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ABSTRACT 
In an  increasingly popular  model  of  software dis t r ibut ion,  
software is developed in one computing envi ronment  and de- 
ployed in other environments by transfer over the internet. 
Extraction tools perform a static whole-program analysis 
to determine unused functionality in applications in order 
to reduce the time required to download applications. We 
have identified a number of scenarios where extraction tools 
require information beyond what can be inferred through 
static analysis: software distributions other than complete 
applications, the use of reflection, and situations where an 
application uses separately developed class libraries. This 
paper explores these issues, and introduces a modular spec- 
~cation language for expressing the information required 
for extraction. We implemented this language in the con- 
text of Jax, an industrial-strength application extractor for 
Jaw, and present a small ease study in which different ex- 
traction scenarios are applied to a commercially available 
library-based application. 

1. INTRODUCTION 
In an increasingly popular software distribution model, 

software is developed in one computing environment, and 
deployed in other environments by transfer over the inter- 
net. Because the time required to transfer an application is 
generally proportional to the transferred number of bytes, 
it becomes important to make applications as small as pos- 
sible. Application extractor8 are tools that reduce appli- 
cation size by determining unused functionality that can be 
removed from the application without affecting program be- 
havior. 

Previously~ extractors have been designed primarily with 
complete applications in mind. Such whole-application ex- 
tractors require one to specify an application's entry point(s), 
and rely on a static whole-program analysis to determine 
functionality that can be removed without affecting program 
behavior. However, the extraction of software distributions 
other than complete applications raises several issues: 
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s M o d e m  objec~or ien ted  applicat ions typically rely on 
one or more independent ly  developed class libraries. 
With the advent of virtual machine technology~ library 
code is amenable to the same analyses as application 
code, because the same representation is used in each 
case. When an application is distributed separately 
from the libraries it depends upon, an extraction tool 
needs to be aware of the boundary between the two. 

• Different kinds of software distributions (e.g., complete 
applications, web-based applications that execute in 
the context of a browser, and extensible frameworks) 
have different sets of entry points, and require the 
application extractor to make different assumptions 
about the deployment environment. In fact, the same 
unit of software may even play different roles, depend- 
ing on the deployment scenario. 

s The  use of dynamic  features  such as reflection I poses 
additional problems for extraction tools, because a static 
analysis alone is incapable of detern~inlng the program 
constructs that are used, and hence the program con- 
structs that can be removed. 

• There are also some interesting interactions between 
the above issues. For example, consider a situation 
where an application A is to be distributed together 
with an independently developed class library L in 
which reflection is used. In general, the use of re- 
flection in L may depend on the features in L that 
are used by A. We will discuss how this observation 
affects extraction. 

Each of these issues requires information that cannot be ob- 
tained using static analysis alone, and has to be provided 
to the extraction tool by the user. This paper explores the 
above issues in detail, and provides a uniform solution in 
the form of a small, modular specification language MEL 
(Modular Extraction Language) for prodding the informa- 
tion required to extract various kinds of programs. MEL's 
features are essentially language-independent, with the ex- 
ception of some Java-speci~c syntax used to refer to program 
constructs such as classes, methods and fields. In order to 
validate our approach, we implemented MEL in the context 
of Jax, an industrial-strength application extractor for Jav~ 
developed at IBM Research [18]. We discuss how several of 

IFor convenience, we will henceforth use the term 'Yel]ec- 
tion" to refer to all mechanisms for loading and accessing 
program constructs by specifying their name as a string 
value, and for examining program structure. 
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the program transformations and optimizations performed 
by Jax are adapted to take into account MP.L scripts, and 
present a small case study in which different extraction sce- 
narios are applied to a commercially available library-based 
Java application. 

The remainder of this paper is organized as follows. In 
Section 2, we present the requirements on extraction tools 
in the presence of class library usage. Section 3 introduces 
a specification language for defining the extraction of vari- 
ous kinds of library-based applications. Section 4 presents 
a mechanism for translating specifications to a small set of 
assertions. Section 5 discusses an implementation of MEL, 
and reports on a small case study. Section 6 summarizes 
related work, and Section 7 presents conclusions and direc- 
tions for future work. 

2. REQUIREMENTS 
In this section, we analyze a number of frequently occur- 

ring distribution scenarios, and determine what information 
is required by extraction tools beyond what can be obtained 
through static analysis, 

2.1 Distribution scenarios 
Figure I shows several distribution scenarios that may oc- 

cur in the presence of: a library vendor I responsible for cre- 
ating and distributing a class library L, an application ven- 
dor a responsible for creating and distributing an L-based 
application A, and two users, u and v, of application A. 

It is reasonable to assume that library vendor l will want 
to make library L ms small as possible, in order to reduce 
the download times experienced by customers, but also to 
reduce the load of the server from which the library is down- 
loaded. Hence, I creates an eztracted version Lez t of L, and 
distributes Lez t instead of L. Clearly, Lez  t should offer the 
same functionality as L, but  size-reducing optimizations can 
still be applied to parts of L that are not exposed to users. 

Application vendor a presumably downloads Lez t for use 
during development of application A. When application A 
is ready for distribution, there are two options, depending 
on whether or not a user already has the prerequisite library 
L installed. Figure I shows a user u who does not have (the 
correct version of) L. Assuming that u does not expect to 
download or create other L-based applications, it is desir- 
able for u to download a distribution ALez t that comprises 
the functionality of A and the parts of L used by A, but 
that omits the parts of L that are not used by A. Because 
applications typically use only a small part of the function- 
ality of libraries they rely on 2, the removal of the parts of L 
not used by A is likely to significantly reduce the size of the 
distribution. 

There are also scenarios where it is preferable to keep the 
distributions of L and A separate. Figure I shows another 
user v of application A, who has downloaded Lax t directly 
from l, because he is pIRnnlug to deploy multiple applica- 
tions that rely on the library. Because v already has Le= t, 
he only needs to download the application itself from vendor 
a. To this end, a creates an extracted version Aez t of A that 
can be downloaded by v. It is important to realize that keep- 
ing the distributions of A and L separate has repercussions 

21n previous work on whole-application extraction [18], we 
reported that up to 60~ of the methods in several library- 
based benchmark applications is unreached. 

for the extraction of A itself. If we want to accommodate  
scenarios where v obtains a different version s of L, then the 
extractor should derived Aez t from A without making as- 
sumptions about  the specific version of L that  happens to 
be available in a 's  development environment. The  standard 
Jav~ libraries are an obvious example of this situation. 

