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ABSTRACT is often insufficient for assuring the absence of interface-level ro-

Software robustness and security are critical to dependable oper-bUStness violations. Robustness testing has been espeC|_aIIy con-
ducted to test the robustness of a system. The Fuzz project [10,

ations of computer systems. Robustness and security of software )
P v 4 15, 16] tested the external interface robustness of UNIX utilities by

systems are governed by various temporal properties. Static verifi- : ) - :

cation has been shown to be effective in checking temporal proper- generating ran.dom input streams. The Ballista project [12, 13, 19]
ties. But manually specifying these properties is cumbersome and!SES €xtreme input parameter values to test the robustness of sys-
requires knowledge of the system and source code. Furthermore,tem.s call interface |mplemen_tat|0n. Similar approaches to that_of
many system-specific correctness properties that govern the robusPa”'Sti;‘a\lls 3'30 t;_e;]e n appl!eq to system ;‘all |nterf%cestr(]) n thn- t
and secure operation of software systems are often not documente(ﬁjow_s [ s . ese existing approaches consider the targe
by the developers. We design and implement a novel framework to appllcatlo_ns or.operatlng systems as a.black bo>§, and .Send random
effectively generate a large number of concrete interface robisstnes or exceptional input values through their system input mt_erfaces.
properties for static verification from a few generic, high-level user . H<_)v_vever, robustne_ss testing approachgs cannot eaS|_Iy generate
specified robustness rules for exception handling. These generic!MPIiCit return exceptions through system interfaces, which are an
rules are free from any system or interface details, which are auto- important type of sources for robustness problem'_s. To assure the
matically mined from the source code. We report our experience abse.nce of robustness prob]ems related to ;ystem interfaces, we can
of applying this framework to test robustness of POSIX-APIs in specify robustness properties for system interfaces and statically

Redhat-9.0 open source packages. Security properties that dictaté/erlfy [2-4, 7|’| 14, 18’.2.1] theT against g softh\_/atre fsystem. H(:.W'
the ordering of certain system calls are usually inter-procedural un- ever, manually spem_fylng a 'arge number of Interiace properties
like robustness properties. In this paper, we present our ongoing re_for_ static verification is often inaccurate or incomplete, apart from
search that infers these properties directly from the program sourcebe1'_ng ch:jmbersr(])me.. y  that
code by applying statistical analysis on model checking traces. We 10 address these issues, we propose a novel framework that gen-
are implementing our ideas in an existing static analyzer that em- erates interface properties from afew generic, high level robustness
ploys pushdown model checking and tiwe compiler rules that capture interface behavior. Generic robustness rules are

specified at an abstract level that needs no knowledge of the source
code, system or interfaces. These generic rules are then translated
1. INTRODUCTION by our framework into concrete properties, verifiable by static an-

Robustness and security of software systems are governed byalyzers. The translation uses the information of the interfaces and
various temporal properties. Violations of these properties often system, mined directly from the source code with the help of the
lead to system crashes, leakage of sensitive information, and segcc compiler and certain data flow extensions. We implement our
curity compromises. This paper focuses on effectively generating framework for an existing static analyzer with our data flow exten-
these properties for static verification and proposes techniques forsions and apply the framework to the well known POSIX-API sys-
automatically inferring these properties from the program source tem interfaces. We analyze 10 Redhat-9.0 packages that use these
code. system interfaces.

Stressful environment conditions often occur at interfaces where  While robustness properties are defined over interfaces, security
software systems interact with its environment. It is well known properties often involve multiple system calls. Most security prop-
that many robustness failures are due to incorrect exception han-erties can be defined by certain temporal orderings of system calls.
dling from system interfaces. The exceptional interface values cre- These robustness and security properties are usually system and ap-
ate stressful environment and they should be properly handled. Tra-plication specific. Documentation is usually not available for such
ditional software testing focuses on correctness of functionality and properties. In this research, we explore how we can automatically

infer robustness and security properties using statistical analysis on
model checking traces.

