
Generating and Inferring Interface Properties for Static
Analysis

Mithun Acharya, Tao Xie, Jun Xu
Department of Computer Science

North Carolina State University
Raleigh NC USA 27695

{mpachary, xie, junxu}@csc.ncsu.edu

ABSTRACT
Software robustness and security are critical to dependable oper-
ations of computer systems. Robustness and security of software
systems are governed by various temporal properties. Static verifi-
cation has been shown to be effective in checking temporal proper-
ties. But manually specifying these properties is cumbersome and
requires knowledge of the system and source code. Furthermore,
many system-specific correctness properties that govern the robust
and secure operation of software systems are often not documented
by the developers. We design and implement a novel framework to
effectively generate a large number of concrete interface robustness
properties for static verification from a few generic, high-level user
specified robustness rules for exception handling. These generic
rules are free from any system or interface details, which are auto-
matically mined from the source code. We report our experience
of applying this framework to test robustness of POSIX-APIs in
Redhat-9.0 open source packages. Security properties that dictate
the ordering of certain system calls are usually inter-procedural un-
like robustness properties. In this paper, we present our ongoing re-
search that infers these properties directly from the program source
code by applying statistical analysis on model checking traces. We
are implementing our ideas in an existing static analyzer that em-
ploys pushdown model checking and thegcc compiler.

1. INTRODUCTION
Robustness and security of software systems are governed by

various temporal properties. Violations of these properties often
lead to system crashes, leakage of sensitive information, and se-
curity compromises. This paper focuses on effectively generating
these properties for static verification and proposes techniques for
automatically inferring these properties from the program source
code.

Stressful environment conditions often occur at interfaces where
software systems interact with its environment. It is well known
that many robustness failures are due to incorrect exception han-
dling from system interfaces. The exceptional interface values cre-
ate stressful environment and they should be properly handled. Tra-
ditional software testing focuses on correctness of functionality and

Proceedings of MASPLAS’06 Mid-Atlantic Student Workshop on Pro-
gramming Languages and Systems Rutgers University, April 29, 2006

is often insufficient for assuring the absence of interface-level ro-
bustness violations. Robustness testing has been especially con-
ducted to test the robustness of a system. The Fuzz project [10,
15,16] tested the external interface robustness of UNIX utilities by
generating random input streams. The Ballista project [12, 13, 19]
uses extreme input parameter values to test the robustness of sys-
tems call interface implementation. Similar approaches to that of
Ballista have also been applied to system call interfaces on Win-
dows [11, 17, 20]. These existing approaches consider the target
applications or operating systems as a black box, and send random
or exceptional input values through their system input interfaces.

However, robustness testing approaches cannot easily generate
implicit return exceptions through system interfaces, which are an
important type of sources for robustness problems. To assure the
absence of robustness problems related to system interfaces, we can
specify robustness properties for system interfaces and statically
verify [2–4, 7, 14, 18, 21] them against a software system. How-
ever, manually specifying a large number of interface properties
for static verification is often inaccurate or incomplete, apart from
being cumbersome.

To address these issues, we propose a novel framework that gen-
erates interface properties from a few generic, high level robustness
rules that capture interface behavior. Generic robustness rules are
specified at an abstract level that needs no knowledge of the source
code, system or interfaces. These generic rules are then translated
by our framework into concrete properties, verifiable by static an-
alyzers. The translation uses the information of the interfaces and
system, mined directly from the source code with the help of the
gcc compiler and certain data flow extensions. We implement our
framework for an existing static analyzer with our data flow exten-
sions and apply the framework to the well known POSIX-API sys-
tem interfaces. We analyze 10 Redhat-9.0 packages that use these
system interfaces.

While robustness properties are defined over interfaces, security
properties often involve multiple system calls. Most security prop-
erties can be defined by certain temporal orderings of system calls.
These robustness and security properties are usually system and ap-
plication specific. Documentation is usually not available for such
properties. In this research, we explore how we can automatically
infer robustness and security properties using statistical analysis on
model checking traces.

