
Extracting Library-Based Object-Oriented Applications

Peter F. Sweeney
IBM Thomas J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598, USA

pfs@ us.ibm.com

Frank Tip
IBM Thomas J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598, USA

tip@watson.ibm.com

ABSTRACT
In an increasingly popular model of software dis t r ibut ion,
software is developed in one computing envi ronment and de-
ployed in other environments by transfer over the internet.
Extraction tools perform a static whole-program analysis
to determine unused functionality in applications in order
to reduce the time required to download applications. We
have identified a number of scenarios where extraction tools
require information beyond what can be inferred through
static analysis: software distributions other than complete
applications, the use of reflection, and situations where an
application uses separately developed class libraries. This
paper explores these issues, and introduces a modular spec-
~cation language for expressing the information required
for extraction. We implemented this language in the con-
text of Jax, an industrial-strength application extractor for
Jaw, and present a small ease study in which different ex-
traction scenarios are applied to a commercially available
library-based application.

1. INTRODUCTION
In an increasingly popular software distribution model,

software is developed in one computing environment, and
deployed in other environments by transfer over the inter-
net. Because the time required to transfer an application is
generally proportional to the transferred number of bytes,
it becomes important to make applications as small as pos-
sible. Application extractor8 are tools that reduce appli-
cation size by determining unused functionality that can be
removed from the application without affecting program be-
havior.

Previously~ extractors have been designed primarily with
complete applications in mind. Such whole-application ex-
tractors require one to specify an application's entry point(s),
and rely on a static whole-program analysis to determine
functionality that can be removed without affecting program
behavior. However, the extraction of software distributions
other than complete applications raises several issues:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to listS, requires prior specific permission and/or a fee.
SIGSOFT 2000 (FSE-8) 11/00 San Diego, CA, USA
© 2000 ACM ISBN 1-58113-205-010010011 ._$5.00

s M o d e m objec~or ien ted applicat ions typically rely on
one or more independent ly developed class libraries.
With the advent of virtual machine technology~ library
code is amenable to the same analyses as application
code, because the same representation is used in each
case. When an application is distributed separately
from the libraries it depends upon, an extraction tool
needs to be aware of the boundary between the two.

• Different kinds of software distributions (e.g., complete
applications, web-based applications that execute in
the context of a browser, and extensible frameworks)
have different sets of entry points, and require the
application extractor to make different assumptions
about the deployment environment. In fact, the same
unit of software may even play different roles, depend-
ing on the deployment scenario.

s The use of dynamic features such as reflection I poses
additional problems for extraction tools, because a static
analysis alone is incapable of detern~inlng the program
constructs that are used, and hence the program con-
structs that can be removed.

• There are also some interesting interactions between
the above issues. For example, consider a situation
where an application A is to be distributed together
with an independently developed class library L in
which reflection is used. In general, the use of re-
flection in L may depend on the features in L that
are used by A. We will discuss how this observation
affects extraction.

Each of these issues requires information that cannot be ob-
tained using static analysis alone, and has to be provided
to the extraction tool by the user. This paper explores the
above issues in detail, and provides a uniform solution in
the form of a small, modular specification language MEL
(Modular Extraction Language) for prodding the informa-
tion required to extract various kinds of programs. MEL's
features are essentially language-independent, with the ex-
ception of some Java-speci~c syntax used to refer to program
constructs such as classes, methods and fields. In order to
validate our approach, we implemented MEL in the context
of Jax, an industrial-strength application extractor for Jav~
developed at IBM Research [18]. We discuss how several of

IFor convenience, we will henceforth use the term 'Yel]ec-
tion" to refer to all mechanisms for loading and accessing
program constructs by specifying their name as a string
value, and for examining program structure.

98

the program transformations and optimizations performed
by Jax are adapted to take into account MP.L scripts, and
present a small case study in which different extraction sce-
narios are applied to a commercially available library-based
Java application.

The remainder of this paper is organized as follows. In
Section 2, we present the requirements on extraction tools
in the presence of class library usage. Section 3 introduces
a specification language for defining the extraction of vari-
ous kinds of library-based applications. Section 4 presents
a mechanism for translating specifications to a small set of
assertions. Section 5 discusses an implementation of MEL,
and reports on a small case study. Section 6 summarizes
related work, and Section 7 presents conclusions and direc-
tions for future work.

2. REQUIREMENTS
In this section, we analyze a number of frequently occur-

ring distribution scenarios, and determine what information
is required by extraction tools beyond what can be obtained
through static analysis,

2.1 Distribution scenarios
Figure I shows several distribution scenarios that may oc-

cur in the presence of: a library vendor I responsible for cre-
ating and distributing a class library L, an application ven-
dor a responsible for creating and distributing an L-based
application A, and two users, u and v, of application A.

It is reasonable to assume that library vendor l will want
to make library L ms small as possible, in order to reduce
the download times experienced by customers, but also to
reduce the load of the server from which the library is down-
loaded. Hence, I creates an eztracted version Lez t of L, and
distributes Lez t instead of L. Clearly, Lez t should offer the
same functionality as L, but size-reducing optimizations can
still be applied to parts of L that are not exposed to users.

Application vendor a presumably downloads Lez t for use
during development of application A. When application A
is ready for distribution, there are two options, depending
on whether or not a user already has the prerequisite library
L installed. Figure I shows a user u who does not have (the
correct version of) L. Assuming that u does not expect to
download or create other L-based applications, it is desir-
able for u to download a distribution ALez t that comprises
the functionality of A and the parts of L used by A, but
that omits the parts of L that are not used by A. Because
applications typically use only a small part of the function-
ality of libraries they rely on 2, the removal of the parts of L
not used by A is likely to significantly reduce the size of the
distribution.

There are also scenarios where it is preferable to keep the
distributions of L and A separate. Figure I shows another
user v of application A, who has downloaded Lax t directly
from l, because he is pIRnnlug to deploy multiple applica-
tions that rely on the library. Because v already has Le= t,
he only needs to download the application itself from vendor
a. To this end, a creates an extracted version Aez t of A that
can be downloaded by v. It is important to realize that keep-
ing the distributions of A and L separate has repercussions

21n previous work on whole-application extraction [18], we
reported that up to 60~ of the methods in several library-
based benchmark applications is unreached.

for the extraction of A itself. If we want to accommodate
scenarios where v obtains a different version s of L, then the
extractor should derived Aez t from A without making as-
sumptions about the specific version of L that happens to
be available in a 's development environment. The standard
Jav~ libraries are an obvious example of this situation.