The rest of this paper is organized as follows. Section 2 presents
our framework for effectively generating interface robustnesp{pro
erties. Section 3 presents our preliminary evaluation results on
checking 10 Redhat-9.0 packages against the generated interface
robustness properties. Section 4 discusses our proposed techniques
to infer robustness and security properties from the program source
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2. ROBUSTNESSPROPERTY GENERATION family of interfacesZ, we define amction set as a set of actions

This section introduces our framework that effectively generates that can be performed on the interface itself or its elements.
interface robustness properties for static verification. The goal of ~For exampleZ could be POSIX-APl interfaces arid: 7 could
our framework is to allow developers to specify robustness rules P& mal I oc. Before a statement such ps= mal I oc(x) is ex-
generically without the knowledge of the system, language, and e€cuted in a programis(mal | oc) is {x}, rs(mal I oc) is ) and
interface so that these rules can be verified against the system undefs(mal | oc) is 0. After the statement executions(mal | oc) is
analysis. To abstract away these details from developers, we make{P} andss(mal I oc) is {p}. Formal | oc, the return and the fail-
use of two key observations about interfaces and their robustnesstre/success indicator are the same. If tiaél oc call succeeds,
rules. The first observation is that related interfaces have similar P iS @ memory pointer (saypt r) and then(p, nptr) € R. If it
structuralelements when specified at a certain abstract level. The fails, p assumes valusULL and(p,NULL) € R. Because the re-
second observation is that most interface robustness violations areSult sét and status set are the samentorl oc, we haveS = R.
temporal orderings of certaiactions that could be performed on ~ The setZ = {nptr,NULL} holds the success/failure indicators for

onnal | oc interface elements arheck (which checks the return
againstNULL) anduse (which dereferences the return pointer).
' specDB con c‘i::::f:emes The action set for the POSIX-API interfaces compris@§as,
Generic Property 1 call, check, FALSE, failure, free, pass, return, success,

specs TRUE anduse. The meanings of the actions are self-evident.

For example, whenever a return variable is aliased, the action per-
formed onv € rs(i) (the return value of the interface execution)
is alias. The action of invoking the interface isll. The action

of checking the interface return value or status against members in

Z is check. If check fails, the action isFALSE (for example,
pattern

propertyEngine

patterns

if the checkp==NULL fails, the action isf ALSE andp assumes
nonNULL value) The interface execution can either bgalure
or success. When the return variable is passed to another function,
apass action is said to be performed. When the function in which
the interface is executed returns, the action performedtsgrn.

The overview of our framework is shown in Figure 1. Developers |f check succeeds, the action BRUE. Finally, when the return
define generic rules at a high level over interface elements and ac-ya|ue is used in program expressions, the actioasis The in-
of interfaces are stored in a specification databsisedDB) and the details. Details for each of the actions and elements are stored in
source-code details of interface elements and actions are stored in ghepat t er nDB. We next show how interface robustness properties

pattern database4t t er nDB). The generic rules are translated into  can be formed by defining generic rules over interface elements and
concrete properties by oper t yEngi ne that queriespecDB for actions.

interface-level information anplat t er nDB for source-code level, .

programming-language specific information. In the subsections 2.2 Generic Robustness Rules

that follow, we identify the elements and actions that characterize  Generic rules for an interfadec 7 are defined over the members
an interface and show how generic rules are defined and concreteof the action set ofZ. A generic rule is some ordering constraints

Figure 1: A Framework for Concrete Property Generation

properties derived from them. on the members of thection set. We use the representation given
. . by Dwyer et. al. [6] shown in Figure 2 to represent generic rules.
2.1 Interface Characterization In the figure,A and B are considered to be interface actions.