The rest of this paper is organized as follows. Section 2 presents
our framework for effectively generating interface robustness prop-
erties. Section 3 presents our preliminary evaluation results on
checking 10 Redhat-9.0 packages against the generated interface
robustness properties. Section 4 discusses our proposed techniques
to infer robustness and security properties from the program source
code. Section 5 concludes the paper.

2. ROBUSTNESS PROPERTY GENERATION
This section introduces our framework that effectively generates

interface robustness properties for static verification. The goal of
our framework is to allow developers to specify robustness rules
generically without the knowledge of the system, language, and
interface so that these rules can be verified against the system under
analysis. To abstract away these details from developers, we make
use of two key observations about interfaces and their robustness
rules. The first observation is that related interfaces have similar
structuralelements when specified at a certain abstract level. The
second observation is that most interface robustness violations are
temporal orderings of certainactions that could be performed on
interface or its elements.

specDB

patternDB

propertyEngineuse

called checked

error

start
call check

use

called checked

error

start

called checked

error

start
p=malloc()

p != null

!p

p == null

*p
p[]

p->x

called checked

error

start
p=malloc()

p != null

!p

p == null

*p
p[]

p->x

called checked

error

start
p=malloc()

p != null

!p

p == null

*p
p[]

p->x

called checked

error

start
p=malloc()

p != null

!p

p == null

*p
p[]

p->x

called checked

error

start
p=malloc()

p != null

!p

p == null

*p
p[]

p->x

called checked

error

start
p=malloc()

p != null

!p

p == null

*p
p[]

p->x

Generic Property

Generated
Concrete Properties

specs

patterns

Figure 1: A Framework for Concrete Property Generation

The overview of our framework is shown in Figure 1. Developers
define generic rules at a high level over interface elements and ac-
tions, without the details of interfaces and source code. The details
of interfaces are stored in a specification database (specDB) and the
source-code details of interface elements and actions are stored in a
pattern database (patternDB). The generic rules are translated into
concrete properties by apropertyEngine that queriesspecDB for
interface-level information andpatternDB for source-code level,
programming-language specific information. In the subsections
that follow, we identify the elements and actions that characterize
an interface and show how generic rules are defined and concrete
properties derived from them.

2.1 Interface Characterization
A set of interfaces (such as functions to be invoked) implemented

for a specific purpose have similar structural details at a high level.
We characterize an interface with its structural elements (such as
function parameters or returns) and actions that can be performed
on them (such as checking a function’s return for failure). The
characterization allows us to systematically store the interface and
language patterns for these interfaces in a database. For a given in-
terface, thepropertyEngine can query the database on the key-
words of elements or actions to get low-level details.

For any interfacei ∈ I, whereI is a related family of interfaces,
we define an interface specification as

spec(i) = {is(i), rs(i), ss(i),R,S,Z}

is(i) is the set of input parameters passed to the invocation ofi,
rs(i) is the result set, the set of variables that store the return values
of interface execution andss(i) is the status set, the set of variables
that store the failure status or type of failures of the interface. Any
variablev ∈ is(i)

⋃
rs(i)

⋃
ss(i) is called theelement of i. R is

a mapping fromrs(i) toZ, whileS is a mapping fromss(i) toZ,
whereZ holds the values that members ofrs(i) andss(i) would
assume on success or failure of interface execution. For a related

family of interfaces,I, we define anaction set as a set of actions
that can be performed on the interface itself or its elements.

For example,I could be POSIX-API interfaces andi ∈ I could
be malloc. Before a statement such asp = malloc(x) is ex-
ecuted in a program,is(malloc) is {x}, rs(malloc) is ∅ and
ss(malloc) is ∅. After the statement execution,rs(malloc) is
{p} andss(malloc) is {p}. For malloc, the return and the fail-
ure/success indicator are the same. If themalloc call succeeds,
p is a memory pointer (say,mptr) and then(p, mptr) ∈ R. If it
fails, p assumes valueNULL and(p, NULL) ∈ R. Because the re-
sult set and status set are the same formalloc, we haveS = R.
The setZ = {mptr, NULL} holds the success/failure indicators for
the malloc API. Some example actions that could be performed
onmalloc interface elements arecheck (which checks the return
againstNULL) anduse (which dereferences the return pointer).