We will now investigate the issues related to the use of
reflection. In essence, reflection allows one to access a pro-
gram construct by specifying a run-time string value that
represents the construct's name, and to examine the struc-
ture of the classes used in a program. Such features are
problematic for extraction tools because, in general, a static
analysis cannot determine which program constructs are ac-
cessed using reflection, and should therefore not be removed
or transformed. Thus, extractors require additional informa-
tion from the user that specifies which program constructs
are accessed using reflection. In our experience, determining
the program constructs that may be accessed using reflec-
tion is a fairly easy task for a programmer familiar with the
code. However, it can be quite difficult to determine how
reflection is used in third-party libraries, especially if the
source code for these libraries is unavailable. In the exam-
ple of Figure 1, the extraction of ALezt from A and L by
application vendor a requires additional information about
the use of reflection in L. This can be difficult to determine
from distribution Lez t alone, because it does not contain the
source code for the library. To complicate matters further,
the set of program constructs in L accessed using reflection
may depend on the features in L that are used by A. In
general, different L-based applications may cause different
usage of reflection within L. Our solution to these problems
(discussed in detail below) will he to have library vendor
l distribute a script along with Lez t that contains the in-
formation required to extract any L-based application. Our
scripts allow I to specify that a program construct is only ac-
cessed using reflection under certain conditions (e.g., when
a certain method is reachable).

We have only discussed a few example distribution sce-
narios. Other likely scenarios include:

• Extract ing a library together with multiple applica-
tions that use i t .

• Extract ing a library in the context of another library
that uses it. We believe that such situations, where
multiple layers of libraries exist and where only the
topmost layer is exposed to an application, is likely to
become increasingly common.

2 . 2 R o l e s o f s o f t w a r e u n i t s

We will adopt the non-descriptive term so.f~are unit in
the sequel to denote any collection of classcs tha t constitutes
a logics] entity. Recall that there is no dl/~erence between
code in a class library and code in an executable applica-
tion, and it is only the way in which software units are used
and composed that determines how extraction should be per-
formed. In the remainder of this paper, the term role will he
used to refer to the way in which a software unit is used. We
will consider four roles that frequently occur in the context
of Java:

8Thls could either be an earlier version of L that was ob-
tained from library vendor l, or a completely different im-
plementation of the library from a different vendor.

99

L

std. l ibraries

V M

~ ALxt

~lext

from another
application vendor

std. vMlibraries

Aext Bext

i l
std. vMlibraries std.

l: l ibrary a: application u: appl icat ion
vendor vendor user #1

,,,//
Lext

l ibraries

V M

v: applicat ion
user #2

F i g u r e 1: Illustration o f different d is tr ibut ion scenarios.

• A n appl ica t ion is an executable software unit with an
external interface consisting of a single main() method.
It is assumed that classes in applications are not fur-
ther extended by derivation after extraction.

• An applet is an executable software unit that is exe-
cuted in the context of a browser. An applet extends
class j a v a , a p p l e t . A p p l e t and its external interface
consist of a set of methods in j a v a . a p p l e t . A p p l e t
that it overrides. It is assumed that classes in applets
are not further extended by derivation after extraction.

• A l ib~ry is not assumed to be executable by itself, but
is used as a building block by other units. Classes in
libraries may be extended by derivation. The external
interface of a library consists of any method that has
p u b l i c or p r o t e c t e d access rights.

• A c o m p o n e n t is similar to a library in the sense that it
is an incomplete program used as a building block by
other units. But, lm]ike a library, it is assumed that
classes in a component cannot be extended by deriva-
tion. The external interface of a component contains
every method with p u b l i c access rights.

Other roles such as JavaBeans [16] and servlets [7] can be
modeled similarly. For example, in the case of JavaBeans,
all of the JavaBean's methods that may be invoked by client
applications are contained in its external interface.

2.3 Specifying the extraction domain
There is no distinction between classes in different soft-

ware units at the language level. Consequently, it is nec-
essary to specify the '%oundarles" between software units
when performing extraction. In our approach, the user se-
lects the set of classes that should be extracted, and worst-
case assumptions are made about the behavior of classes
that are not selected.

In practice, there are very few situations where all classes
should be extracted. One can think of the structure of an
application as "layered", with the bo t tom layer consisting
of the standard libraries, the middle layer consisting of class
libraries built on top of the standard libraries (perhaps con-
sisting of sublayers), and the topmost layer consisting of the
application itself. It is usually the case that classes below
a certain layer do not need to be extracted and shipped
because they are already available in the deployment en-
vironment. In particular, the standard class libraries are
generally available and are usually excluded from the ex-
t ract ion process. 4 It is important to realize tha t this is not
merely an issue of avoiding redundant work and shipping
redundant code, but potentially also one of correctness. If
an application class contains a call to a method in the stan-
dard libraries, jnllnlng that call on one platform may result
in code that does not work on another platform.

2.4 Dealing with dynamic features
Java 's reflection mechanism allows programs to do ear-

ions forms of self-inspection. Figure 2 shows an exam-
ple program that uses structural reflection (sometimes also
referred to as introspection). In this program, the class
that represents the type T of object t is retrieved us-
ing a call to method j a v a . l a u g . 0 b j e c t . g e t C l a s s O , and
stored in variable c. The program then calls method
j ava. l ang . C lass . ge tDeclaredlqethods () to obtain a vec-
tor of object• representing the methods in T. For each
method in this vector, the name is retrieved (by way of a call
to java. lang. reflect.Hethod, getName 0), and printed to
standard output. Hence, the program generates the follow-
hag output:

4In the case of embedded systems and network PC ' s that
run a fixed set of applications it may be desirable to include
the standard class libraries in the extraction domain.