We will now investigate the issues related to the use of  
reflection. In essence, reflection allows one to access a pro- 
gram construct by specifying a run-time string value that 
represents the construct's name, and to examine the struc- 
ture of the classes used in a program. Such features are 
problematic for extraction tools because, in general, a static 
analysis cannot determine which program constructs are ac- 
cessed using reflection, and should therefore not be removed 
or transformed. Thus, extractors require additional informa- 
tion from the user that specifies which program constructs 
are accessed using reflection. In our experience, determining 
the program constructs that may be accessed using reflec- 
tion is a fairly easy task for a programmer familiar with the 
code. However, it can be quite difficult to determine how 
reflection is used in third-party libraries, especially if the 
source code for these libraries is unavailable. In the exam- 
ple of Figure 1, the extraction of ALezt from A and L by 
application vendor a requires additional information about 
the use of reflection in L. This can be difficult to determine 
from distribution Lez t alone, because it does not contain the 
source code for the library. To complicate matters further, 
the set of program constructs in L accessed using reflection 
may depend on the features in L that are used by A. In 
general, different L-based applications may cause different 
usage of reflection within L. Our solution to these problems 
(discussed in detail below) will he to have library vendor 
l distribute a script along with Lez t that  contains the in- 
formation required to extract  any L-based application. Our 
scripts allow I to specify that  a program construct is only ac- 
cessed using reflection under certain conditions (e.g., when 
a certain method is reachable). 

We have only discussed a few example distribution sce- 
narios. Other likely scenarios include: 

• Extract ing a library together with multiple applica- 
tions that  use i t .  

• Extract ing a library in the context of another library 
that  uses it. We believe that  such situations, where 
multiple layers of libraries exist and where only the 
topmost layer is exposed to an application, is likely to 
become increasingly common. 

2 . 2  R o l e s  o f  s o f t w a r e  u n i t s  

We will adopt the non-descriptive term so.f~are unit in 
the sequel to denote any collection of classcs tha t  constitutes 
a logics] entity. Recall that  there is no dl/~erence between 
code in a class library and code in an executable applica- 
tion, and it is only the way in which software units are used 
and composed that  determines how extraction should be per- 
formed. In the remainder of this paper, the term role will he 
used to refer to the way in which a software unit is used. We 
will consider four roles that  frequently occur in the context 
of Java: 

8Thls could either be an earlier version of L that  was ob- 
tained from library vendor l, or a completely different im- 
plementation of the library from a different vendor. 
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F i g u r e  1: Illustration o f  different d is tr ibut ion scenarios.  

• A n  appl ica t ion  is an  executable software unit with an 
external interface consisting of a single main()  method. 
It is assumed that  classes in applications are not fur- 
ther extended by derivation after extraction. 

• An applet  is an  executable software unit that  is exe- 
cuted in the context  of a browser. An applet extends 
class j a v a , a p p l e t . A p p l e t  and its external interface 
consist of a set of  methods in j a v a . a p p l e t . A p p l e t  
that  it overrides. It is assumed that  classes in applets 
are not further extended by derivation after extraction. 

• A l ib~ry  is not  assumed to be executable by itself, but  
is used as a building block by other  units. Classes in 
libraries may be extended by derivation. The external 
interface of  a library consists of any method that  has 
p u b l i c  or p r o t e c t e d  access rights. 

• A c o m p o n e n t  is similar to a library in the sense that  it 
is an incomplete program used as a building block by 
other units. But,  lm]ike a library, it is assumed that  
classes in a component cannot be extended by deriva- 
tion. The external interface of a component contains 
every method with p u b l i c  access rights. 

Other  roles such as JavaBeans [16] and servlets [7] can be 
modeled similarly. For example, in the case of JavaBeans, 
all of the JavaBean's  methods that  may be invoked by client 
applications are contained in its external interface. 

2.3 Specifying the extraction domain 
There is no distinction between classes in different soft- 

ware units at the language level. Consequently, it is nec- 
essary to specify the '%oundarles" between software units 
when performing extraction. In our approach, the user se- 
lects the set of classes that  should be extracted, and worst- 
case assumptions are made about  the behavior of classes 
that  are not  selected. 

In practice, there are very few situations where all classes 
should be extracted. One can think of the structure of an 
application as "layered", with the bo t tom layer consisting 
of the standard libraries, the middle layer consisting of class 
libraries built on top of the standard libraries (perhaps con- 
sisting of sublayers), and the topmost layer consisting of the 
application itself. It is usually the case that  classes below 
a certain layer do not need to be extracted and shipped 
because they are already available in the deployment en- 
vironment. In particular, the standard class libraries are 
generally available and are usually excluded from the ex- 
t ract ion process. 4 It is important  to realize tha t  this is not  
merely an issue of avoiding redundant  work and shipping 
redundant code, but  potentially also one of correctness. If 
an application class contains a call to a method in the stan- 
dard libraries, jnllnlng that  call on one platform may result 
in code that  does not  work on another  platform. 

2.4 Dealing with dynamic features 
Java 's  reflection mechanism allows programs to do ear- 

ions forms of self-inspection. Figure 2 shows an exam- 
ple program that  uses structural  reflection (sometimes also 
referred to as introspection). In this program, the class 
that  represents the type T of object t is retrieved us- 
ing a call to method j a v a . l a u g . 0 b j e c t . g e t C l a s s O ,  and 
stored in variable c. The program then calls method 
j ava.  l ang .  C lass .  ge tDeclaredlqethods  ()  to obtain a vec- 
tor of object•  representing the methods in T. For each 
method in this vector, the name is retrieved (by way of a call 
to java. lang. reflect.Hethod, getName 0), and printed to 
standard output.  Hence, the program generates the follow- 
hag output: 