Theaction set for the POSIX-API interfaces comprisesalias,
call, check, FALSE, failure, free, pass, return, success,
TRUE and use. The meanings of the actions are self-evident.
For example, whenever a return variable is aliased, the action per-
formed onv ∈ rs(i) (the return value of the interface execution)
is alias. The action of invoking the interface iscall. The action
of checking the interface return value or status against members in
Z is check. If check fails, the action isFALSE (for example,
if the checkp==NULL fails, the action isFALSE andp assumes
nonNULL value) The interface execution can either be afailure

or success. When the return variable is passed to another function,
apass action is said to be performed. When the function in which
the interface is executed returns, the action performed isreturn.
If check succeeds, the action isTRUE. Finally, when the return
value is used in program expressions, the action isuse. The in-
terface specification does not have any system or language specific
details. Details for each of the actions and elements are stored in
thepatternDB. We next show how interface robustness properties
can be formed by defining generic rules over interface elements and
actions.

2.2 Generic Robustness Rules
Generic rules for an interfacei ∈ I are defined over the members

of theaction set ofI. A generic rule is some ordering constraints
on the members of theaction set. We use the representation given
by Dwyer et. al. [6] shown in Figure 2 to represent generic rules.
In the figure,A andB are considered to be interface actions.

Property Patterns

 Occurrence: Occurrence of given action during system execution

Absence: No A in scope

Universality: A throughout scope

Existence: A must occur in scope

Bounded Existence: A occurs k times in scope

Order: Relative order of actions during system execution

 Precedence: A must precede B

Response: A must follow B

 Chain Precedence: m A’s should precede n B’s

 Chain Response: m A’s should follow n B’s

Figure 2: Action Patterns

Most of the robustness properties of interest can be typically
specified by temporal logic or regular expressions. To facilitate
property specification and later property checking, we do not con-
sider properties defined by rules such as Chain Precedence that
cannot be represented using a regular expression. We use a Finite
State Machine (FSM) to graphically represent a generic rule. The
FSM has a start state and an error state as well as other user-defined

states. A sequence of actions that violates the robustness property
represented by the FSM takes the FSM to the error state. The edges
of the FSM are members from theaction set. For example, for the
malloc interface, thecheck action should always be preceded by
theuse action. The FSM for such a rule is shown in Figure 3(a).
Generic robustness rules are currently manually specified.

called checked

error

start
p=malloc()

p != null

!p

p == null

*p
p[]

p->x

call check

use

called checked

error

start

(a) check should always precede use

generic property

(b) Concrete UseBeforeCheck property

for the malloc API call

Figure 3: Generic UseBeforeCheck property and the corre-
sponding concrete property formalloc API

To generate concrete property formalloc, propertyEngine
queries thespecDB to obtain details aboutmalloc and learns that
the return type ofmalloc is a pointer on success andNULL on fail-
ure. Based on this information, thepropertyEngine constructs
a query to thepatternDB that comprises the keywordcheck, the
data type of the return variable, and values on success and failure
(being a pointer in this case). ThepatternDB processes this query
and returns patterns for all the possible ways a pointer variable can
be checked againstNULL (or not NULL) (if(p==NULL), if(p),
if(!p), etc.). ThepropertyEngine expands the generic key-
word check to language and interface specific patterns. The same
procedure applies to the keywordcall (if(p=malloc(...))!=NULL,
p=malloc(...), etc.) anduse (p->x, *p, p[x], etc.). The gener-
ated concrete property is shown in Figure 3(b).

For our preliminary experiments and results, we manually gen-
erated the specification database for more than 280 POSIX-APIs.
The simplifiedspec-DB for POSIX-APIs is shown in Figure 4.
Although it is a one time effort, it is a tedious process. POSIX-
APIs are widely used and well known. Their specifications can
be found in UNIX manual pages. But most interfaces are system
or application specific and their specifications are often undocu-
mented. The return values of such interfaces on success and fail-
ure, error flag values, proper checking routines, correct usage of
a given interface or a set of interfaces cannot be immediately in-
ferred from inspecting source code. We propose to build a miner
that uses thegcc compiler to automatically extract such specifica-
tions for the interfaces used in the program. We implement simple
data flow analysis in the miner that allows to track the return vari-
able to infer check routines, exceptional return values, etc. The
information can be used to build the specification databasespecDB
for all the interfaces used in the program. Thepattern-DB is a
constant file specific to each programming language and contains
the source code information for different language operations (e.g.,
dereference, check) that can be performed on simple and complex
or dervied data types. Thepattern-DB can also be built for lan-
guages such as C++ and Java.