100

impor t j a v a . l o . * ;
impor t j a v a . l a n g . C l a s s ;
impor t j a v a . l a n e . r e f l e c t . M e t h o d ;

p u b l i c c l a s s Examplel {
p u b l i c s t a t i c v o i d m a i n (S t r i n g a r t s [l) {

T t = new TO;
Class c = T.getClassO;
Method[] methods ffi c.gstDeclaredNethodsO;
for (int iffiO; i < methods.length; i++)~

Method m = methods[i];
StringmethodName = m.getNameO;
Sys tem.ou t .p r ln t ln (mothodNams) ;

}

};

c l a s s T {
void ,oo0 . . .

void b a r () {);
};

F i g u r e 2: A Java program that uses reflection.

los
bar

Clearly, program behavior depends on the presence and
the name of the methods in class T, even though these meth-
ods are not invoked anywhere. It is obvious that the use
of reflection in Figure 2 precludes program transformations
such as the removal or renaming of methods in class T be-
cause such actions would affect program behavior.

Dynamic loading, another form of reflection, is a heavily-
used s mechanism for instructing a Java Virtual Machine to
load a class X with a specified name s, and return an ob-
ject c representing that class. Reflection can be applied to
c to create X-objects on which methods can be invoked.
The crucial issue is that s is computed at run-~me. This
implies that, in general, static analyses c~-ot determine
which classes are dynamically loaded, s

Figure 3 shows a program fragment that exhibits a fairly
typical use of dynamic loading. Class Example2 contains a
method baz which takes a single argument of type String,
and dynamically loads a class with that name by on]ling
method java.lang.Class.forNamsO. A reference to the
dynamically loaded class is stored in variable c. The pro-
gram then calls method j ava.lang.Class.newInstanceO
to create a new object of the dynamically loaded type, casts
it down to an interface type I, and calls method zap on
the object. Observe that class instantiation (of the dynam-
ically loaded class) and method invocation (of the default
constructor of that class) occur implicitly. This poses prob-
lems for optimizations such as dead method removal because
the analyses upon which these optimizations are based typi-
cally need to know which classes are instantiated, and which
methods are invoked.

5Nine of the thirteen benchmarks studied in [18] use dy-
namic loading.
Sln some cases, the type of a dynamically loaded class can
be inferred by constant propagation of the string literals
that represent the class name. However, we have observed
that these names are often read from files or manipulated in
non-trivial ways.

import java.is.*;
import java.lans.Class;

p u b l i c c l a s s Example2 {
p u b l i c s t a t i c v o i d b a z (S t r i n g nama){

t r y {
Class c = Class.forName(nama);
Object o ~ c.ne.InstanceO ;
I i ffi (I)o;
i . z a p O ;

}
c a t c h (ClassNotFoundExcapt ion e){

S y s t e m . o u t . p r i n t l n (" E r r o r : " +
"Could no t f i n d " + name); }

catch (IllegalAccessException e)
System.out.println("Error: " +

"Illegal acosss to " + name); }
c a t c h (I n s t a n t i a t i o n E x c s p t l o n s){

S y s t e m . o u t . p r i n t l n (" E r r o r : " +
"Abstract " + name); }

}
);

i n t e r f a c e I {
p u b l i c v o i d z a p O ;

);

F i g u r e 3: A Java program t h a t uses d y n a m i c loading.

Java provides a mechanism for implementing methods in a
platform-dependent way, typically using C. The mechanism
works roughly as follows: The n a t i v e keyword is used to
designate a method as being implemented in a different lan-
guage, and the corresponding method definition is provided
in an object file (e.g., a dynamically linked library) asso-
ciated with the Java application. The native code in the
object file may instantiate classes, invoke methods, and ac-
cess fields in the application. This obviously poses problems
for any program transformation that relies on accurate in-
formation about class instantiation and method invocation,
because object code is notoriously hard to analyze.

It should be evident from the above examples that , with-
out additional information, the use of reflection, dynamic
loading, and native methods requires that ezt;remely con-
servative assumptions be made during extraction: It would
essentially be impossible to remove, rename, or transform
any program construct. The approach taken in this paper
relies on the user to specify a list of program constructs
(i.e., classes, methods, and fields) that are accessed using
these mechanisms, and to make the appropriate worst-case
assumptions about these constructs.

2.5 Model ing different usage contexts
Section 2.1 already alhided to issues related to the use of

third-party libraries in which reflection is used. In order to
create MEL scripts that are reusable in different contexts, it
is often desirable to specify that a given program construct
is only accessed using reflection under certain conditions.
To illustrate this issue, Figure 4 shows a small class library
consisting of three classes L, M and N. Class L has two meth-
ods: f and 8. A call to method f results in the dynamic
loading of class M, and a call to method 8 results in the dy-
namic loading of class N. Note that a client that calls f but
not 8 will only access M, and a client that calls 8 but not f
will only access N. A specification of the library's behavior

101

impor t j a v a . l ang . Class ;

p u b l i c c l a s s L {
p u b l i c s t a t i c v o i d f O {

. . .

Class c = Class.forName("M");

}

public static void 8(){

Class c ffi Class.gorNa~e("N") ;

}
};

c l a s s H { - . . };

class N { - - - } ;

F i g u r e 4: E x a m p l e class l ibrary t h a t uses d y n a m i c
loading.

that states that any client of L accesses both M and N would
clearly be overly conservative.

Section 3 introduces a mechemlsm that allows conditional
specifications of the form '~program construct X should be
preserved when method m is executed". This allows one
to express how dynamic loading or reflection is dependent
on the pert of a software unit 's functionality that is used.
Consequently, i t enables the creation of a single, reusable
configuration file for a software unit that can be used to ex-
tract that unit accurately in the context of different clients.

We conclude this section with an obserwtion. In the
above discussion, we have sketched two very different sce-
naxlos involving library L. In one example (the distribution
of Lez t by l), all externally accessible L-methods should be
t reated as entry points in determining which methods are
reachable. In the other scenario, (the distribution of ALez t
by a), only L-methods invoked from A and methods tran-
sitively reachable from those methods should be preserved.
Hence, the decision on which methods to preserve requires
information not present in the code of L. This precludes
an approach based on annotat ing the code of L with addi-
tional information, unless different ~nnotations are used to
support different scenarios.

3. A SPECIFICATION LANGUAGE
Figure 5 presents a B N F grammar for a simple specifica.

tion language, MEL (Modular Extract ion Language), that
allows users to specify at a high level how to extract a
library-based application. The semantics of the various fea-
tures in MEL are closely related to the discussions in Sec-
tion 2. A MEL script comprises:

1. A domain specification, consisting of a class p a t h where
classes can be found, and a set of i n c l u d e statements
that specify the extraction domain. Any class not
listed in an i n c l u d e s tatement is considered external
to our analyses in the sense that i t will not be ex-
tracted, and that worst-case assumptions will be made
about its behavior.