4In the case of embedded systems and network PC ' s  that  
run a fixed set of applications it may be desirable to include 
the standard class libraries in the extraction domain. 
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impor t  j a v a . l o . * ;  
impor t  j a v a . l a n g . C l a s s ;  
impor t  j a v a . l a n e . r e f l e c t . M e t h o d ;  

p u b l i c  c l a s s  Examplel  { 
p u b l i c  s t a t i c  v o i d  m a i n ( S t r i n g  a r t s [ l )  { 

T t = new TO; 
Class c = T.getClassO; 
Method[] methods ffi c.gstDeclaredNethodsO; 
for (int iffiO; i < methods.length; i++)~ 

Method m = methods[i]; 
StringmethodName = m.getNameO; 
Sys tem.ou t .p r ln t ln (mothodNams) ;  

} 

}; 

c l a s s  T { 
void ,oo0  . . .  

void b a r ( ) {  ); 
}; 

F i g u r e  2: A Java program that  uses  reflection.  

los 
bar 

Clearly, program behavior depends on the presence and 
the name of the methods in class T, even though these meth- 
ods are not invoked anywhere. It is obvious that  the use 
of reflection in Figure 2 precludes program transformations 
such as the removal or renaming of  methods in class T be- 
cause such actions would affect program behavior. 

Dynamic loading, another form of reflection, is a heavily- 
used s mechanism for instructing a Java  Virtual Machine to 
load a class X with a specified name s, and return an ob- 
ject  c representing that  class. Reflection can be applied to 
c to create X-objects  on which methods can be invoked. 
The crucial issue is that s is computed at run-~me. This 
implies that, in general, static analyses c~-ot determine 
which classes are dynamically loaded, s 

Figure 3 shows a program fragment that exhibits a fairly 
typical use of dynamic loading. Class Example2 contains a 
method baz which takes a single argument of type String, 
and dynamically loads a class with that name by on]ling 
method java.lang.Class.forNamsO. A reference to the 
dynamically loaded class is stored in variable c. The pro- 
gram then calls method j ava.lang.Class.newInstanceO 
to create a new object of the dynamically loaded type, casts 
it down to an interface type I, and calls method zap on 
the object. Observe that class instantiation (of the dynam- 
ically loaded class) and method invocation (of the default 
constructor of that class) occur implicitly. This poses prob- 
lems for optimizations such as dead method removal because 
the analyses upon which these optimizations are based typi- 
cally need to know which classes are instantiated, and which 
methods are invoked. 

5Nine of the thirteen benchmarks studied in [18] use dy- 
namic loading. 
Sln some cases, the type of a dynamically loaded class can 
be inferred by constant propagation of the string literals 
that represent the class name. However, we have observed 
that these names are often read from files or manipulated in 
non-trivial ways. 

import java.is.*; 
import java.lans.Class; 

p u b l i c  c l a s s  Example2 { 
p u b l i c  s t a t i c  v o i d  b a z ( S t r i n g  nama){  

t r y  { 
Class c = Class.forName(nama); 
Object o ~ c.ne.InstanceO ; 
I i ffi (I)o; 
i . z a p O  ; 

} 
c a t c h  (ClassNotFoundExcapt ion e ){  

S y s t e m . o u t . p r i n t l n ( " E r r o r :  " + 
"Could no t  f i n d  " + name); } 

catch (IllegalAccessException e) 
System.out.println("Error: " + 

"Illegal acosss to " + name); } 
c a t c h  ( I n s t a n t i a t i o n E x c s p t l o n  s ){  

S y s t e m . o u t . p r i n t l n ( " E r r o r :  " + 
"Abstract " + name); } 

} 
); 

i n t e r f a c e  I { 
p u b l i c  v o i d  z a p O ;  

); 

F i g u r e  3: A Java program t h a t  uses  d y n a m i c  loading.  

Java provides a mechanism for implementing methods in a 
platform-dependent way, typically using C. The mechanism 
works roughly as follows: The n a t i v e  keyword is used to 
designate a method as being implemented in a different lan- 
guage, and the corresponding method definition is provided 
in an object file (e.g., a dynamically linked library) asso- 
ciated with the Java application. The native code in the 
object file may instantiate classes, invoke methods, and ac- 
cess fields in the application. This obviously poses problems 
for any program transformation that  relies on accurate in- 
formation about  class instantiation and method invocation, 
because object code is notoriously hard to analyze. 

It should be evident from the above examples that ,  with- 
out additional information, the use of reflection, dynamic 
loading, and native methods requires that  ezt;remely con- 
servative assumptions be made during extraction: It would 
essentially be impossible to remove, rename, or transform 
any program construct. The  approach taken in this paper 
relies on the user to specify a list of program constructs 
(i.e., classes, methods, and fields) that  are accessed using 
these mechanisms, and to make the appropriate worst-case 
assumptions about  these constructs. 

2.5 Model ing different usage contexts 
Section 2.1 already alhided to issues related to the use of 

third-party libraries in which reflection is used. In order to 
create MEL scripts that  are reusable in different contexts, it 
is often desirable to specify that  a given program construct 
is only accessed using reflection under certain conditions. 
To illustrate this issue, Figure 4 shows a small class library 
consisting of three classes L, M and N. Class L has two meth- 
ods: f and 8. A call to method f results in the dynamic 
loading of class M, and a call to method 8 results in the dy- 
namic loading of class N. Note that a client that calls f but 
not 8 will only access M, and a client that calls 8 but not f 
will only access N. A specification of the library's behavior 
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impor t  j a v a .  l ang .  Class  ; 

p u b l i c  c l a s s  L { 
p u b l i c  s t a t i c  v o i d  f O {  

. . .  

Class c = Class.forName("M"); 

} 

public static void 8(){ 

Class c ffi Class.gorNa~e("N") ; 

} 
}; 

c l a s s  H { - . .  }; 

class N { - - -  } ;  

F i g u r e  4: E x a m p l e  class l ibrary  t h a t  uses d y n a m i c  
loading.  

that  states that  any client of L accesses both M and N would 
clearly be overly conservative. 

Section 3 introduces a mechemlsm that  allows conditional 
specifications of the form '~program construct X should be 
preserved when method  m is executed". This allows one 
to express how dynamic loading or reflection is dependent 
on the pert  of a software unit 's  functionality that  is used. 
Consequently, i t  enables the creation of a single, reusable 
configuration file for a software unit that  can be used to ex- 
tract  that  unit accurately in the context of  different clients. 