3. PRELIMINARY RESULTS
We apply our framework to the widely used POSIX-APIs and

check the generated concrete robustness properties for Redhat-9.0
packages. We informally enumerate the rules that we used to check
various open source packages as below. These properties reflect
the most common robustness violations for POSIX-APIs found in

return value
API parameter list

return

type on success on failure
errno

chmod const char * path , … int 0 -1 EPERM, …

open const char * pathname, … int fd -1 EEXIST, …

malloc size_t size void * pointer null pointer

fsetpos FILE * stream , … int 0 -1 EBADF, …

remove const char * pathname int 0 -1 EFAULT, …

Figure 4: Selected Entries from thespecDB for POSIX-APIs
(simplified for presentation)

software packages that use them.

• UseBeforeCheck: If the return value of an API call is a mem-
ory pointer on success and aNULL pointer on failure (we call
this API call ap:np API call), a variable that holds the return
value should always be checked before use or dereferencing.

• CheckDoesNotExist: If an API call returns only an integer
status value upon success or failure (e.g.,setuid returns
0 on success and -1 on failure), the status value should be
checked for failure.

• NullPointerDereferencing: A variabler that holds the return
value of ap:np API call should not be dereferenced on a
NULL path, which is a path wherer assumesNULL value
(e.g., a path to a location inside the true branch of “if (r
== NULL)”).

• NullPointerFree: A variable that holds the return value of a
p:np API call should not befree’d on aNULL path.

• FreePointerDereferencing: A pointer variable that isfree’d
should not be dereferenced.

• DoubleFree: A pointer variable is neverfree’d more than
once along all execution paths.

Figure 5 shows the composite generic FSM for allp:np proper-
ties for malloc. The “==NULL” transition denotes a comparison
with NULL and the “!=NULL” transition is the generic keyword for
a comparison with non-NULL. The “==cmp” state denotes that the
return variable is compared withNULL and “!=cmp” denotes that
the return variable is compared with non-NULL. The “==cmp” state
transits to theNULL state on TRUE indicating that the return vari-
able isNULL on the TRUE path. Aderef action (same asuse) in
the NULL state causes aNullPointerDereferencing violation. The
meanings of other keywords are self-evident. The generic FSM is
the composite of fivep:np robustness property stated above.

We used our framework to analyze open source packages written
in C mostly from the Redhat-9.0 distribution. In our experiments,
we used a Pentium IV machine with 2.8GHz processor speed and
1GB RAM running on the Fedora Core 3 2.6.9-1.667smp kernel. In
the experiments, we selected 10 widely used open source packages
from the Redhat-9.0 distribution; these 10 packages include near
100K lines ofC code. For static verification, we used a publicly
available static analyzer called MOPS [4, 5], which employs push-
down model checking to detect control flow errors at compile time.
It constructs a Push Down Automaton (PDA) for aC program from
its Control Flow Graph (CFG). It then generates a new PDA by
composing the property FSM to be checked and the program PDA.
The new PDA is model checked [9] to see if there is any path in the
program that takes the new PDA to an error configuration. If there
exists such a path in the program, the static checker reports the path
as the error trace that violates the concrete robustness property.

Figure 5: The generic FSM showing allp:np properties applied
to malloc

The generic properties listed above are data-flow sensitive, i.e.,
they are dependent on the value of the return variable along dif-
ferent execution paths. Because the basic MOPS static checker is
data-flow insensitive, it assumes that a given variable might take
any value. Therefore, it assumes that both branches of a conditional
statement may be taken and that a loop may execute anywhere be-
tween zero to infinite iterations. Because exception handling proce-
dures are usually characterized by conditional constructs that check
the return value of an API call, we write extensions to the static
analysis procedure in order to make it possible to track the value
of variables that take the return status of an API call along differ-
ent branches of conditional constructs. For each possible execution
sequence, our extensions associate a value to the variable that is
being tracked using pattern matching. The concrete properties (in
the form of FSMs) generated by thepropertyEngine are given
to the static analyzer enhanced with our data flow extensions. We
evaluate the effectiveness and usefulness of our framework as fol-
lows.