2. A set of statements. There are two kinds of state-
ments. Role statements serve to designate the role of

MELScript : := I t e m .
I tem ::= DomainSpecifier I

Statement I Import
DomainSpecifier : := ClassPath I Include
ClassPath ::= p a t h <Di rec to ry> I

p a t h < ZipFile>
Include ::= i n c l u d e <Class> |

i n c l u d e <PackageName>
Statement : := Role I Preserve
Role ::= application <Class> I

a p p l e t < C l a s s > [
l i b r a r y <Class> [
component <Class>

Preserve ::= SimplePreserve]
CondPreserve

SimplePreserve : := p r e s e r v e <Class> [
preserve <Method> I
preserve <Fie ld>

CondPreserve : := SimplePreserve
when r e a c h e d < M e t h o d >

Import : := impor t <F i l eName>

F i g u r e 5: B N F G r a m m a r for t h e user- level in fo rmat ion
in M E L

import L;

p u b l i c c l a s s A {
p u b l i c s t a t i c v o i d m a i n (S t r i n g v x g s []) {

. . .

L 1 = new L();
1 .gC) ;

}
};

F i g u r e 6: E x a m p l e appl ica t ion t h a t uses t h e l ib ra ry of
F igure 4.

some or all of the classes included in the extraction do-
main as application, applet, component, or library.
The semantics of these roles were discussed earlier in
Section 2.2. Preserve statements are used to specify
tha t program constructs (i.e., classes, methods, and
fields) should be preserved because they are accessed
either outside of the extraction domain or through re-
flection, and that worst-case assumptions should be
made about these constructs. Following the discussion
of Section 2.5, program constructs can be condltionally
preserved depending on the reachability of a specified
method using a conditional preserve statement .

3. A list of imported configuration files. The semantics
of the impor t feature consist of textual expansion of
the imported file into the import ing file.

Figure 6 shows an example application A that uses the ll-
brary of Figure 4. Observe that A's main() routine creates
an L-object and invokes L's method 8 0 . Figures 7 and 8
present MEL scripts L.mel and A.mel for the library of Fig-
ure 4 and the application of Figure 6, respectively. The
conditioned preserve statements in L.msl ensure that class
H is preserved if method L . g O is reached, and that class N
is preserved if method L . f O is reached. Since A only calls
method L . 8 0 , class N will not be extracted.

102

p a t h • • •
i n c l u d e L
l i b r a r y L
preserve M when reached L.gO
preserve N when reached L.fO

F i g u r e 7: Spec i f ica t ion L.rael for t h e class l i b r a r y of
Figure 4.

path • • •
include A
application A
import L.mel

F i g u r e 8: Spec i f ica t ion A.mel for t h e appl icat ion of
Figure 6.

Sta tement ::= Assert ion] Condi t ionalAsser t ion
Assert ion ::= SimpleAssert ion
Assert ion : := e x t e n d i b l e < C l a s s >
Assert ion : := o v e r r i d a b l e < M e t h o d >
SimpleAssertion ::= i n e t a n t i a t e d < C l a s s >
SimpleAsser~ion : := r e a c h e d < M e t h o d >
SimpleAssert ion : := a c c e s s e d < F i e l d >
SimpleAssertion ::--- p r e s e r v e l d e n t i t y < C l a s s >
SimpleAssertion ::= p r e s e r v e I d e n t £ t y <Method>
SimpleAssertion ::= p r e s e r v e I d e n t i t y < F i e l d >
C o n ~ s s e r t i o n : := SimpleAssert lon

when reached <Method>

F i g u r e 9: B N F g r a m m a r for the extractor- leve l infor-
mat ion in MEL.

4. IMPLEMENTATION STRATEGY
The specification language presented in Figure 5 was de-

signed to make it easy for p rogrammers to specify how a
collection of software uni ts should be extracted. However,
the algori thms used by extract ion tools typically require low-
level information such as methods t h a t are potential ly ex-
ecuted, and classes t ha t are potent ial ly ins tant ia ted. To
bridge the gap between user-level and extractor-level infor-
mation, we add a n u m b e r of assert ion const ructs to MEL,
and provide a t rans la t ion from user-level s t a t ement s to these
assertions. An impor t an t benefi t of this approach is t h a t all
roles and usage scenarios can be t rea ted uniformly by the
extractor .

Figure 9 shows a B N F g r a m m a r for ME L assertions.
The i n s t a n t l a t e d , r e ached , and a c c e s s e d assertions axe
provided for expressing that a class is instantiated, a
method is reached, or a field is accessed, respectively. The
p r e s e r v e l d e n t i t y assert ions express t h a t a program con-
s t ruc t may be accessed from outside the extract ion domain
or accessed th rough reflection, which implies t h a t the con-
s t ruc t ' s name or s ignature should not be changed. The
e x t e n d i b l e and o v e r r i d a b l e assert ions serve to express
that a class may be extended, and that a method may be
overridden after extraction, respectively. In Section 5, we
discuss the impact of the latter two types of assertions on
the closed-world assumptions made by optimizations such
as call devlrtuMization.

The i n s t a n t i a t e d , r e a c h e d , a c c e s s e d , and
p r e s e r v e I d e n t i t y assert ions also have a condit ional
form. Condit ional assert ions are used to model the con-
di t ional preserve s t a tements t h a t specify s i tuat ions where

reflection is used in a specific method.
Table 1 shows how s ta t ement s are t r ans la t ed to assertions.

The tab le contains a row for each type of M E L s t a t e m e n t in
which the r igh tmos t column shows the asser t ions genera ted
for t h a t s t a tement . The t rans la t ion process for roles can be
summar ized as follows:

Worst-case assumpt ions are made to de te rmine a set
of me thods t h a t can be invoked from outside the ex-
t rac t ion domain. Each such m e t h o d is assumed to be
r e a c h e d , and its ident i ty is preserved to indicate t h a t
ex terna l references may rely on i ts name and signa-
ture. Different roles require different t r ea tmen t . For
example, for a p p l i c a t i o n s , only the m a i n O m e t h o d
is referenced externally and needs to be added to the
set. However, for classes t h a t play a l l b r a r y role all
p u b l i c and p r o t e c t e d me thods are added.