We conclude this section with an obserwtion. In the 
above discussion, we have sketched two very different sce- 
naxlos involving library L. In one example (the distribution 
of Lez t by l), all externally accessible L-methods should be 
t reated as entry points in determining which methods are 
reachable. In the other  scenario, (the distribution of ALez t 
by a), only L-methods invoked from A and methods tran- 
sitively reachable from those methods should be preserved. 
Hence, the decision on which methods to preserve requires 
information not present in the code of L. This precludes 
an approach based on annotat ing the code of L with addi- 
tional information, unless different ~nnotations are used to 
support different scenarios. 

3. A SPECIFICATION LANGUAGE 
Figure 5 presents a B N F  grammar for a simple specifica. 

tion language, MEL (Modular Extract ion Language), that  
allows users to specify at a high level how to extract  a 
library-based application. The semantics of the various fea- 
tures in MEL are closely related to the discussions in Sec- 
tion 2. A MEL script comprises: 

1. A domain specification, consisting of a class p a t h  where 
classes can be found, and a set of i n c l u d e  statements  
that  specify the extraction domain. Any class not  
listed in an i n c l u d e  s tatement  is considered external 
to our analyses in the sense that  i t  will not be ex- 
tracted, and that  worst-case assumptions will be made 
about  its behavior. 

2. A set of statements. There are two kinds of state- 
ments. Role statements  serve to designate the role of 

MELScript  : := I t e m .  
I tem ::= DomainSpecifier I 

Statement  I Import  
DomainSpecifier : := ClassPath I Include 
ClassPath ::= p a t h  <Di rec to ry>  I 

p a t h  < ZipFile> 
Include ::= i n c l u d e  <Class> | 

i n c l u d e  <PackageName> 
Statement : := Role I Preserve 
Role ::= application <Class> I 

a p p l e t  < C l a s s >  [ 
l i b r a r y  <Class> [ 
component <Class>  

Preserve ::= SimplePreserve ] 
CondPreserve 

SimplePreserve : := p r e s e r v e  <Class>  [ 
preserve <Method> I 
preserve <Fie ld>  

CondPreserve : := SimplePreserve 
when r e a c h e d  < M e t h o d >  

Import  : := impor t  <F i l eName>  

F i g u r e  5: B N F  G r a m m a r  for t h e  user- level  in fo rmat ion  
in M E L  

import L; 

p u b l i c  c l a s s  A { 
p u b l i c  s t a t i c  v o i d  m a i n ( S t r i n g  v x g s [ ] ) {  

. . .  

L 1 = new L(); 
1 .gC) ;  

} 
}; 

F i g u r e  6: E x a m p l e  appl ica t ion  t h a t  uses t h e  l ib ra ry  of  
F igure  4. 

some or all of the classes included in the extraction do- 
main as application, applet, component, or library. 
The semantics of these roles were discussed earlier in 
Section 2.2. Preserve statements  are used to specify 
tha t  program constructs (i.e., classes, methods,  and 
fields) should be preserved because they are accessed 
either outside of the extraction domain or through re- 
flection, and that  worst-case assumptions should be 
made about  these constructs. Following the discussion 
of Section 2.5, program constructs can be condltionally 
preserved depending on the reachability of a specified 
method using a conditional preserve statement .  

3. A list of imported configuration files. The  semantics 
of the impor t  feature consist of textual  expansion of 
the imported file into the import ing file. 

Figure 6 shows an example application A that  uses the ll- 
brary of Figure 4. Observe that  A's main( )  routine creates 
an L-object and invokes L's method 8 0 .  Figures 7 and 8 
present MEL scripts L.mel and A.mel for  the library of Fig- 
ure 4 and the application of Figure 6, respectively. The  
conditioned preserve statements  in L.msl ensure that  class 
H is preserved if  method L . g O  is reached, and that  class N 
is preserved if method  L . f O  is reached. Since A only calls 
method L . 8 0 ,  class N will not  be extracted. 
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p a t h  • • • 
i n c l u d e  L 
l i b r a r y  L 
preserve M when reached L.gO 
preserve N when reached L.fO 

F i g u r e  7: Spec i f ica t ion  L.rael for  t h e  class l i b r a r y  of  
Figure 4. 

path • • • 
include A 
application A 
import L.mel 

F i g u r e  8: Spec i f ica t ion  A.mel for  t h e  appl icat ion of 
Figure 6. 

Sta tement  ::= Assert ion ] Condi t ionalAsser t ion 
Assert ion ::= SimpleAssert ion 
Assert ion : :=  e x t e n d i b l e  < C l a s s >  
Assert ion : :=  o v e r r i d a b l e  < M e t h o d >  
SimpleAssertion ::= i n e t a n t i a t e d  < C l a s s >  
SimpleAsser~ion : :=  r e a c h e d  < M e t h o d >  
SimpleAssert ion : :=  a c c e s s e d  < F i e l d >  
SimpleAssertion ::--- p r e s e r v e l d e n t i t y  < C l a s s >  
SimpleAssertion ::= p r e s e r v e I d e n t £ t y  <Method> 
SimpleAssertion ::= p r e s e r v e I d e n t i t y  < F i e l d >  
C o n ~ s s e r t i o n  : :=  SimpleAssert lon 

when reached  <Method> 

F i g u r e  9: B N F  g r a m m a r  for the  extractor- leve l  infor- 
mat ion  in MEL. 

4. IMPLEMENTATION STRATEGY 
The  specification language presented in Figure 5 was de- 

signed to make it  easy for p rogrammers  to  specify how a 
collection of software uni ts  should be  extracted.  However, 
the  algori thms used by  extract ion tools typically require low- 
level information such as methods  t h a t  are potential ly ex- 
ecuted, and  classes t ha t  are potent ial ly  ins tant ia ted.  To 
bridge the  gap between user-level and  extractor-level  infor- 
mation,  we add  a n u m b e r  of assert ion const ructs  to  MEL, 
and  provide a t rans la t ion  from user-level s t a t ement s  to these 
assertions. An impor t an t  benefi t  of this  approach is t h a t  all 
roles and  usage scenarios can be  t rea ted  uniformly by the  
extractor .  