A set of interfaces (such as functions to be invoked) implemented
for a specific purpose have similar structural details at a high level. Property Patterns

We characterize an interface with its structural elements (such as Occurrence: Occurrence of given action during system execution
function parameters or returns) and actions that can be performed Ab_Sencei No A in scope
on them (such as checking a function’s return for failure). The Universality: A throughout scope

Existence: A must occur in scope

Bounded Existence: A occurs & times in scope
Order: Relative order of actions during system execution

Precedence: A must precede B

characterization allows us to systematically store the interface and
language patterns for these interfaces in a database. For a given in-
terface, thepr opert yEngi ne can query the database on the key-
words of e_lements‘or actions to get low-level det_ails. _ Response: A must follow B

For any interface € Z, whereZ is a related family of interfaces, Chain Precedence: m A’s should precede 1 B’s
we define an interface specification as Chain Response: m A’s should follow 1 B’s

spec(i) = {is(1),rs(i), ss(i), R, S, Z}
Figure 2: Action Patterns
is(2) is the set of input parameters passed to the invocatian of
rs(i) is the result set, the set of variables that store the return values Most of the robustness properties of interest can be typically
of interface execution angs(z) is the status set, the set of variables specified by temporal logic or regular expressions. To facilitate
that store the failure status or type of failures of the interface. Any property specification and later property checking, we do not con-

variablev € is(i) [Jrs(i) U ss() is called theelement of . R is sider properties defined by rules such as Chain Precedence that
a mapping fromrs(z) to Z, while S is a mapping fromss(i) to Z, cannot be represented using a regular expression. We use a Finite
where Z holds the values that memberssof(i) andss(i) would State Machine (FSM) to graphically represent a generic rule. The

assume on success or failure of interface execution. For a related=SM has a start state and an error state as well as other user-defined



states. A sequence of actions that violates the robustness property
represented by the FSM takes the FSM to the error state. The edges

of the FSM are members from thetion set. For example, for the
mal | oc interface, thecheck action should always be preceded by
the use action. The FSM for such a rule is shown in Figure 3(a).
Generic robustness rules are currently manually specified.

use

(a) check should always precede use
generic property

p = null

called

p==null

(b) Concrete UseBeforeCheck property
for the malloc API call

Figure 3: Generic UseBeforeCheck property and the corre-
sponding concrete property formal | oc API

To generate concrete property foul | oc, propertyEngi ne
gueries thespecDB to obtain details aboutal | oc and learns that
the return type ofral | oc is a pointer on success aNdLL on fail-
ure. Based on this information, tlpe opert yEngi ne constructs
a query to thepat t er nDB that comprises the keyworktheck, the

data type of the return variable, and values on success and failure

(being a pointer in this case). That t er nDB processes this query
and returns patterns for all the possible ways a pointer variable can
be checked again®uLL (or not NULL) (i f (p==NULL), if(p),
if(!p), etc.). ThepropertyEngi ne expands the generic key-
word check to language and interface specific patterns. The same
procedure applies to the keywatdl! (i f (p=nal | oc(...))!=NULL,
p=nmal | oc(...), etc.) anduse (p- >x, *p, p[ x] , etc.). The gener-
ated concrete property is shown in Figure 3(b).

For our preliminary experiments and results, we manually gen-
erated the specification database for more than 280 POSIX-APIs.
The simplifiedspec- DB for POSIX-APIs is shown in Figure 4.
Although it is a one time effort, it is a tedious process. POSIX-
APIs are widely used and well known. Their specifications can
be found in UNIX manual pages. But most interfaces are system
or application specific and their specifications are often undocu-

mented. The return values of such interfaces on success and fail-

ure, error flag values, proper checking routines, correct ushge o
a given interface or a set of interfaces cannot be immediately in-
ferred from inspecting source code. We propose to build a miner
that uses thgcc compiler to automatically extract such specifica-
tions for the interfaces used in the program. We implement simple
data flow analysis in the miner that allows to track the return vari-
able to infer check routines, exceptional return values, etc. The
information can be used to build the specification databaseDB

for all the interfaces used in the program. Tl tern-DBis a
constant file specific to each programming language and contains
the source code information for different language operations (e.g.
dereference, check) that can be performed on simple and comple
or dervied data types. Thmt t er n- DB can also be built for lan-
guages such as C++ and Java.

3. PRELIMINARY RESULTS
We apply our framework to the widely used POSIX-APIs and
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Figure 4. Selected Entries from thespecDB for POSIX-APIs
(simplified for presentation)

software packages that use them.

e UseBeforeCheck: If the return value of an API call is a mem-
ory pointer on success andNalLL pointer on failure (we call
this API call ap:np API call), a variable that holds the return

value should always be checked before use or dereferencing.