For each r o l e of a class, the appropr ia te assumpt ions
are made to determine the fields t h a t may be accessed
from outside the extract ion domain, and all such fields
axe asser ted to be acces sed . For example, all p u b l i c
fields of components are assumed to be accessed.

Any class t h a t plays an a p p l e t role is ins tan t i a ted
by the J V M when the applet is loaded by a browser.
We model this by assert ing t h a t each apple t class is
i n s t a n t i a t ed.

For classes t h a t play a l i b r a r y role, we have to assume
t h a t fu r the r subclassing and m e t h o d overriding may
take place af ter extraction. To allow this behavior, we
assert t h a t the class should be e x t e n d i b l e and all of
i ts me thods should remain o v e r r i d a b l e .

The tremslation of p r e s e r v e s t a t ement s into assert ions
assumes t h a t the ident i ty of any program cons t ruc t ac-
cessed outside the extract ion domain or t h rough reflec-
t ion should be preserved. Hence, any program const ruct
t h a t is referenced in a p r e s e r v e s t a t emen t receives the
p r e s e r v e I d e n t i t y assertion. For preserved elasscs, we
make the conservutive assumption t h a t they ewe instv~ati-
a ted if they axe not a b s t r a c t or an i n t e r f a c e . Each pre-
served m e t h o d is assumed to be invoked, and is therefore
asser ted to be r eached . Similarly, each preserved field is
assumed to be a c c e s s e d . The t rans la t ion of condit ional
p r e s e r v e s t a t emen t s involves carrying over the condit ion
from the s t a t emen t to the assertion, bu t is otherwise com-
pletely analogous.

It is h a r d to make any completeness a rguments abou t
MEL. In our design of the high-level MEL s ta tements , we
have a t t e m p t e d to make it easy for the user to specify com-
mouly occurring extract ion scenarios. In addit ion, the low-
level MEL assert ions are sufficient to ensure t h a t a progr~.m
const ruct will no t be affected by an extractor . In our im-
plementat ion, we have given the user direct access to the
lower-level MEL assertions as a fall-back option for extrac-
t ion scenarios t h a t are not suppor ted by high-level MEL
s ta tements .

5. IMPLEMENTATION
In order to validate our approach, we implemented M E L

103

s t a t e m e n t
a p p l i c a t i o n U

appletC

component U

~ i b r a r y G'

preserve G

preserve G . ~

preserve U.~

preserve G .hen reached D.n

preserve U.r~when reached D.n

preserve G.~ when reached D..

derived assertions
p r e s e r v e I d e n t i t y C'
reached0.main(java.lang. String[])
preserveIdentityC.main(java.lang.Strin~[])
instantiatedC'
preserveIdentity C
p r e s e r v e I d e n t i t y C . m f o r every C.~ tha tover r ides j a v a . a p p l e t . A p p l e t . ~
reached (] ' .m for every O.'m, that overrides java . applet .Applet.m
p r s s e r v e I d e n t i t y 6."
p r e s e r v e I d e n t i t y C.m for every p u b l i c method C.m
reached C.m for every pub l i c method 0 . ~
p r e s e r v e I d e n t i t y ~ . / f o r every p u b l i c field C . f
accessed C . / f o r every pub l i c field C . /
p rese rveIden t i t y (~'
extendible C
reached C.m for every pub l i c or p ro t ec t ed method C.m
preserveIdentlty C.m for every public or protected method C.m
over r idab le C.m for every pub l i c or p ro tec t ed instance method C.m
accessed C.f for every pub l i c or p ro tec t ed field O.f
p r e s e r v e I d e n t l t y C.f for every pub l i c or p ro tec ted field C.f
£ n s t a n t i a t e d C when C is not an interface or an abstract class
preserveIdentity
reached G.rn,
p r e s e r v e I d e n t i t y O.m
accessed ~ . f
p r e s e r v e l d e n t i t ~ O.f
i n s t a n t i a t e d G . h e n reached D.n
p r e s e r v e I d e n t i t y C w h e n reached D.n
reached G.~when reached D.n
p r e s e r v e I d e n t i t y C .~when reached D.n
accessed U.f when reached D.n
preserveIdentityC.f when reached D.n

T a b l e 1: Translat ion of s t a t e m e n t s into assert ions .

in the context of Jax [18]. z The implementation also per-
mits users to specify MEL assertions directly, and has mech-
anisms for specifying the name of the generated sip file,
and for selectively disabling optimizations. Jax provides
two mechanisms to support MEL. In '%arch mode", a MEL
script is read from a file, and the application is processed
accordingly. A Graphical User Interface (GUI) that allows
users to create MEL scripts interactively is also provided.

We will discuss how a number of program transforma-
tions and optimizations performed by Jax can be adapted
to operate on various kinds of library-based applications by
talH,g into account MEL assertions. These optimizations
were originally presented as whole-programs optimizations,
by ma]dng the "closed world" assumption that the entire
program is available at analysis time.

S.1 Call graph construction
Since all of the optimizations under consideration rely di-

rectly or indirectly on the construction of a call graph, we
will first discuss how call graph construction algorithms can
he adapted to take into account MEL assertions. We will
use Rapid Type Analysis (RTA) [5, 4], an efficient call graph
construction algorithm, as a specific example. Other call-
graph construction algorithms (see e.g., [9, 11, 19]) can be
adapted similarly.

RTA is a popular algorithm for constructing call graphs
and devirtualizing call sites that only requires class hierar-
chy information and global information about instantiated

7 Version 6.0 of Jax (released in August 1999) supports MEL
in its full generality, although the syntax of the MEL key-
words in the system differs slightly from the syntax used in
this paper.

classes, and that has been demonstrated to scale well in
practice [18]. RTA is most easily implemented as an it-
erative algorithm that uses three worklists cont~in~g (i)
reached methods, (ii) reached call sites s, and (iii) instanti-
ated classes. The worklist of reached methods is initialized
to contain the set of methods called from outside the ap-
plication (e.g., an application's main() method), and the
other two worklists are initialized to the empty set. Then,
following steps are performed repeatedly:

• The body of a reached method is scanned. Any call
sites and class instantiations that were not previously
encountered are added to the appropriate worklist.

• Each call to a method C.f is resolved with respect to
each instantiated class D, where D is a subclass of
C. This involves performing a method lookup for f in
class D. If the lookup resolves to a method that was
not previously reached, it is added to the workllst of
reached methods, and the call graph is updated with
edges that reflect the flow of control between caller and
caUee.