Figure 9 shows a B N F  g r a m m a r  for ME L  assertions. 
The  i n s t a n t l a t e d ,  r e ached ,  and  a c c e s s e d  assertions axe 
provided for expressing that a class is instantiated, a 
method is reached, or a field is accessed, respectively. The 
p r e s e r v e l d e n t i t y  assert ions express t h a t  a program con- 
s t ruc t  may be accessed from outside the  extract ion domain  
or accessed th rough  reflection, which implies t h a t  the  con- 
s t ruc t ' s  name  or s ignature should not  be  changed. The  
e x t e n d i b l e  and  o v e r r i d a b l e  assert ions serve to express 
that a class may be extended, and that a method may be 
overridden after extraction, respectively. In Section 5, we 
discuss the impact of the latter two types of assertions on 
the closed-world assumptions made by optimizations such 
as call devlrtuMization. 

The  i n s t a n t i a t e d ,  r e a c h e d ,  a c c e s s e d ,  and  
p r e s e r v e I d e n t i t y  assert ions also have a condit ional  
form. Condit ional  assert ions are used to model the  con- 
di t ional  preserve s t a tements  t h a t  specify s i tuat ions where 

reflection is used in a specific method.  
Table 1 shows how s ta t ement s  are t r ans la t ed  to assertions.  

The  tab le  contains  a row for each type  of M E L  s t a t e m e n t  in  
which the  r igh tmos t  column shows the  asser t ions genera ted  
for t h a t  s t a tement .  The  t rans la t ion  process for roles can  be  
summar ized  as follows: 

Worst-case assumpt ions  are made  to de te rmine  a set 
of me thods  t h a t  can be invoked from outside the  ex- 
t rac t ion  domain.  Each such m e t h o d  is assumed to be  
r e a c h e d ,  and  its ident i ty  is preserved to indicate  t h a t  
ex terna l  references may rely on  i ts  name  and  signa- 
ture.  Different roles require different t r ea tmen t .  For 
example, for a p p l i c a t i o n s ,  only the  m a i n O  m e t h o d  
is referenced externally and  needs to be  added  to the  
set.  However, for classes t h a t  play a l l b r a r y  role all 
p u b l i c  and  p r o t e c t e d  me thods  are added. 

For each r o l e  of a class, the  appropr ia te  assumpt ions  
are made  to determine the  fields t h a t  may  be  accessed 
from outside the  extract ion domain,  and  all such fields 
axe asser ted  to be  acces sed .  For example, all p u b l i c  
fields of components  are assumed to be  accessed. 

Any class t h a t  plays an  a p p l e t  role is ins tan t i a ted  
by the  J V M  when the  applet  is loaded by  a browser.  
We model  this  by  assert ing t h a t  each apple t  class is 
i n s t  a n t  i a t  ed. 

For  classes t h a t  play a l i b r a r y  role, we have to assume 
t h a t  fu r the r  subclassing and  m e t h o d  overriding may  
take place af ter  extraction.  To allow this  behavior,  we 
assert  t h a t  the  class should be  e x t e n d i b l e  and  all of 
i ts  me thods  should remain  o v e r r i d a b l e .  

The  tremslation of p r e s e r v e  s t a t ement s  into  assert ions 
assumes t h a t  the  ident i ty  of any  program cons t ruc t  ac- 
cessed outside the  extract ion domain  or t h rough  reflec- 
t ion should be  preserved. Hence, any program const ruct  
t h a t  is referenced in a p r e s e r v e  s t a t emen t  receives the  
p r e s e r v e I d e n t i t y  assertion. For preserved elasscs, we 
make the  conservutive assumption t h a t  they  ewe instv~ati- 
a ted  if  they  axe not  a b s t r a c t  or an  i n t e r f a c e .  Each  pre- 
served m e t h o d  is assumed to be  invoked, and  is therefore 
asser ted to be  r eached .  Similarly, each preserved field is 
assumed to be  a c c e s s e d .  The  t rans la t ion  of condit ional  
p r e s e r v e  s t a t emen t s  involves carrying over the  condit ion 
from the  s t a t emen t  to  the  assertion, bu t  is otherwise com- 
pletely analogous. 

It is h a r d  to make any completeness a rguments  abou t  
MEL. In our  design of the  high-level MEL s ta tements ,  we 
have a t t e m p t e d  to make it  easy for the  user  to  specify com- 
mouly occurring extract ion scenarios. In addit ion,  the  low- 
level MEL assert ions are sufficient to ensure t h a t  a progr~.m 
const ruct  will no t  be affected by an  extractor .  In our  im- 
plementat ion,  we have given the  user direct access to the  
lower-level MEL assertions as a fall-back option for extrac- 
t ion scenarios t h a t  are not  suppor ted  by  high-level MEL 
s ta tements .  

5. IMPLEMENTATION 
In order  to validate our approach,  we implemented  M E L  
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s t a t e m e n t  
a p p l i c a t i o n  U 

appletC 

component U 

~ i b r a r y  G' 

preserve G 

preserve G . ~  

preserve U.~ 

preserve G .hen reached D.n 

preserve U.r~when reached D.n 

preserve G.~ when reached D.. 

derived assertions 
p r e s e r v e I d e n t i t y  C' .... 
reached0.main(java.lang. String[]) 
preserveIdentityC.main(java.lang.Strin~[]) 
instantiatedC' 
preserveIdentity C 
p r e s e r v e I d e n t i t y C . m f o r  every C.~ tha tover r ides  j a v a . a p p l e t . A p p l e t . ~  
reached ( ] ' .m for every O.'m, that overrides java .  applet  .Applet.m 
p r s s e r v e I d e n t i t y  6." 
p r e s e r v e I d e n t i t y  C.m for every p u b l i c  method C.m 
reached C.m for every pub l i c  method 0 . ~  
p r e s e r v e I d e n t i t y  ~ . / f o r  every p u b l i c  field C . f  
accessed C . / f o r  every pub l i c  field C . /  
p rese rveIden t  i t y  (~' 
extendible C 
reached C.m for every pub l i c  or p ro t ec t ed  method C.m 
preserveIdentlty C.m for every public or protected method C.m 
over r idab le  C.m for every pub l i c  or p ro tec t ed  instance method C.m 
accessed C.f for every pub l i c  or p ro tec t ed  field O.f 
p r e s e r v e I d e n t l t y  C.f for every pub l i c  or p ro tec ted  field C.f 
£ n s t a n t i a t e d  C when C is not an interface or an abstract class 
preserveIdentity 
reached G.rn, 
p r e s e r v e I d e n t i t y  O.m 
accessed ~ . f  
p r e s e r v e l d e n t i t  ~ O.f 
i n s t a n t i a t e d G . h e n  reached D.n 
p r e s e r v e I d e n t i t y C w h e n  reached D.n 
reached G.~when reached D.n 
p r e s e r v e I d e n t i t y  C .~when  reached D.n 
accessed U.f  when reached D.n 
preserveIdentityC.f when reached D.n 