Effectiveness: A user only needs to specify a small set of generic
properties at a high level. ThepropertyEngine automatically
generates more than a thousand concrete properties from 6 gener-
ically specified rules for 280 POSIX APIs. For static verification,
we selected 60 critical API calls that are mainly used for memory
management, file and string I/O, permission management, setting
privileges, and spawning processes. We then generated concrete
properties for them across 6 generic properties using our property
generation framework. These APIs are frequently used in appli-
cations and their safe and robust usages are critical for reliability
and security. For these 60 APIs, more than 300 concrete rules were
generated and they were checked against the 10 Redhat-9.0 open
source packages for robustness violations.

Usefulness: Table 1(a) presents the total number of robustness
property violations our tool found for each of the checked pack-
ages. We found around 200 robustness violations in 10 Redhat-
9.0 open source packages. We have shown the API-level violation
breakdown for one selected package (SysVinit-2.84-13) in Ta-
ble 1(b). Of the 60 analyzed APIs, 19 of them gave violations with
this package. We reported the details of our experimental results
elsewhere [1]

4. PROPERTY INFERENCE

Table 1: Robustness violations detected for the open source
packages

package # errors

ftp-0.17-17 18

ncompress-4.2.4-33 6

routed-0.17-14 15

rsh-0.17-14 9

sysklogd-1.3.31-3 27

sysstat-4.0.7-3 24

SysVinit-2.84-13 64

tftp-0.32-4 14

traceroute-1.4a12-9 7

zlib-1.1.3-3 4

 (a) Overall Errors 10 Packages (b) Errors from SysVinit-2.84-13

API # errors API # errors

fdopen 1 chdir 2

closedir 1 fstat 3

fflush 2 malloc 1

fileno 1 open 2

fputc 1 fclose 12

fputs 2 putchar 1

fseek 2 unlink 4

ftell 1 write 4

getpwuid 1 setuid 1

close 26

Many system and application specific correctness rules govern
robust and secure operations of software systems; but these rules
are often not documented by the developers. While robustness
properties are defined over interfaces, security properties involve
multiple system calls. An important class of security properties
dictate how a system call or a set of system calls can be used in the
program. For example, if theexecl system function is called to ex-
ecute a user program with an immediately precedingsetuid(0),
the user program might get a root privilege to the system. Like
robustness properties, most security properties can be defined by
certain temporal orderings of system calls.

Engler et al. [8] show how certain properties can be mined by
inferring deviant behaviors in the source code. We use this obser-
vation to infer likely rules that a system specific interface or a set
of interfaces need to obey. We use thegcc compiler and simple
data flow analysis to output traces containing generic keywords for
a given interface or set of interfaces. Statistical analysis is applied
over these traces to infer generic rules, which then can be used by
our framework to generate concrete properties. We restrict the trace
generation to be intra-procedural because most robustness proper-
ties can be captured by such an analysis.

Intra-procedural analysis is sufficient to extract most robustness
properties from the source code. But many security properties that
dictate the ordering of system calls cut across procedural bound-
aries. For a given set of system calls, we use the inter-procedural
push down model checking procedure of our static analyzer to gen-
erate program traces. Our framework mines security properties
from these traces. We use program slicing techniques to reduce
the trace size. Program slicing causes the model checker to output
only the program statements that are relevant to the set of system
calls under consideration. This reduces the trace size and increases
the precision of property inference. Multiple packages can be ana-
lyzed to increase the trace size if system calls under consideration
are sparsely used in the package being analyzed. We are imple-
menting our ideas in thegcc compiler and an open source static
analyzer that employs push down model checking.