CheckDoesNotExist: If an API call returns only an integer
status value upon success or failure (esgtui d returns

0 on success and -1 on failure), the status value should be
checked for failure.

NullPointer Dereferencing: A variabler that holds the return
value of ap:np API call should not be dereferenced on a
NULL path, which is a path where assumesNULL value
(e.g., a path to a location inside the true branchidf {r
NULL) ").

NullPointerFree: A variable that holds the return value of a
p:np API call should not bér ee’d on aNULL path.

FreePointerDereferencing: A pointer variable that ir ee'd
should not be dereferenced.

DoubleFree: A pointer variable is nevefrr ee’d more than
once along all execution paths.

Figure 5 shows the composite generic FSM forpatip proper-
ties fornmal | oc. The “==NULL”" transition denotes a comparison

with NULL and the f =NULL” transition is the generic keyword for

a comparison with nonJLL. The “==cnp” state denotes that the
return variable is compared wittULL and “ =cnp” denotes that
the return variable is compared with ndlbLL. The “==cnp” state
transits to theNULL state on TRUE indicating that the return vari-
able isNULL on the TRUE path. Aleref action (same asse) in
the NULL state causes BullPointer Dereferencing violation. The
meanings of other keywords are self-evident. The generic FSM is
the composite of fivg@:np robustness property stated above.

We used our framework to analyze open source packages written
n C mostly from the Redhat-9.0 distribution. In our experiments,

we used a Pentium IV machine with 2.8GHz processor speed and

1GB RAM running on the Fedora Core 3 2.6.9-1.667smp kernel. In
the experiments, we selected 10 widely used open source packages

;rom the Redhat-9.0 distribution; these 10 packages include near

100K lines ofC code. For static verification, we used a publicly
available static analyzer called MOPS [4, 5], which employs push-
down model checking to detect control flow errors at compile time.
It constructs a Push Down Automaton (PDA) fo€ arogram from

its Control Flow Graph (CFG). It then generates a new PDA by
composing the property FSM to be checked and the program PDA.

check the generated concrete robustness properties for Redhat-9.0he new PDA is model checked [9] to see if there is any path in the
packages. We informally enumerate the rules that we used to checkprogram that takes the new PDA to an error configuration. If there
various open source packages as below. These properties reflecéxists such a path in the program, the static checker reports the path
the most common robustness violations for POSIX-APIs found in as the error trace that violates the concrete robustness property.



@ Table 1: Robustness violations detected for the open source

packages
package # errors API #errors | API # errors

ftp-0.17-17 18 fdopen 1 chdir 2

ncompress-4.2.4-33 6 closedir 1 fstat 3

routed-0.17-14 15 fflush 2 malloc 1

1sh-0.17-14 9 fileno 1 open 2

sysklogd-1.3.31-3 27 fpute 1 fclose 12

sysstat-4.0.7-3 24 fputs 2 putchar 1

SysVinit-2.84-13 64 fseek 2 unlink 4

tftp-0.32-4 14 ftell 1 write 4

traceroute-1.4a12-9 7 etpwuid | 1 setuid 1

zlib-1.1.3-3 4 close 26

(a) Overall Errors 10 Packages (b) Errors from SysVinit-2.84-13
E1: use before check
E2 : NULL pointer deref o B
E3 : NULL pointer free Many system and application specific correctness rules govern
E4 : double free robust and secure operations of software systems; but these rules
ES : free pointer deref are often not documented by the developers. While robustness
properties are defined over interfaces, security properties involve
Figure 5: The generic FSM showing allp:np properties applied multiple system calls. An important class of security properties
to mal | oc dictate how a system call or a set of system calls can be used in the

program. For example, if thexecl system function is called to ex-
ecute a user program with an immediately precediegui d( 0) ,