T a b l e  1: Translat ion of  s t a t e m e n t s  into  assert ions .  

in the context of Jax [18]. z The implementation also per- 
mits users to specify MEL assertions directly, and has mech- 
anisms for specifying the name of the generated sip file, 
and for selectively disabling optimizations. Jax provides 
two mechanisms to support MEL. In '%arch mode", a MEL 
script is read from a file, and the application is processed 
accordingly. A Graphical User Interface (GUI) that allows 
users to create MEL scripts interactively is also provided. 

We will discuss how a number of program transforma- 
tions and optimizations performed by Jax can be adapted 
to operate on various kinds of library-based applications by 
talH,g into account MEL assertions. These optimizations 
were originally presented as whole-programs optimizations, 
by ma]dng the "closed world" assumption that the entire 
program is available at analysis time. 

S.1 Call graph construction 
Since all of the optimizations under consideration rely di- 

rectly or indirectly on the construction of a call graph, we 
will first discuss how call graph construction algorithms can 
he adapted to take into account MEL assertions. We will 
use Rapid Type Analysis (RTA) [5, 4], an efficient call graph 
construction algorithm, as a specific example. Other call- 
graph construction algorithms (see e.g., [9, 11, 19]) can be 
adapted similarly. 

RTA is a popular algorithm for constructing call graphs 
and devirtualizing call sites that only requires class hierar- 
chy information and global information about instantiated 

7 Version 6.0 of Jax (released in August 1999) supports MEL 
in its full generality, although the syntax of the MEL key- 
words in the system differs slightly from the syntax used in 
this paper. 

classes, and that has been demonstrated to scale well in 
practice [18]. RTA is most easily implemented as an it- 
erative algorithm that uses three worklists cont~in~g (i) 
reached methods, (ii) reached call sites s, and (iii) instanti- 
ated classes. The worklist of reached methods is initialized 
to contain the set of methods called from outside the ap- 
plication (e.g., an application's main() method), and the 
other two worklists are initialized to the empty set. Then, 
following steps are performed repeatedly: 

• The body of a reached method is scanned. Any call 
sites and class instantiations that were not previously 
encountered are added to the appropriate worklist. 

• Each call to a method C.f is resolved with respect to 
each instantiated class D, where D is a subclass of 
C. This involves performing a method lookup for f in 
class D. If the lookup resolves to a method that was 
not previously reached, it is added to the workllst of 
reached methods, and the call graph is updated with 
edges that reflect the flow of control between caller and 
caUee. 

This iterative process continues as long as additional meth- 
ods, call sites, and instantiated classes are found. In cases 
where a class C in the extraction domain overrides a method 
f in 8 class outside the extraction domain, we make the 
worst-case assumption that there is a call to this method on 
any object of any instantiated class. 

In order to adapt RTA to take into account MEL asser- 
tions, we first need to adapt the initialization o£ the work- 

s Since all calls to any given method f are resolved similarly, 
any reasonable implementation combines them. 
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lists. The  worklist of reached methods  is init ialized to con- 
ta ln  any m e t h o d  m for which an  assertion r e a c h e d  m was 
generated.  The  worklist of reached call sites is init ial ized 
to contain  the  empty  set. Finally, the  worklist of ins tant i -  
a ted  classes is init ialized to contain any class C for which 
an  assert ion 2 n s t a n t i a t e d  C was generated.  

Then ,  in the  i terat ive pa r t  of the  algorithm, we add  the  foL 
lowing addi t ional  steps, which are executed when  a m e t h o d  
m is added to the  worklist of reached methods .  

• Whenever  a m e t h o d  m is added to the  worklist of  
reached methods  for which an  assertion i n s t a n t i a l ; e d  
C w h e n  r e a c h e d  m exists, class C is added to the  
worklist of ins tan t ia ted  classes if i t  does not  a l ready 
occur in t h a t  list. 

• Whenever  a m e t h o d  m is added to the  worldist of 
reached methods  for which an  assert ion r e a c h e d  m ~ 
w h e n  r e a c h e d  m exists, me thod  m '  is added to the  
worklist of reached methods  if i t  does not  a l ready oc- 
cur  in t h a t  list. 

5.2 Dead method removal 
Dead Method  Removal  [18] is an  opt imizat ion t h a t  re- 

moves r edundan t  me thod  definitions. This  opt imizat ion re- 
lies on the  informat ion ga thered  dur ing call graph construc-  
t ion to determine s i tuat ions where a me thod  can be  removed 
completely, as well as s i tuat ions where a me thod ' s  body  can  
be  removed bu t  where i ts s ignature  needs to be  re ta ined.  
The  la t t e r  s i tuat ion arises in the  following eases: 

• There  is a reached call site t ha t  refers stat ically to  a n  
instance me thod  C.m, bu t  C.~r~ is not  the  ta rge t  of any 
dynamic dispatch or direct call. 

• There  is a class C t ha t  (i) contains a n  unreached m e t h o d  
C.m,  and  (ii) implements  an  interface r containing a 
declarat ion I . m  of the  Same method  t h a t  is called else- 
where in the  application. 

Note tha t ,  in the  l a t t e r  case, me thod  C.m cannot  be  removed 
because the  resul t ing class file would be  syntactically invalid. 
In b o t h  cases, no addi t ional  information is necessary beyond 
the  information de termined  dur ing call graph construct ion.  