This iterative process continues as long as additional meth-
ods, call sites, and instantiated classes are found. In cases
where a class C in the extraction domain overrides a method
f in 8 class outside the extraction domain, we make the
worst-case assumption that there is a call to this method on
any object of any instantiated class.

In order to adapt RTA to take into account MEL asser-
tions, we first need to adapt the initialization o£ the work-

s Since all calls to any given method f are resolved similarly,
any reasonable implementation combines them.

104

lists. The worklist of reached methods is init ialized to con-
ta ln any m e t h o d m for which an assertion r e a c h e d m was
generated. The worklist of reached call sites is init ial ized
to contain the empty set. Finally, the worklist of ins tant i -
a ted classes is init ialized to contain any class C for which
an assert ion 2 n s t a n t i a t e d C was generated.

Then , in the i terat ive pa r t of the algorithm, we add the foL
lowing addi t ional steps, which are executed when a m e t h o d
m is added to the worklist of reached methods .

• Whenever a m e t h o d m is added to the worklist of
reached methods for which an assertion i n s t a n t i a l ; e d
C w h e n r e a c h e d m exists, class C is added to the
worklist of ins tan t ia ted classes if i t does not a l ready
occur in t h a t list.

• Whenever a m e t h o d m is added to the worldist of
reached methods for which an assert ion r e a c h e d m ~
w h e n r e a c h e d m exists, me thod m ' is added to the
worklist of reached methods if i t does not a l ready oc-
cur in t h a t list.

5.2 Dead method removal
Dead Method Removal [18] is an opt imizat ion t h a t re-

moves r edundan t me thod definitions. This opt imizat ion re-
lies on the informat ion ga thered dur ing call graph construc-
t ion to determine s i tuat ions where a me thod can be removed
completely, as well as s i tuat ions where a me thod ' s body can
be removed bu t where i ts s ignature needs to be re ta ined.
The la t t e r s i tuat ion arises in the following eases:

• There is a reached call site t ha t refers stat ically to a n
instance me thod C.m, bu t C.~r~ is not the ta rge t of any
dynamic dispatch or direct call.

• There is a class C t ha t (i) contains a n unreached m e t h o d
C.m, and (ii) implements an interface r containing a
declarat ion I . m of the Same method t h a t is called else-
where in the application.

Note tha t , in the l a t t e r case, me thod C.m cannot be removed
because the resul t ing class file would be syntactically invalid.
In b o t h cases, no addi t ional information is necessary beyond
the information de termined dur ing call graph construct ion.

5.3 Call devirtualization
Call devir tual izat ion [6, 3] t ransforms run- t ime dispatch

calls into direct calls. This t ransformat ion can be applied
at a call site z t h a t calls me thod C.m if (i) there is only
one me thod t h a t can be reached from z, and (ii) m e t h o d
C .m cannot be overridden af ter extract ion of the applica-
tion. The first condit ion can be verified by inspect ion of the
call graph, and the second condition is me t if there is no as-
sertions o v e r r i d a b l e C.m or e x t e n d i b l e C, where C.m is
the me thod invoked at call site z. Other opt imizat ions t h a t
rely on closed-world assumptions (e.g., inl/ning [15] and call
devir tual izat ion) can be adap ted similarly.

5.4 Dead field removal
Dead field removal [17] removes fields t ha t are no t ac-

ceased, as well as fields t h a t are wrlte-accessed bu t no t read-
accessed. This opt imizat ion requires t h a t the bodies of all
reached methods are scanned for read and write operat ions
to fields, s Fields t h a t are ne i ther read nor wr i t ten can

~This is most easily done dur ing call graph cons t ruc t ion
when me thod bodies have to be t raversed anyway.

simply be removed. Fields t h a t are only wr i t t en are also
removed along wi th the wri te-operat ions t h a t access these
fields. Dead field removal can be adap ted to handle M E L
assert ions by considering a field £7.f to be read-accessed if
there exists a a c c e s s e d C . f assertion. Condi t ional a c c e s s e d
assertions can be t r ea t ed in the same way as condit ional
r e a c h e d assertions.

5.5 Name compression
Name compression reduces appl icat ion size by replacing

the names of classes, methods , and fields wi th shor ter names.
T h e names of a class or field x can be changed if • is no t
ins tan t ia ted or accessed outside the ext rac t ion domain, re-
spectively. The condit ions under which methods can be re-
n a m e d are a bi t more complicated. Cer ta in me thods such as
constructors , class initializers, and class finalizers cannot be
renamed. A m e t h o d t h a t overrides a me thod outside the ex-
t rac t ion domain cannot be renamed. Finally, if one m e t h o d
overrides another , b o t h mus t be r enamed correspondinglyJ °
In the presence of MEL assertions, a n u m b e r of addi t ional
const ra in ts have to be imposed on the renaming of program
constructs . Any program cons t ruc t z for which there exists
a n assert ion p r e s e r v e I d e n t i t y x cannot be renamed, any
me thod m for which there exists an assert ion o v e r r i d a b l e
m cannot be renamed, and any class c for which there exists
a n assert ion e x t e n d i b l e c canno t be renamed.

5.6 Class hierarchy transformations
Removal of unused classes, and merging of a derived class

C with i ts base class B reduce applicat ion size. The lat-
t e r t ransformat ion involves moving the methods It and fields
from C' to B, and upda t ing the references to these methods
accordingly. The main benefi t of class merging has to do
wi th the fact t h a t in Java class files, each class is a self-
conta ined uni t wi th i ts own set of literals, referred to as i ts
constant pool. Classes t h a t are adjacent in the hierarchy
typically have many literals in common, and merging such
classes reduces the duplicat ion of literals across the different
class files. Class merging may also enable the t ransformat ion
of polymorphic calls into direct me thod calls. Space limita-
t ions do not pe rmi t a complete discussion of class merging
here, and we refer the reader to [18, 20] for details. In order
to take into account MEL assertions, any class C for which
there exists an assert ion p r e s e r v e I d e n t i t y C should not
he removed, or merged into i ts base class.