The generic properties listed above are data-flow sensitive, i.e.,the user program might get a root privilege to the system. Like
they are dependent on the value of the return variable along dif- robustness properties, most security properties can be defined by
ferent execution paths. Because the basic MOPS static checker icertain temporal orderings of system calls.
data-flow insensitive, it assumes that a given variable might take Engler et al. [8] show how certain properties can be mined by
any value. Therefore, it assumes that both branches of a conditionalinferring deviant behaviors in the source code. We use this obser-
statement may be taken and that a loop may execute anywhere bevation to infer likely rules that a system specific interface or a set
tween zero to infinite iterations. Because exception handling proce- of interfaces need to obey. We use twe compiler and simple
dures are usually characterized by conditional constructs that checkdata flow analysis to output traces containing generic keywords for
the return value of an API call, we write extensions to the static a given interface or set of interfaces. Statistical analysis is applied
analysis procedure in order to make it possible to track the value over these traces to infer generic rules, which then can be used by
of variables that take the return status of an API call along differ- our framework to generate concrete properties. We restrict the trace
ent branches of conditional constructs. For each possible executiongeneration to be intra-procedural because most robustness-proper
sequence, our extensions associate a value to the variable that isies can be captured by such an analysis.
being tracked using pattern matching. The concrete properties (in  Intra-procedural analysis is sufficient to extract most robustness
the form of FSMs) generated by tlpe oper t yEngi ne are given properties from the source code. But many security properties that
to the static analyzer enhanced with our data flow extensions. Wedictate the ordering of system calls cut across procedural bound-
evaluate the effectiveness and usefulness of our framework as fol-aries. For a given set of system calls, we use the inter-procedural
lows. push down model checking procedure of our static analyzer to gen-

Effectiveness A user only needs to specify a small set of generic erate program traces. Our framework mines security properties
properties at a high level. The opertyEngi ne automatically from these traces. We use program slicing techniques to reduce
generates more than a thousand concrete properties from 6 generthe trace size. Program slicing causes the model checker to output
ically specified rules for 280 POSIX APIs. For static verification, only the program statements that are relevant to the set of system
we selected 60 critical API calls that are mainly used for memory calls under consideration. This reduces the trace size and increases
management, file and string I/O, permission management, settingthe precision of property inference. Multiple packages can be ana-
privileges, and spawning processes. We then generated concretéyzed to increase the trace size if system calls under consideration
properties for them across 6 generic properties using our propertyare sparsely used in the package being analyzed. We are imple-
generation framework. These APIs are frequently used in appli- menting our ideas in thgcc compiler and an open source static
cations and their safe and robust usages are critical for reliability analyzer that employs push down model checking.
and security. For these 60 APIs, more than 300 concrete rules were
generated and they were checked against the 10 Redhat-9.0 ope
source packages for robustness violations. % CONCLUSIONS

Usefulness Table 1(a) presents the total number of robustness  We have showed how large number of interface robustness prop-
property violations our tool found for each of the checked pack- erties can be generated for static verification from a few generically
ages. We found around 200 robustness violations in 10 Redhat-specified rules. The users need no knowledge of system, source
9.0 open source packages. We have shown the API-level violation code or interfaces to write generic rules. These details are mined
breakdown for one selected packagegVi ni t - 2. 84- 13) in Ta- directly from the source code using thec compiler and certain
ble 1(b). Of the 60 analyzed APIs, 19 of them gave violations with simple data flow extensions. We implemented this framework for
this package. We reported the details of our experimental results an existing static analyzer with our data flow extensions and applied
elsewhere [1] it to the well known POSIX-API system interfaces. Many system-

specific correctness rules govern the robust and secure operations
of software systems; but these rules are often not documented by
4. PROPERTY INFERENCE the developers. We presented our research ideas for inferring intra-



procedural generic robustness rules and inter-proceduralitsecur
properties directly from the program source code by applying sta-

Science Technical Report 1268, University of
Wisconsin-Madison, 1995.

tistical analysis on model checking traces. We are implementing [17] M. Schmid, A. Ghosh, and F. Hill. Techniques for evaluating

our ideas in thegcc compiler and an open source static analyzer

that employs push down model checking.
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