5.3 Call devirtualization 
Call devir tual izat ion [6, 3] t ransforms run- t ime dispatch 

calls into direct calls. This  t ransformat ion  can be applied 
at  a call site z t h a t  calls me thod  C.m if (i) there  is only 
one me thod  t h a t  can be  reached from z, and  (ii) m e t h o d  
C .m  cannot  be  overridden af ter  extract ion of the  applica- 
tion. The  first condit ion can be  verified by inspect ion of the  
call graph, and  the  second condition is me t  if there is no  as- 
sertions o v e r r i d a b l e  C.m or e x t e n d i b l e  C, where C.m is 
the  me thod  invoked at  call site z.  Other  opt imizat ions t h a t  
rely on closed-world assumptions  (e.g., inl/ning [15] and  call 
devir tual izat ion)  can be  adap ted  similarly. 

5.4 Dead field removal 
Dead field removal [17] removes fields t ha t  are no t  ac- 

ceased, as well as fields t h a t  are wrlte-accessed bu t  no t  read- 
accessed. This  opt imizat ion requires t h a t  the  bodies of all 
reached methods  are scanned for read  and  write operat ions  
to fields, s Fields t h a t  are ne i ther  read nor  wr i t ten  can  

~This is most  easily done dur ing call graph cons t ruc t ion  
when me thod  bodies have to be t raversed anyway. 

simply be  removed. Fields t h a t  are only wr i t t en  are also 
removed along wi th  the  wri te-operat ions  t h a t  access these 
fields. Dead field removal  can  be  adap ted  to handle  M E L  
assert ions by considering a field £7.f to  be  read-accessed if  
there  exists a a c c e s s e d  C . f  assertion. Condi t ional  a c c e s s e d  
assertions can be  t r ea t ed  in the  same way as condit ional  
r e a c h e d  assertions. 

5.5 Name compression 
Name compression reduces appl icat ion size by  replacing 

the  names  of classes, methods ,  and  fields wi th  shor ter  names.  
T h e  names  of a class or field x can be  changed if  • is no t  
ins tan t ia ted  or accessed outside the  ext rac t ion  domain,  re- 
spectively. The  condit ions under  which methods  can  be re- 
n a m e d  are a bi t  more complicated.  Cer ta in  me thods  such as 
constructors ,  class initializers, and  class finalizers cannot  be  
renamed.  A m e t h o d  t h a t  overrides a me thod  outside the  ex- 
t rac t ion  domain  cannot  be  renamed.  Finally, if  one m e t h o d  
overrides another ,  b o t h  mus t  be r enamed  correspondinglyJ  ° 
In the  presence of MEL assertions, a n u m b e r  of addi t ional  
const ra in ts  have to be  imposed on  the  renaming  of program 
constructs .  Any program cons t ruc t  z for which there  exists 
a n  assert ion p r e s e r v e I d e n t i t y  x cannot  be  renamed,  any 
me thod  m for which there  exists an  assert ion o v e r r i d a b l e  
m cannot  be renamed,  and  any class c for which there  exists 
a n  assert ion e x t e n d i b l e  c canno t  be  renamed.  

5.6 Class hierarchy transformations 
Removal  of unused classes, and  merging of a derived class 

C with i ts base class B reduce applicat ion size. The  lat-  
t e r  t ransformat ion  involves moving the  methods  It and  fields 
from C' to B,  and  upda t ing  the  references to these methods  
accordingly. The  main  benefi t  of class merging has  to do 
wi th  the  fact t h a t  in Java  class files, each class is a self- 
conta ined uni t  wi th  i ts own set of literals, referred to as i ts 
constant pool. Classes t h a t  are adjacent  in the  hierarchy 
typically have many literals in common,  and  merging such 
classes reduces the  duplicat ion of literals across the  different 
class files. Class merging may also enable the  t ransformat ion  
of  polymorphic calls into direct  me thod  calls. Space limita- 
t ions do not  pe rmi t  a complete  discussion of class merging 
here, and  we refer the  reader  to  [18, 20] for details. In order 
to  take into account  MEL assertions, any class C for which 
there  exists an  assert ion p r e s e r v e I d e n t i t y  C should not  
he  removed, or merged into i ts  base class. 

5.7 A Case Study 
We now present a small  case s tudy  in which different ex- 

t rac t ion  scenarios are applied to Cinderella 12, an interact ive 
geometry tool used for educat ion and  self-study in schools 
and  universities. Cinderella consists of an  application, which 
can be  used for const ruct ing interact ive geometry exercises, 
and  an  applet  in which s tudents  can a t t e m p t  to  solve these 

1°Actually, the  s i tuat ion is slightly more complex. Consider 
a s i tuat ion where a class C extends  a class /3 and  imple- 
ments  an  interface I ,  and  where a m e t h o d  f is declared in 
l ,  defined in /3 ,  hu t  no t  defined in C itself. Then,  the  occur- 
rences of f in [ and  /3 are re la ted  and  should be r enamed  
correspondingly. 

11A minor  pract ical  issue t h a t  comes up  here is t h a t  construc- 
tor  methods  need to be  made  unique. At  the  Java  class file 
level, this  can be  accomplished by  adding addi t ional  d u m m y  
arguments .  

12See wmw, c i n d e r e l l a ,  de.  
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[ d i s t r i b u t i o n  [[ z i p  f i l e  [ c l a s s e s  [ m e t h o d s  [ f i e l d s  [ 
Original 664,836 337 3057 2391 

[ Ant l r  181,535 130 1369 677 

Apple t+Ant l r  184,486 177 1355 842 
Application 391,813 285 2490 1784 
+Ant l r  
Both + Antlr  403,327 293 2541 1797 

T a b l e  2: Resu l t s  o f  m u l t i p l e  d i s t r i b u t i o n  scenar ios  for 
"Cindere l la" .  

exercises. Two interesting observations can be made about 
Cinderella. First, the application and the applet are derived 
from the same code base, which is contained in a single 
zip file. Second, Cinderella relies on a class library called 
"ANTLR" for parsing. 

