exttt {	extbf {cflow}} optimizations
	Speedups due to 	exttt {	extbf {cflow}} optimizations
	Conclusions - Recap
	What's next?