5.7 A Case Study
We now present a small case s tudy in which different ex-

t rac t ion scenarios are applied to Cinderella 12, an interact ive
geometry tool used for educat ion and self-study in schools
and universities. Cinderella consists of an application, which
can be used for const ruct ing interact ive geometry exercises,
and an applet in which s tudents can a t t e m p t to solve these

1°Actually, the s i tuat ion is slightly more complex. Consider
a s i tuat ion where a class C extends a class /3 and imple-
ments an interface I , and where a m e t h o d f is declared in
l , defined in /3 , hu t no t defined in C itself. Then, the occur-
rences of f in [and /3 are re la ted and should be r enamed
correspondingly.

11A minor pract ical issue t h a t comes up here is t h a t construc-
tor methods need to be made unique. At the Java class file
level, this can be accomplished by adding addi t ional d u m m y
arguments .

12See wmw, c i n d e r e l l a , de.

105

[d i s t r i b u t i o n [[z i p f i l e [c l a s s e s [m e t h o d s [f i e l d s [
Original 664,836 337 3057 2391

[Ant l r 181,535 130 1369 677

Apple t+Ant l r 184,486 177 1355 842
Application 391,813 285 2490 1784
+Ant l r
Both + Antlr 403,327 293 2541 1797

T a b l e 2: Resu l t s o f m u l t i p l e d i s t r i b u t i o n scenar ios for
"Cindere l la" .

exercises. Two interesting observations can be made about
Cinderella. First, the application and the applet are derived
from the same code base, which is contained in a single
zip file. Second, Cinderella relies on a class library called
"ANTLR" for parsing.

Table 2 shows different distribution scenarios for Cin-
derella. The first two rows, labeled O r i g i n a l and A n t l r
(o r i g .) are concerned with the original distributions of
Cinderella and ANTLR, respectively. The columns of the ta-
ble show the size of the zip file, and the numbers of classes,
methods and fields, respectively. The next row, labeled
Antlr shows the result of extracting ANTLR as a stand-alone
library. The reduction in size was obtained by removing sev-
eral methods and fields that are cmly accessible inside the
library. The next three rows, labeled Applet , A p p l i c a t i o n ,
and Both shows the size of extracting the application, the ap-
plet, e ud their combination without ANTLR. Finally, the last
three rows, labeled Apple t + Ant l r , A p p l i c a t l o n + Ant l r ,
and Both + A n t l r show the results of extracting the appli-
cation, the applet, and their combination together with the
parts of ANTLR that they use.

The following observations can be made:

• The applet's functionality is (roughly) a subset of the
avplication's functionality, because adding the applet
to the distribution does not increase size by much.

• On the other hand, the size of the applet is significantly
smaller than the combined distribution. Hence, users
that only require the applet will prefer the distribution
contaln~ng only the applet.

• From the fact that the distributions that include
ANTLR are not much bigger than the distributions
without ANTLR, we can infer that Cinderella uses only
a small subset of ANTLR's functionality.

• Extracting ANTLR by itself results in anontrivial (about
20%) reduction of distribution size. This confirms that
extracting stand-alone class libraries is worthwhile.

6. RELATED WORK
We will begin this section with a brief historical perspec-

tive on this work. The approach taken in this paper was
motivated by our experiences with Jax, an application ex-
t ractor for Java [18]. Jax was developed as tool for extract-
ing applications, and initially relied on ad-hoc solutions for
several of the problems we study in this paper. For exam-
ple, there was a fixed '%oundary" between applications and

the standard libraries and based on the names of classes,
and a simple, low-level mechanism was provided to spec-
ify that certain program constructs accessed using reflection
should be preserved. As a result, Jax was only suitable for
distribution scenarios in which an application is shipped by
itself, or where an application and a library are extracted
and shipped together. The benchmarks studied in [18] are
all instances of one of these scenarios. The work in this
paper was motimsted by our goal to accommodate other dis-
tribution scenarios such as independently shipped libraries,
and to unburden the developer of a library-based applica-
tions from having to specify information (e.g. s the use of
reflection) about the library.

The extraction of applications was pioneered in the
Smalltalk community, where it is usually referred to as
"packaging ~ [12, 10, 14]. Smalltalk packaging tools typically
have mechanisms for excluding certain standard classes and
objects from consideration, and for forcing the inclusion of
objects and methods. While the latter mechanism is suf-
ficient to handle programs that use reflection, we are not
aware of any Smalltaik extractor that models different types
of applications, or that provides a feature to preserve certain
program constructs conditionally.

Agesen and Ungar [2, 1] describe an application extractor
for the Self language that eliminates unused slots from ob-
jects (a slot corresponds to a method or field). In his PhD
thesis [1, page 146], Agesen writes that there is no easy solu-
tion to dealing with reflection other than "rewriting existing
code on a case by case basis as is deemed necessary ~ and sug-
gests "encouraging programmers writing new code to keep
the limitations of extraction technology in mind". In con-
trast, we allow the user to specify where reflection occurs,
so that applications that use reflection can be extracted.

Chen et. al [8] describe Acacia, an extraction tool for
C/C+-{- based on a repository that records several relation-
ships between program entities. Several types of teachability
analyses can be performed, including a forward reachability
analysis for determining entities that are unused. Chen et
al. identify several issues that make extraction difficult such
as the use of libraries for which code is unavailable, and
situations where functionality should be preserved because
source modules are shared with other applications. Unlike
our work, Acacia is an analysis tool aimed at prodding in-
formation to the user, and does not actually perform any
program transformations such as de~d code elimination. A
number of issues that we study such as the use of reflection
are not discussed, and no mechanism appears to be available
for supplying additional information to the extractor.

In the context of Java, we are aware of a number of several
commercially available extraction tools. DashO-Pro Is and
Condensity 14 are tools with similar goals as Jax. We are
not aware of any published work on the algorithms used by
these tools, or on the internal architecture of these tools.

There is a large body of work on reverse engineering that
attempts to extract designs or object models from applica-
tions (see e.g., [13]). This work could benefit from appli-
cation extraction technology because, by eliminating dead
code, more precise designs could be extracted, and spurious
relationships between classes or program constructs would

tSDashO-Pro is a trademark of preemptive Solutions, Inc.
See wee. p r e e m p t i v e , com.

14Condensity is a t rademark of Plumb Design, Inc. See
ewe. c o n d e n s i t y , com.

106

not appear in the extracted designs. Similar to application
extractors, design extraction tools require additional infor-
mation from the user in the presence of dynamic language
features such as reflection.