Table 2 shows different distribution scenarios for Cin- 
derella. The first two rows, labeled O r i g i n a l  and A n t l r  
( o r i g . )  are concerned with the original distributions of 
Cinderella and ANTLR, respectively. The columns of the ta- 
ble show the size of the zip file, and the numbers of classes, 
methods and fields, respectively. The next row, labeled 
Antlr shows the result of extracting ANTLR as a stand-alone 
library. The reduction in size was obtained by removing sev- 
eral methods and fields that are cmly accessible inside the 
library. The next three rows, labeled Applet ,  A p p l i c a t i o n ,  
and Both shows the size of extracting the application, the ap- 
plet, e ud their combination without ANTLR. Finally, the last 
three rows, labeled Apple t  + Ant l r ,  A p p l i c a t l o n  + Ant l r ,  
and Both + A n t l r  show the results of  extracting the appli- 
cation, the applet, and their combination together with the 
parts of ANTLR that  they use. 

The following observations can be made: 

• The applet's functionality is (roughly) a subset of the 
avplication's functionality, because adding the applet 
to the distribution does not increase size by much. 

• On the other hand, the size of the applet is significantly 
smaller than the combined distribution. Hence, users 
that only require the applet will prefer the distribution 
contaln~ng only the applet. 

• From the fact that the distributions that include 
ANTLR are not much bigger than the distributions 
without ANTLR, we can infer that Cinderella uses only 
a small subset of ANTLR's functionality. 

• Extracting ANTLR by itself results in anontrivial (about 
20%) reduction of distribution size. This confirms that 
extracting stand-alone class libraries is worthwhile. 

6. RELATED WORK 
We will begin this section with a brief historical perspec- 

tive on this work. The approach taken in this paper was 
motivated by our experiences with Jax, an application ex- 
t ractor  for Java [18]. Jax was developed as tool for extract- 
ing applications, and initially relied on ad-hoc solutions for 
several of the problems we study in this paper. For exam- 
ple, there was a fixed '%oundary" between applications and 

the standard libraries and based on the names of classes, 
and a simple, low-level mechanism was provided to spec- 
ify that  certain program constructs accessed using reflection 
should be preserved. As a result, Jax  was only suitable for 
distribution scenarios in which an application is shipped by 
itself, or where an application and a library are extracted 
and shipped together. The benchmarks studied in [18] are 
all instances of one of these scenarios. The  work in this 
paper was motimsted by our goal to accommodate other dis- 
tribution scenarios such as independently shipped libraries, 
and to unburden the developer of a library-based applica- 
tions from having to specify information (e.g. s the use of 
reflection) about the library. 

The extraction of applications was pioneered in the 
Smalltalk community, where it is usually referred to as 
"packaging ~ [12, 10, 14]. Smalltalk packaging tools typically 
have mechanisms for excluding certain standard classes and 
objects from consideration, and for forcing the inclusion of 
objects and methods. While the latter mechanism is suf- 
ficient to handle programs that use reflection, we are not 
aware of any Smalltaik extractor that models different types 
of applications, or that provides a feature to preserve certain 
program constructs conditionally. 

Agesen and Ungar [2, 1] describe an application extractor 
for the Self language that eliminates unused slots from ob- 
jects (a slot corresponds to a method or field). In his PhD 
thesis [1, page 146], Agesen writes that there is no easy solu- 
tion to dealing with reflection other than "rewriting existing 
code on a case by case basis as is deemed necessary ~ and sug- 
gests "encouraging programmers writing new code to keep 
the limitations of extraction technology in mind". In con- 
trast, we allow the user to specify where reflection occurs, 
so that applications that use reflection can be extracted. 

Chen et. al [8] describe Acacia, an extraction tool for 
C/C+-{- based on a repository that records several relation- 
ships between program entities. Several types of teachability 
analyses can be performed, including a forward reachability 
analysis for determining entities that are unused. Chen et 
al. identify several issues that make extraction difficult such 
as the use of libraries for which code is unavailable, and 
situations where functionality should be preserved because 
source modules are shared with other applications. Unlike 
our work, Acacia is an analysis tool aimed at prodding in- 
formation to the user, and does not actually perform any 
program transformations such as de~d code elimination. A 
number of issues that we study such as the use of reflection 
are not  discussed, and no mechanism appears to be available 
for supplying additional information to the extractor. 

In the context of Java, we are aware of a number of several 
commercially available extraction tools. DashO-Pro Is and 
Condensity 14 are tools with similar goals as Jax. We are 
not aware of any published work on the algorithms used by 
these tools, or on the internal architecture of these tools. 

There is a large body of work on reverse engineering that 
attempts to extract designs or object models from applica- 
tions (see e.g., [13]). This work could benefit from appli- 
cation extraction technology because, by eliminating dead 
code, more precise designs could be extracted, and spurious 
relationships between classes or program constructs would 

tSDashO-Pro is a trademark of preemptive Solutions, Inc. 
See wee. p r e e m p t i v e ,  com. 

14Condensity is a t rademark of Plumb Design, Inc. See 
ewe.  c o n d e n s i t y ,  com. 
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not appear in the extracted designs. Similar to application 
extractors, design extraction tools require additional infor- 
mation from the user in the presence of dynamic language 
features such as reflection. 

7. CONCLUSIONS AND FUTURE WORK 
We have identified a number of situations where the ex- 

traction of software requires information that cannot be ob- 
tained by static analysis techniques alone. This includes 
software distributions other than complete applications, the 
use of reflection in applications, and situations where library- 
based applications are extracted and distributed separately. 

To address these issues, we have proposed a small, modu- 
lar specification language, MEL, that  allows one to specify 
the information required for extraction in a uniform manner. 
We have argued that the modular nature of MEL scripts al- 
lows for a useful separation of responsibilities: each module 
of a MEL script can be written by a programmer who is fa- 
miliar with the code, and extraction of an application that  
relies on third-party libraries ouly requires a MEL script for 
that  library. We have discussed how several whole-program 
transformations performed by extractors can be adapted to 
various other kinds of software units by taking into account 
the information contained in MEL specifications• Our ap- 
proach was implemented in the context of Jax, an applica- 
tion extractor for Java [18], and we presented a small case 
study that involves several realistic extraction scenarios. 

We intend to support the extraction of other widely used 
library types such as JavaBeans [16]. Other topics for ongo- 
ing research include adding more sophisticated conditional 
features to MEL such as conditions based on paths in call 
graphs, and boolean conjunction and disjunction of condi- 
tions. Furthermore, we are considering "safety" features 
such as the insertion of run-time checks to ensure that  the 
information in a MEL script is correct and complete. 
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