5. CONCLUSIONS
We have showed how large number of interface robustness prop-

erties can be generated for static verification from a few generically
specified rules. The users need no knowledge of system, source
code or interfaces to write generic rules. These details are mined
directly from the source code using thegcc compiler and certain
simple data flow extensions. We implemented this framework for
an existing static analyzer with our data flow extensions and applied
it to the well known POSIX-API system interfaces. Many system-
specific correctness rules govern the robust and secure operations
of software systems; but these rules are often not documented by
the developers. We presented our research ideas for inferring intra-

procedural generic robustness rules and inter-procedural security
properties directly from the program source code by applying sta-
tistical analysis on model checking traces. We are implementing
our ideas in thegcc compiler and an open source static analyzer
that employs push down model checking.

6. REFERENCES
[1] M. Acharya, T. Sharma, J. Xu, and T. Xie. Effective

generation of interface robustness properties for static
analysis. Insubmission to the International Conference on
Automated Software Engineering (ASE), 2006.

[2] K. Ashcraft and D. Engler. Using programmer-written
compiler extensions to catch security holes. InProceedings
of IEEE Symposium on Security and Privacy, 2002.

[3] T. Ball and S. Rajamani. Automatically validating temporal
safety properties of interfaces. InProceedings of Workshop
on Model Checking Software, SPIN, 2001.

[4] H. Chen, D. Dean, and D. Wagner. Model checking one
million lines of C code. InProceedings of NDSS 2004,
February 2004.

[5] H. Chen and D. Wagner. MOPS: an infrastructure for
examining security properties of software. InProceedings of
CCS 2002, November 2002.

[6] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property
specifications for finite-state verification. InInternational
Conference on Software Engineering, 1999.

[7] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system-specific, programmer-written
compiler extensions. InProceedings of the Fourth
Symposium on Operating Systems Design (OSDI), 2000.

[8] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: A general approach to inferring
errors in systems code. InProceedings of 18th ACM
Symposium on Operating Systems Principles (SOSP), 2001.

[9] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon.
Efficient algorithms for model checking push down systems.
In Proceedings of CAV, 2000.

[10] J. Forrester and B. P. Miller. An empirical study of the
robustness of Windows NT applications using random
testing. InProceedings of 4th USENIX Windows Systems
Symposium, August 2000.

[11] J. Haddox, G. Kapfhammer, C. Michael, and M. Schatz.
Testing commercial-off-the-shelf software components. In
Proceedings of the 18th International Conference and
Exposition on Testing, 2001.

[12] P. Koopman and J. DeVale. The exception handling
effectiveness of posix operating systems.IEEE Transactions
on Software Engineering, 26(9), September 2000.

[13] N. Kropp, P. J. Koopman, and D. P. Siewiorek. Automated
robustness testing of off-the-shelf software components. In
Proceedings of IEEE International Symposium on
Fault-Tolerant Computing (FTCS), 1998.

[14] D. Larochelle and D. Evans. Statically detecting likely buffer
overflow vulnerabilities. InIn 2001 USENIX Security
Symposium, 2001.

[15] B. Miller, L. Fredriksen, and B. So. An empirical study of
the reliability of UNIX utilities.Communications of the
ACM, 33(12), December 1990.

[16] B. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy,
A. Natarajan, and J. Steidl. Fuzz revisited: A re-examination
of the reliability of UNIX utilities and services.Computer

Science Technical Report 1268, University of
Wisconsin-Madison, 1995.

[17] M. Schmid, A. Ghosh, and F. Hill. Techniques for evaluating
the robustness of Windows NT software. InProceedings of
the 2000 DARPA Information Survivability Conference and
Exposition (DISCEX’00), January 2000.

[18] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting
format string vulnerabilities with type qualifiers. In
Proceedings of 10th USENIX Security Symposium, 2001.

[19] C. Shelton, P. Koopman, and K. DeVale. Robustness testing
of the Microsoft Win32 API. InProceedings of IEEE
International Conference on Dependable Systems and
Networks (DSN), June 2000.

[20] T. Tsai and N. Singh. Reliability testing of applications on
Windows NT. InProceedings of IEEE International
Conference on Dependable Systems and Networks (DSN),
June 2000.

[21] D. Wagner, J. S. Foster, E. Brewer, and A. Aiken. A first step
towards automated detection of buffer overrun
vulnerabilities. InProceedings of Network and Distributed
System Security Symposium, February 2000.