7. CONCLUSIONS AND FUTURE WORK
We have identified a number of situations where the ex-

traction of software requires information that cannot be ob-
tained by static analysis techniques alone. This includes
software distributions other than complete applications, the
use of reflection in applications, and situations where library-
based applications are extracted and distributed separately.

To address these issues, we have proposed a small, modu-
lar specification language, MEL, that allows one to specify
the information required for extraction in a uniform manner.
We have argued that the modular nature of MEL scripts al-
lows for a useful separation of responsibilities: each module
of a MEL script can be written by a programmer who is fa-
miliar with the code, and extraction of an application that
relies on third-party libraries ouly requires a MEL script for
that library. We have discussed how several whole-program
transformations performed by extractors can be adapted to
various other kinds of software units by taking into account
the information contained in MEL specifications• Our ap-
proach was implemented in the context of Jax, an applica-
tion extractor for Java [18], and we presented a small case
study that involves several realistic extraction scenarios.

We intend to support the extraction of other widely used
library types such as JavaBeans [16]. Other topics for ongo-
ing research include adding more sophisticated conditional
features to MEL such as conditions based on paths in call
graphs, and boolean conjunction and disjunction of condi-
tions. Furthermore, we are considering "safety" features
such as the insertion of run-time checks to ensure that the
information in a MEL script is correct and complete.

Acknowledgements
We are grateful to John Field, Harold Ossher, Gregor Snell-
ing, and the anonymous FSE referees for comments on drafts
of this paper.

8. REFERENCES
[1] AGBSBN, O. Concrete Type Inference: Delivering

Object-Oriented Applications. Phi) thesis, Stanford U.,
December 1995. Appeared as Sun Microsystems
Laboratories Technical Report SMLI TR-96-52.

[2] AGESEN, O., AND UNGAR, D. Sifting out the gold:
Delivering compact applications from an exploratory
object-oriented programming environment. In Proc. of
the Ninth Annual Conf. on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA '9~)(Portland, OR, 1994), pp. 355-370.
ACM SIGPLAN Notices 29(10).

[3] AIGNBR, G., AND HOLZLE, U. Eliminating virtual
function calls in C+q- programs. In Proc. of the Tenth
European Conf. on Object-Oriented Program
(Baooe'98) ((L ~ , Austria), July 1996),
pp. 142-166.

[4] BACON, D. F. Fast and Effective Optimization of
Statically Typed Object-Oriented Languages• PhD
thesis, Computer Science Division, U. of California,
Berkeley, Dec. 1997. Report No. UCB/CSD-98-1017.

[5] BACON, D. F., AND SWBmNEY, P. F. Fast static
analysis of C + + virtual function calls. In Proc. of the

Eleventh Annual Conf. on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA '96) (San Jose, CA, 1996), pp. 324-341.
SIGPLAN Notices 31(10).

[6] CALDER, B., AND GRUNWALD, D. Reducing indirect
function call overhead in C + + programs. In Proc. of
the ~lst Annual AGM Symposium on Principles of
Programming Languages (1994), pp. 397-408.

[7] CALLAWAY, D. R. Inside Servlets: Server-Side
Programming for the Java Platform. Addison-Wesley,
1999.

[8] CHEN, Y.-F., GANSNER, E. R., AND KOUTSOFIOS, E.
A C + + data model supporting reachability analysis
and dead code detection. IEEE Transactions on
Software Engineering ~4, 9 (Sept. 1998), 682-694.

[9] DEAN, J., GROVE, D., AND CHAMBERS, C.
Optimization of object-oriented programs using static
class hierarchy analysis. In Proc. of the Ninth
European Conf. on Object-Oriented Programming
~ GOOP'95)(Aarhns, Denmark, Aug. 1995),

• Olthoff, Ed., Springer-Verlag, pp• 77-101.
[I0] DIGITALK INC. Smalltalk/V for wln$~ Programming,

1993. Chapter 17: "Object Libraries and Library
Builder.

[II] DIWAN, A., MOSS, J. E. B., AND McKINLEY, K. S.
Simple and effective analysis of statically-typed
object-oriented programs. In Proc. of the Eleventh
Annual Conf. on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA '96)
(San Jose, CA, 1996), pp. 292-305. SIGPLAN Notices
31(10).

[12] IBM CORPORATION. IBM Smalltalk User's Guide,
version 3, release 0 ed., 1995. Chapter 36:
Introduction to Packaging, Chapter 37: "Simple
Paclmging, Chapter 38: "Advanced Packaging.

[13] JACKSON, D., A~D WAINGOLD, A. Lightweight
extraction of object models from bytecode. In Proc. of
the International Conf. on Soft'ware Engineering
(ICSE '99) (Los Angeles, CA), 1999).

[14] PARcPLAcE SYSTEMS. ParePlace Smalltalk,
objectworks release 4.1 ed., 1992. Section 16:
Deploying an Application, Section 28: Binary Object
Streaming Service.

[15] SOHEDFLER, R. W. An an~ysis of ~nll-e substitution
for a structured programming language. Commas.
ACM ~0, 9 (Sept. 1977), 647-654.

[16] SUN MICROSYSTEMS. JavaEeans, version 1.01 ed. 2550
Garcia Avenue, Mountain View, CA 94043, July 1997.

[17] SWP.~.NEY, P. F., AND TIP, F. A study of dead data
members in C + + applications. In Proc. of the ACM
SIGPLAN'98 Conf. on Programming Language
Desigen and Implementation [PLDI '98)(Montreal,
Canada, June 1996), pp. 324-332. ACM SIGPLAN
Notices 33(6).

[18] TIp, F., LAFFRA, C., SWEENw.Y, P. F., AND
STREETER, D. Practical experience with an
application extractor for Java. In Proc. of the
Fourteenth Annual Conf. on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA '99) (Denver, CO), 1999), pp. 292-305.
SIGPLA N Notices 34(10).

[19] TIp, F., AND PALSBF-~G, I . Scalable
propagation-based call graph construction algorithms.
In Proc. of the Fifteenth Annual Conf. on
Object-Oriented Programming Systems, Languages,
and Applications (OOFSLA '00) (Minneapolis, MN),
2000). To appear.

[20] Tin, F., AND SWEBNEY, P. F. Class hierarchy
specialization. In Proc. of the Eleventh Annual Conf.
on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA '97) (Atlanta, GA, 1997),
pp. 271-285. ACM SIGPLAN Notices 32(10).

107

